e45108ecff
As per the new guidance from the lab, the module must block crypto operations until the tests have completed. It's unclear what this means exactly (given that technically this is impossible), but let's make some changes that should be enough to comply with the requirement's intent. First, register the library functions and update the live algorithms after the tests rather than before the tests. This is a trivial change. Much more problematic is the fact that the algorithms are registered with the kernel's crypto framework before the tests run, as the tests depend on the framework. Unfortunately, the lab believes that the kernel isn't allowed to enforce the ordering here; the module itself must. Moreover, trying to solve this by copying the crypto API framework into the module proved to be heavily problematic. Thus, implement an alternate solution: make the module override the tfm initialization function of every algorithm it registers, so that it can wait for the tests to complete before allowing the use of any algorithm. This is sufficient if the user makes a supported sequence of API calls. Bug: 153614920 Bug: 188620248 Change-Id: I11ffba90c08114dda4e91c4be7ce8b608c4e14c1 Signed-off-by: Eric Biggers <ebiggers@google.com> (cherry picked from commit 02e48f383b2acb42c85028563cc75453842f11ce)
389 lines
11 KiB
C
389 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Block crypto operations until tests complete
|
|
*
|
|
* Copyright 2021 Google LLC
|
|
*
|
|
* This file defines the fips140_crypto_register_*() functions, to which all
|
|
* calls to crypto_register_*() in the module are redirected. These functions
|
|
* override the tfm initialization function of each algorithm to insert a wait
|
|
* for the module having completed its self-tests and integrity check.
|
|
*
|
|
* The exact field that we override depends on the algorithm type. For
|
|
* algorithm types that have a strongly-typed initialization function pointer
|
|
* (e.g. skcipher), we must override that, since cra_init isn't guaranteed to be
|
|
* called for those despite the field being present in the base struct. For the
|
|
* other algorithm types (e.g. "cipher") we must override cra_init.
|
|
*
|
|
* All of this applies to both normal algorithms and template instances.
|
|
*
|
|
* The purpose of all of this is to meet a FIPS requirement where the module
|
|
* must not produce any output from cryptographic algorithms until it completes
|
|
* its tests. Technically this is impossible, but this solution meets the
|
|
* intent of the requirement, assuming the user makes a supported sequence of
|
|
* API calls. Note that we can't simply run the tests before registering the
|
|
* algorithms, as the algorithms must be registered in order to run the tests.
|
|
*
|
|
* It would be much easier to handle this in the kernel's crypto API framework.
|
|
* Unfortunately, that was deemed insufficient because the module itself is
|
|
* required to do the enforcement. What is *actually* required is still very
|
|
* vague, but the approach implemented here should meet the requirement.
|
|
*/
|
|
|
|
/*
|
|
* This file is the one place in fips140.ko that needs to call the kernel's real
|
|
* algorithm registration functions, so #undefine all the macros from
|
|
* fips140-defs.h so that the "fips140_" prefix doesn't automatically get added.
|
|
*/
|
|
#undef aead_register_instance
|
|
#undef ahash_register_instance
|
|
#undef crypto_register_aead
|
|
#undef crypto_register_aeads
|
|
#undef crypto_register_ahash
|
|
#undef crypto_register_ahashes
|
|
#undef crypto_register_alg
|
|
#undef crypto_register_algs
|
|
#undef crypto_register_rng
|
|
#undef crypto_register_rngs
|
|
#undef crypto_register_shash
|
|
#undef crypto_register_shashes
|
|
#undef crypto_register_skcipher
|
|
#undef crypto_register_skciphers
|
|
#undef shash_register_instance
|
|
#undef skcipher_register_instance
|
|
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/internal/rng.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <linux/xarray.h>
|
|
|
|
#include "fips140-module.h"
|
|
|
|
/* Indicates whether the self-tests and integrity check have completed */
|
|
DECLARE_COMPLETION(fips140_tests_done);
|
|
|
|
/* The thread running the self-tests and integrity check */
|
|
struct task_struct *fips140_init_thread;
|
|
|
|
/*
|
|
* Map from crypto_alg to original initialization function (possibly NULL)
|
|
*
|
|
* Note: unregistering an algorithm will leak its map entry, as we don't bother
|
|
* to remove it. This should be fine since fips140.ko can't be unloaded. The
|
|
* proper solution would be to store the original function pointer in a new
|
|
* field in 'struct crypto_alg', but that would require kernel support.
|
|
*/
|
|
static DEFINE_XARRAY(fips140_init_func_map);
|
|
|
|
static bool fips140_ready(void)
|
|
{
|
|
return completion_done(&fips140_tests_done);
|
|
}
|
|
|
|
/*
|
|
* Wait until crypto operations are allowed to proceed. Return true if the
|
|
* tests are done, or false if the caller is the thread running the tests so it
|
|
* is allowed to proceed anyway.
|
|
*/
|
|
static bool fips140_wait_until_ready(struct crypto_alg *alg)
|
|
{
|
|
if (fips140_ready())
|
|
return true;
|
|
/*
|
|
* The thread running the tests must not wait. Since tfms can only be
|
|
* allocated in task context, we can reliably determine whether the
|
|
* invocation is from that thread or not by checking 'current'.
|
|
*/
|
|
if (current == fips140_init_thread)
|
|
return false;
|
|
|
|
pr_info("blocking user of %s until tests complete\n",
|
|
alg->cra_driver_name);
|
|
wait_for_completion(&fips140_tests_done);
|
|
pr_info("tests done, allowing %s to proceed\n", alg->cra_driver_name);
|
|
return true;
|
|
}
|
|
|
|
static int fips140_store_init_function(struct crypto_alg *alg, void *func)
|
|
{
|
|
void *ret;
|
|
|
|
/*
|
|
* The XArray API requires 4-byte aligned values. Although function
|
|
* pointers in general aren't guaranteed to be 4-byte aligned, it should
|
|
* be the case for the platforms this module is used on.
|
|
*/
|
|
if (WARN_ON((unsigned long)func & 3))
|
|
return -EINVAL;
|
|
|
|
ret = xa_store(&fips140_init_func_map, (unsigned long)alg, func,
|
|
GFP_KERNEL);
|
|
return xa_err(ret);
|
|
}
|
|
|
|
/* Get the algorithm's original initialization function (possibly NULL) */
|
|
static void *fips140_load_init_function(struct crypto_alg *alg)
|
|
{
|
|
return xa_load(&fips140_init_func_map, (unsigned long)alg);
|
|
}
|
|
|
|
/* tfm initialization function overrides */
|
|
|
|
static int fips140_alg_init_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *alg = tfm->__crt_alg;
|
|
int (*cra_init)(struct crypto_tfm *tfm) =
|
|
fips140_load_init_function(alg);
|
|
|
|
if (fips140_wait_until_ready(alg))
|
|
WRITE_ONCE(alg->cra_init, cra_init);
|
|
return cra_init ? cra_init(tfm) : 0;
|
|
}
|
|
|
|
static int fips140_aead_init_tfm(struct crypto_aead *tfm)
|
|
{
|
|
struct aead_alg *alg = crypto_aead_alg(tfm);
|
|
int (*init)(struct crypto_aead *tfm) =
|
|
fips140_load_init_function(&alg->base);
|
|
|
|
if (fips140_wait_until_ready(&alg->base))
|
|
WRITE_ONCE(alg->init, init);
|
|
return init ? init(tfm) : 0;
|
|
}
|
|
|
|
static int fips140_ahash_init_tfm(struct crypto_ahash *tfm)
|
|
{
|
|
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
|
|
struct ahash_alg *alg = container_of(halg, struct ahash_alg, halg);
|
|
int (*init_tfm)(struct crypto_ahash *tfm) =
|
|
fips140_load_init_function(&halg->base);
|
|
|
|
if (fips140_wait_until_ready(&halg->base))
|
|
WRITE_ONCE(alg->init_tfm, init_tfm);
|
|
return init_tfm ? init_tfm(tfm) : 0;
|
|
}
|
|
|
|
static int fips140_shash_init_tfm(struct crypto_shash *tfm)
|
|
{
|
|
struct shash_alg *alg = crypto_shash_alg(tfm);
|
|
int (*init_tfm)(struct crypto_shash *tfm) =
|
|
fips140_load_init_function(&alg->base);
|
|
|
|
if (fips140_wait_until_ready(&alg->base))
|
|
WRITE_ONCE(alg->init_tfm, init_tfm);
|
|
return init_tfm ? init_tfm(tfm) : 0;
|
|
}
|
|
|
|
static int fips140_skcipher_init_tfm(struct crypto_skcipher *tfm)
|
|
{
|
|
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
|
|
int (*init)(struct crypto_skcipher *tfm) =
|
|
fips140_load_init_function(&alg->base);
|
|
|
|
if (fips140_wait_until_ready(&alg->base))
|
|
WRITE_ONCE(alg->init, init);
|
|
return init ? init(tfm) : 0;
|
|
}
|
|
|
|
/* Single algorithm registration */
|
|
|
|
#define prepare_alg(alg, base_alg, field, wrapper_func) \
|
|
({ \
|
|
int err = 0; \
|
|
\
|
|
if (!fips140_ready() && alg->field != wrapper_func) { \
|
|
err = fips140_store_init_function(base_alg, alg->field);\
|
|
if (err == 0) \
|
|
alg->field = wrapper_func; \
|
|
} \
|
|
err; \
|
|
})
|
|
|
|
static int fips140_prepare_alg(struct crypto_alg *alg)
|
|
{
|
|
/*
|
|
* Override cra_init. This is only for algorithm types like cipher and
|
|
* rng that don't have a strongly-typed initialization function.
|
|
*/
|
|
return prepare_alg(alg, alg, cra_init, fips140_alg_init_tfm);
|
|
}
|
|
|
|
static int fips140_prepare_aead_alg(struct aead_alg *alg)
|
|
{
|
|
return prepare_alg(alg, &alg->base, init, fips140_aead_init_tfm);
|
|
}
|
|
|
|
static int fips140_prepare_ahash_alg(struct ahash_alg *alg)
|
|
{
|
|
return prepare_alg(alg, &alg->halg.base, init_tfm,
|
|
fips140_ahash_init_tfm);
|
|
}
|
|
|
|
static int fips140_prepare_rng_alg(struct rng_alg *alg)
|
|
{
|
|
/*
|
|
* rng doesn't have a strongly-typed initialization function, so we must
|
|
* treat rng algorithms as "generic" algorithms.
|
|
*/
|
|
return fips140_prepare_alg(&alg->base);
|
|
}
|
|
|
|
static int fips140_prepare_shash_alg(struct shash_alg *alg)
|
|
{
|
|
return prepare_alg(alg, &alg->base, init_tfm, fips140_shash_init_tfm);
|
|
}
|
|
|
|
static int fips140_prepare_skcipher_alg(struct skcipher_alg *alg)
|
|
{
|
|
return prepare_alg(alg, &alg->base, init, fips140_skcipher_init_tfm);
|
|
}
|
|
|
|
int fips140_crypto_register_alg(struct crypto_alg *alg)
|
|
{
|
|
return fips140_prepare_alg(alg) ?: crypto_register_alg(alg);
|
|
}
|
|
|
|
int fips140_crypto_register_aead(struct aead_alg *alg)
|
|
{
|
|
return fips140_prepare_aead_alg(alg) ?: crypto_register_aead(alg);
|
|
}
|
|
|
|
int fips140_crypto_register_ahash(struct ahash_alg *alg)
|
|
{
|
|
return fips140_prepare_ahash_alg(alg) ?: crypto_register_ahash(alg);
|
|
}
|
|
|
|
int fips140_crypto_register_rng(struct rng_alg *alg)
|
|
{
|
|
return fips140_prepare_rng_alg(alg) ?: crypto_register_rng(alg);
|
|
}
|
|
|
|
int fips140_crypto_register_shash(struct shash_alg *alg)
|
|
{
|
|
return fips140_prepare_shash_alg(alg) ?: crypto_register_shash(alg);
|
|
}
|
|
|
|
int fips140_crypto_register_skcipher(struct skcipher_alg *alg)
|
|
{
|
|
return fips140_prepare_skcipher_alg(alg) ?:
|
|
crypto_register_skcipher(alg);
|
|
}
|
|
|
|
/* Instance registration */
|
|
|
|
int fips140_aead_register_instance(struct crypto_template *tmpl,
|
|
struct aead_instance *inst)
|
|
{
|
|
return fips140_prepare_aead_alg(&inst->alg) ?:
|
|
aead_register_instance(tmpl, inst);
|
|
}
|
|
|
|
int fips140_ahash_register_instance(struct crypto_template *tmpl,
|
|
struct ahash_instance *inst)
|
|
{
|
|
return fips140_prepare_ahash_alg(&inst->alg) ?:
|
|
ahash_register_instance(tmpl, inst);
|
|
}
|
|
|
|
int fips140_shash_register_instance(struct crypto_template *tmpl,
|
|
struct shash_instance *inst)
|
|
{
|
|
return fips140_prepare_shash_alg(&inst->alg) ?:
|
|
shash_register_instance(tmpl, inst);
|
|
}
|
|
|
|
int fips140_skcipher_register_instance(struct crypto_template *tmpl,
|
|
struct skcipher_instance *inst)
|
|
{
|
|
return fips140_prepare_skcipher_alg(&inst->alg) ?:
|
|
skcipher_register_instance(tmpl, inst);
|
|
}
|
|
|
|
/* Bulk algorithm registration */
|
|
|
|
int fips140_crypto_register_algs(struct crypto_alg *algs, int count)
|
|
{
|
|
int i;
|
|
int err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
err = fips140_prepare_alg(&algs[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return crypto_register_algs(algs, count);
|
|
}
|
|
|
|
int fips140_crypto_register_aeads(struct aead_alg *algs, int count)
|
|
{
|
|
int i;
|
|
int err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
err = fips140_prepare_aead_alg(&algs[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return crypto_register_aeads(algs, count);
|
|
}
|
|
|
|
int fips140_crypto_register_ahashes(struct ahash_alg *algs, int count)
|
|
{
|
|
int i;
|
|
int err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
err = fips140_prepare_ahash_alg(&algs[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return crypto_register_ahashes(algs, count);
|
|
}
|
|
|
|
int fips140_crypto_register_rngs(struct rng_alg *algs, int count)
|
|
{
|
|
int i;
|
|
int err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
err = fips140_prepare_rng_alg(&algs[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return crypto_register_rngs(algs, count);
|
|
}
|
|
|
|
int fips140_crypto_register_shashes(struct shash_alg *algs, int count)
|
|
{
|
|
int i;
|
|
int err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
err = fips140_prepare_shash_alg(&algs[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return crypto_register_shashes(algs, count);
|
|
}
|
|
|
|
int fips140_crypto_register_skciphers(struct skcipher_alg *algs, int count)
|
|
{
|
|
int i;
|
|
int err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
err = fips140_prepare_skcipher_alg(&algs[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return crypto_register_skciphers(algs, count);
|
|
}
|