android_kernel_xiaomi_sm8450/crypto/algapi.c
Greg Kroah-Hartman c15c1199d6 Merge 5.10.216 into android12-5.10-lts
Changes in 5.10.216
	batman-adv: Avoid infinite loop trying to resize local TT
	Bluetooth: Fix memory leak in hci_req_sync_complete()
	media: cec: core: remove length check of Timer Status
	nouveau: fix function cast warning
	net: openvswitch: fix unwanted error log on timeout policy probing
	u64_stats: fix u64_stats_init() for lockdep when used repeatedly in one file
	xsk: validate user input for XDP_{UMEM|COMPLETION}_FILL_RING
	geneve: fix header validation in geneve[6]_xmit_skb
	octeontx2-af: Fix NIX SQ mode and BP config
	ipv6: fib: hide unused 'pn' variable
	ipv4/route: avoid unused-but-set-variable warning
	ipv6: fix race condition between ipv6_get_ifaddr and ipv6_del_addr
	Bluetooth: SCO: Fix not validating setsockopt user input
	netfilter: complete validation of user input
	net/mlx5: Properly link new fs rules into the tree
	af_unix: Do not use atomic ops for unix_sk(sk)->inflight.
	af_unix: Fix garbage collector racing against connect()
	net: ena: Fix potential sign extension issue
	net: ena: Wrong missing IO completions check order
	net: ena: Fix incorrect descriptor free behavior
	iommu/vt-d: Allocate local memory for page request queue
	mailbox: imx: fix suspend failue
	btrfs: qgroup: correctly model root qgroup rsv in convert
	drm/client: Fully protect modes[] with dev->mode_config.mutex
	vhost: Add smp_rmb() in vhost_vq_avail_empty()
	x86/cpu: Actually turn off mitigations by default for SPECULATION_MITIGATIONS=n
	selftests: timers: Fix abs() warning in posix_timers test
	x86/apic: Force native_apic_mem_read() to use the MOV instruction
	irqflags: Explicitly ignore lockdep_hrtimer_exit() argument
	btrfs: record delayed inode root in transaction
	riscv: Enable per-task stack canaries
	riscv: process: Fix kernel gp leakage
	selftests/ftrace: Limit length in subsystem-enable tests
	kprobes: Fix possible use-after-free issue on kprobe registration
	Revert "tracing/trigger: Fix to return error if failed to alloc snapshot"
	netfilter: nf_tables: Fix potential data-race in __nft_expr_type_get()
	netfilter: nft_set_pipapo: do not free live element
	tun: limit printing rate when illegal packet received by tun dev
	RDMA/rxe: Fix the problem "mutex_destroy missing"
	RDMA/cm: Print the old state when cm_destroy_id gets timeout
	RDMA/mlx5: Fix port number for counter query in multi-port configuration
	drm: nv04: Fix out of bounds access
	drm/panel: visionox-rm69299: don't unregister DSI device
	clk: Remove prepare_lock hold assertion in __clk_release()
	clk: Mark 'all_lists' as const
	clk: remove extra empty line
	clk: Print an info line before disabling unused clocks
	clk: Initialize struct clk_core kref earlier
	clk: Get runtime PM before walking tree during disable_unused
	x86/cpufeatures: Fix dependencies for GFNI, VAES, and VPCLMULQDQ
	binder: check offset alignment in binder_get_object()
	thunderbolt: Avoid notify PM core about runtime PM resume
	thunderbolt: Fix wake configurations after device unplug
	comedi: vmk80xx: fix incomplete endpoint checking
	serial/pmac_zilog: Remove flawed mitigation for rx irq flood
	USB: serial: option: add Fibocom FM135-GL variants
	USB: serial: option: add support for Fibocom FM650/FG650
	USB: serial: option: add Lonsung U8300/U9300 product
	USB: serial: option: support Quectel EM060K sub-models
	USB: serial: option: add Rolling RW101-GL and RW135-GL support
	USB: serial: option: add Telit FN920C04 rmnet compositions
	Revert "usb: cdc-wdm: close race between read and workqueue"
	usb: dwc2: host: Fix dereference issue in DDMA completion flow.
	usb: Disable USB3 LPM at shutdown
	mei: me: disable RPL-S on SPS and IGN firmwares
	speakup: Avoid crash on very long word
	fs: sysfs: Fix reference leak in sysfs_break_active_protection()
	init/main.c: Fix potential static_command_line memory overflow
	drm/amdgpu: validate the parameters of bo mapping operations more clearly
	nouveau: fix instmem race condition around ptr stores
	nilfs2: fix OOB in nilfs_set_de_type
	arm64: dts: rockchip: fix alphabetical ordering RK3399 puma
	arm64: dts: rockchip: enable internal pull-up on PCIE_WAKE# for RK3399 Puma
	arm64: dts: rockchip: Remove unsupported node from the Pinebook Pro dts
	arm64: dts: mediatek: mt7622: add support for coherent DMA
	arm64: dts: mediatek: mt7622: introduce nodes for Wireless Ethernet Dispatch
	arm64: dts: mediatek: mt7622: fix clock controllers
	arm64: dts: mediatek: mt7622: fix IR nodename
	arm64: dts: mediatek: mt7622: fix ethernet controller "compatible"
	arm64: dts: mediatek: mt7622: drop "reset-names" from thermal block
	arm64: dts: mediatek: mt2712: fix validation errors
	ARC: [plat-hsdk]: Remove misplaced interrupt-cells property
	wifi: iwlwifi: mvm: remove old PASN station when adding a new one
	vxlan: drop packets from invalid src-address
	mlxsw: core: Unregister EMAD trap using FORWARD action
	NFC: trf7970a: disable all regulators on removal
	ipv4: check for NULL idev in ip_route_use_hint()
	net: usb: ax88179_178a: stop lying about skb->truesize
	net: gtp: Fix Use-After-Free in gtp_dellink
	ipvs: Fix checksumming on GSO of SCTP packets
	net: openvswitch: Fix Use-After-Free in ovs_ct_exit
	mlxsw: spectrum_acl_tcam: Fix race during rehash delayed work
	mlxsw: spectrum_acl_tcam: Fix possible use-after-free during activity update
	mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash
	mlxsw: spectrum_acl_tcam: Rate limit error message
	mlxsw: spectrum_acl_tcam: Fix memory leak during rehash
	mlxsw: spectrum_acl_tcam: Fix warning during rehash
	mlxsw: spectrum_acl_tcam: Fix incorrect list API usage
	mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work
	netfilter: nf_tables: honor table dormant flag from netdev release event path
	i40e: Do not use WQ_MEM_RECLAIM flag for workqueue
	i40e: Report MFS in decimal base instead of hex
	iavf: Fix TC config comparison with existing adapter TC config
	net: ethernet: ti: am65-cpts: Fix PTPv1 message type on TX packets
	af_unix: Suppress false-positive lockdep splat for spin_lock() in __unix_gc().
	serial: core: Provide port lock wrappers
	serial: mxs-auart: add spinlock around changing cts state
	Revert "crypto: api - Disallow identical driver names"
	net/mlx5e: Fix a race in command alloc flow
	tracing: Show size of requested perf buffer
	tracing: Increase PERF_MAX_TRACE_SIZE to handle Sentinel1 and docker together
	PM / devfreq: Fix buffer overflow in trans_stat_show
	Bluetooth: Fix type of len in {l2cap,sco}_sock_getsockopt_old()
	Bluetooth: btusb: Add Realtek RTL8852BE support ID 0x0bda:0x4853
	btrfs: fix information leak in btrfs_ioctl_logical_to_ino()
	cpu: Re-enable CPU mitigations by default for !X86 architectures
	arm64: dts: rockchip: enable internal pull-up for Q7_THRM# on RK3399 Puma
	drm/amdgpu/sdma5.2: use legacy HDP flush for SDMA2/3
	drm/amdgpu: Fix leak when GPU memory allocation fails
	irqchip/gic-v3-its: Prevent double free on error
	ethernet: Add helper for assigning packet type when dest address does not match device address
	net: b44: set pause params only when interface is up
	stackdepot: respect __GFP_NOLOCKDEP allocation flag
	mtd: diskonchip: work around ubsan link failure
	tcp: Clean up kernel listener's reqsk in inet_twsk_purge()
	tcp: Fix NEW_SYN_RECV handling in inet_twsk_purge()
	dmaengine: owl: fix register access functions
	idma64: Don't try to serve interrupts when device is powered off
	dma: xilinx_dpdma: Fix locking
	riscv: fix VMALLOC_START definition
	riscv: Fix TASK_SIZE on 64-bit NOMMU
	i2c: smbus: fix NULL function pointer dereference
	HID: i2c-hid: remove I2C_HID_READ_PENDING flag to prevent lock-up
	bounds: Use the right number of bits for power-of-two CONFIG_NR_CPUS
	udp: preserve the connected status if only UDP cmsg
	serial: core: fix kernel-doc for uart_port_unlock_irqrestore()
	riscv: Disable STACKPROTECTOR_PER_TASK if GCC_PLUGIN_RANDSTRUCT is enabled
	Linux 5.10.216

Change-Id: Ia2bf3ba6ed3f36a56f71543442427eb770a2400b
Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2024-06-13 16:02:17 +00:00

1301 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Cryptographic API for algorithms (i.e., low-level API).
*
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*/
#include <crypto/algapi.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/fips.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "internal.h"
static LIST_HEAD(crypto_template_list);
static inline void crypto_check_module_sig(struct module *mod)
{
if (fips_enabled && mod && !module_sig_ok(mod))
panic("Module %s signature verification failed in FIPS mode\n",
module_name(mod));
}
static int crypto_check_alg(struct crypto_alg *alg)
{
crypto_check_module_sig(alg->cra_module);
if (!alg->cra_name[0] || !alg->cra_driver_name[0])
return -EINVAL;
if (alg->cra_alignmask & (alg->cra_alignmask + 1))
return -EINVAL;
/* General maximums for all algs. */
if (alg->cra_alignmask > MAX_ALGAPI_ALIGNMASK)
return -EINVAL;
if (alg->cra_blocksize > MAX_ALGAPI_BLOCKSIZE)
return -EINVAL;
/* Lower maximums for specific alg types. */
if (!alg->cra_type && (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
CRYPTO_ALG_TYPE_CIPHER) {
if (alg->cra_alignmask > MAX_CIPHER_ALIGNMASK)
return -EINVAL;
if (alg->cra_blocksize > MAX_CIPHER_BLOCKSIZE)
return -EINVAL;
}
if (alg->cra_priority < 0)
return -EINVAL;
refcount_set(&alg->cra_refcnt, 1);
return 0;
}
static void crypto_free_instance(struct crypto_instance *inst)
{
inst->alg.cra_type->free(inst);
}
static void crypto_destroy_instance(struct crypto_alg *alg)
{
struct crypto_instance *inst = (void *)alg;
struct crypto_template *tmpl = inst->tmpl;
crypto_free_instance(inst);
crypto_tmpl_put(tmpl);
}
/*
* This function adds a spawn to the list secondary_spawns which
* will be used at the end of crypto_remove_spawns to unregister
* instances, unless the spawn happens to be one that is depended
* on by the new algorithm (nalg in crypto_remove_spawns).
*
* This function is also responsible for resurrecting any algorithms
* in the dependency chain of nalg by unsetting n->dead.
*/
static struct list_head *crypto_more_spawns(struct crypto_alg *alg,
struct list_head *stack,
struct list_head *top,
struct list_head *secondary_spawns)
{
struct crypto_spawn *spawn, *n;
spawn = list_first_entry_or_null(stack, struct crypto_spawn, list);
if (!spawn)
return NULL;
n = list_prev_entry(spawn, list);
list_move(&spawn->list, secondary_spawns);
if (list_is_last(&n->list, stack))
return top;
n = list_next_entry(n, list);
if (!spawn->dead)
n->dead = false;
return &n->inst->alg.cra_users;
}
static void crypto_remove_instance(struct crypto_instance *inst,
struct list_head *list)
{
struct crypto_template *tmpl = inst->tmpl;
if (crypto_is_dead(&inst->alg))
return;
inst->alg.cra_flags |= CRYPTO_ALG_DEAD;
if (!tmpl || !crypto_tmpl_get(tmpl))
return;
list_move(&inst->alg.cra_list, list);
hlist_del(&inst->list);
inst->alg.cra_destroy = crypto_destroy_instance;
BUG_ON(!list_empty(&inst->alg.cra_users));
}
/*
* Given an algorithm alg, remove all algorithms that depend on it
* through spawns. If nalg is not null, then exempt any algorithms
* that is depended on by nalg. This is useful when nalg itself
* depends on alg.
*/
void crypto_remove_spawns(struct crypto_alg *alg, struct list_head *list,
struct crypto_alg *nalg)
{
u32 new_type = (nalg ?: alg)->cra_flags;
struct crypto_spawn *spawn, *n;
LIST_HEAD(secondary_spawns);
struct list_head *spawns;
LIST_HEAD(stack);
LIST_HEAD(top);
spawns = &alg->cra_users;
list_for_each_entry_safe(spawn, n, spawns, list) {
if ((spawn->alg->cra_flags ^ new_type) & spawn->mask)
continue;
list_move(&spawn->list, &top);
}
/*
* Perform a depth-first walk starting from alg through
* the cra_users tree. The list stack records the path
* from alg to the current spawn.
*/
spawns = &top;
do {
while (!list_empty(spawns)) {
struct crypto_instance *inst;
spawn = list_first_entry(spawns, struct crypto_spawn,
list);
inst = spawn->inst;
list_move(&spawn->list, &stack);
spawn->dead = !spawn->registered || &inst->alg != nalg;
if (!spawn->registered)
break;
BUG_ON(&inst->alg == alg);
if (&inst->alg == nalg)
break;
spawns = &inst->alg.cra_users;
/*
* Even if spawn->registered is true, the
* instance itself may still be unregistered.
* This is because it may have failed during
* registration. Therefore we still need to
* make the following test.
*
* We may encounter an unregistered instance here, since
* an instance's spawns are set up prior to the instance
* being registered. An unregistered instance will have
* NULL ->cra_users.next, since ->cra_users isn't
* properly initialized until registration. But an
* unregistered instance cannot have any users, so treat
* it the same as ->cra_users being empty.
*/
if (spawns->next == NULL)
break;
}
} while ((spawns = crypto_more_spawns(alg, &stack, &top,
&secondary_spawns)));
/*
* Remove all instances that are marked as dead. Also
* complete the resurrection of the others by moving them
* back to the cra_users list.
*/
list_for_each_entry_safe(spawn, n, &secondary_spawns, list) {
if (!spawn->dead)
list_move(&spawn->list, &spawn->alg->cra_users);
else if (spawn->registered)
crypto_remove_instance(spawn->inst, list);
}
}
EXPORT_SYMBOL_GPL(crypto_remove_spawns);
static struct crypto_larval *__crypto_register_alg(struct crypto_alg *alg)
{
struct crypto_alg *q;
struct crypto_larval *larval;
int ret = -EAGAIN;
if (crypto_is_dead(alg))
goto err;
INIT_LIST_HEAD(&alg->cra_users);
/* No cheating! */
alg->cra_flags &= ~CRYPTO_ALG_TESTED;
ret = -EEXIST;
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (q == alg)
goto err;
if (crypto_is_moribund(q))
continue;
if (crypto_is_larval(q)) {
if (!strcmp(alg->cra_driver_name, q->cra_driver_name))
goto err;
continue;
}
if (!strcmp(q->cra_driver_name, alg->cra_name) ||
!strcmp(q->cra_name, alg->cra_driver_name))
goto err;
}
larval = crypto_larval_alloc(alg->cra_name,
alg->cra_flags | CRYPTO_ALG_TESTED, 0);
if (IS_ERR(larval))
goto out;
ret = -ENOENT;
larval->adult = crypto_mod_get(alg);
if (!larval->adult)
goto free_larval;
refcount_set(&larval->alg.cra_refcnt, 1);
memcpy(larval->alg.cra_driver_name, alg->cra_driver_name,
CRYPTO_MAX_ALG_NAME);
larval->alg.cra_priority = alg->cra_priority;
list_add(&alg->cra_list, &crypto_alg_list);
list_add(&larval->alg.cra_list, &crypto_alg_list);
crypto_stats_init(alg);
out:
return larval;
free_larval:
kfree(larval);
err:
larval = ERR_PTR(ret);
goto out;
}
void crypto_alg_tested(const char *name, int err)
{
struct crypto_larval *test;
struct crypto_alg *alg;
struct crypto_alg *q;
LIST_HEAD(list);
bool best;
down_write(&crypto_alg_sem);
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (crypto_is_moribund(q) || !crypto_is_larval(q))
continue;
test = (struct crypto_larval *)q;
if (!strcmp(q->cra_driver_name, name))
goto found;
}
pr_err("alg: Unexpected test result for %s: %d\n", name, err);
goto unlock;
found:
q->cra_flags |= CRYPTO_ALG_DEAD;
alg = test->adult;
if (err || list_empty(&alg->cra_list))
goto complete;
alg->cra_flags |= CRYPTO_ALG_TESTED;
/* Only satisfy larval waiters if we are the best. */
best = true;
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (crypto_is_moribund(q) || !crypto_is_larval(q))
continue;
if (strcmp(alg->cra_name, q->cra_name))
continue;
if (q->cra_priority > alg->cra_priority) {
best = false;
break;
}
}
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (q == alg)
continue;
if (crypto_is_moribund(q))
continue;
if (crypto_is_larval(q)) {
struct crypto_larval *larval = (void *)q;
/*
* Check to see if either our generic name or
* specific name can satisfy the name requested
* by the larval entry q.
*/
if (strcmp(alg->cra_name, q->cra_name) &&
strcmp(alg->cra_driver_name, q->cra_name))
continue;
if (larval->adult)
continue;
if ((q->cra_flags ^ alg->cra_flags) & larval->mask)
continue;
if (best && crypto_mod_get(alg))
larval->adult = alg;
else
larval->adult = ERR_PTR(-EAGAIN);
continue;
}
if (strcmp(alg->cra_name, q->cra_name))
continue;
if (strcmp(alg->cra_driver_name, q->cra_driver_name) &&
q->cra_priority > alg->cra_priority)
continue;
crypto_remove_spawns(q, &list, alg);
}
complete:
complete_all(&test->completion);
unlock:
up_write(&crypto_alg_sem);
crypto_remove_final(&list);
}
EXPORT_SYMBOL_GPL(crypto_alg_tested);
void crypto_remove_final(struct list_head *list)
{
struct crypto_alg *alg;
struct crypto_alg *n;
list_for_each_entry_safe(alg, n, list, cra_list) {
list_del_init(&alg->cra_list);
crypto_alg_put(alg);
}
}
EXPORT_SYMBOL_GPL(crypto_remove_final);
static void crypto_wait_for_test(struct crypto_larval *larval)
{
int err;
err = crypto_probing_notify(CRYPTO_MSG_ALG_REGISTER, larval->adult);
if (err != NOTIFY_STOP) {
if (WARN_ON(err != NOTIFY_DONE))
goto out;
crypto_alg_tested(larval->alg.cra_driver_name, 0);
}
err = wait_for_completion_killable(&larval->completion);
WARN_ON(err);
if (!err)
crypto_notify(CRYPTO_MSG_ALG_LOADED, larval);
out:
crypto_larval_kill(&larval->alg);
}
int crypto_register_alg(struct crypto_alg *alg)
{
struct crypto_larval *larval;
int err;
alg->cra_flags &= ~CRYPTO_ALG_DEAD;
err = crypto_check_alg(alg);
if (err)
return err;
down_write(&crypto_alg_sem);
larval = __crypto_register_alg(alg);
up_write(&crypto_alg_sem);
if (IS_ERR(larval))
return PTR_ERR(larval);
crypto_wait_for_test(larval);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_register_alg);
static int crypto_remove_alg(struct crypto_alg *alg, struct list_head *list)
{
if (unlikely(list_empty(&alg->cra_list)))
return -ENOENT;
alg->cra_flags |= CRYPTO_ALG_DEAD;
list_del_init(&alg->cra_list);
crypto_remove_spawns(alg, list, NULL);
return 0;
}
void crypto_unregister_alg(struct crypto_alg *alg)
{
int ret;
LIST_HEAD(list);
down_write(&crypto_alg_sem);
ret = crypto_remove_alg(alg, &list);
up_write(&crypto_alg_sem);
if (WARN(ret, "Algorithm %s is not registered", alg->cra_driver_name))
return;
if (WARN_ON(refcount_read(&alg->cra_refcnt) != 1))
return;
if (alg->cra_destroy)
alg->cra_destroy(alg);
crypto_remove_final(&list);
}
EXPORT_SYMBOL_GPL(crypto_unregister_alg);
int crypto_register_algs(struct crypto_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_alg(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_alg(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_algs);
void crypto_unregister_algs(struct crypto_alg *algs, int count)
{
int i;
for (i = 0; i < count; i++)
crypto_unregister_alg(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_algs);
int crypto_register_template(struct crypto_template *tmpl)
{
struct crypto_template *q;
int err = -EEXIST;
down_write(&crypto_alg_sem);
crypto_check_module_sig(tmpl->module);
list_for_each_entry(q, &crypto_template_list, list) {
if (q == tmpl)
goto out;
}
list_add(&tmpl->list, &crypto_template_list);
err = 0;
out:
up_write(&crypto_alg_sem);
return err;
}
EXPORT_SYMBOL_GPL(crypto_register_template);
int crypto_register_templates(struct crypto_template *tmpls, int count)
{
int i, err;
for (i = 0; i < count; i++) {
err = crypto_register_template(&tmpls[i]);
if (err)
goto out;
}
return 0;
out:
for (--i; i >= 0; --i)
crypto_unregister_template(&tmpls[i]);
return err;
}
EXPORT_SYMBOL_GPL(crypto_register_templates);
void crypto_unregister_template(struct crypto_template *tmpl)
{
struct crypto_instance *inst;
struct hlist_node *n;
struct hlist_head *list;
LIST_HEAD(users);
down_write(&crypto_alg_sem);
BUG_ON(list_empty(&tmpl->list));
list_del_init(&tmpl->list);
list = &tmpl->instances;
hlist_for_each_entry(inst, list, list) {
int err = crypto_remove_alg(&inst->alg, &users);
BUG_ON(err);
}
up_write(&crypto_alg_sem);
hlist_for_each_entry_safe(inst, n, list, list) {
BUG_ON(refcount_read(&inst->alg.cra_refcnt) != 1);
crypto_free_instance(inst);
}
crypto_remove_final(&users);
}
EXPORT_SYMBOL_GPL(crypto_unregister_template);
void crypto_unregister_templates(struct crypto_template *tmpls, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_template(&tmpls[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_templates);
static struct crypto_template *__crypto_lookup_template(const char *name)
{
struct crypto_template *q, *tmpl = NULL;
down_read(&crypto_alg_sem);
list_for_each_entry(q, &crypto_template_list, list) {
if (strcmp(q->name, name))
continue;
if (unlikely(!crypto_tmpl_get(q)))
continue;
tmpl = q;
break;
}
up_read(&crypto_alg_sem);
return tmpl;
}
struct crypto_template *crypto_lookup_template(const char *name)
{
return try_then_request_module(__crypto_lookup_template(name),
"crypto-%s", name);
}
EXPORT_SYMBOL_GPL(crypto_lookup_template);
int crypto_register_instance(struct crypto_template *tmpl,
struct crypto_instance *inst)
{
struct crypto_larval *larval;
struct crypto_spawn *spawn;
int err;
err = crypto_check_alg(&inst->alg);
if (err)
return err;
inst->alg.cra_module = tmpl->module;
inst->alg.cra_flags |= CRYPTO_ALG_INSTANCE;
down_write(&crypto_alg_sem);
larval = ERR_PTR(-EAGAIN);
for (spawn = inst->spawns; spawn;) {
struct crypto_spawn *next;
if (spawn->dead)
goto unlock;
next = spawn->next;
spawn->inst = inst;
spawn->registered = true;
crypto_mod_put(spawn->alg);
spawn = next;
}
larval = __crypto_register_alg(&inst->alg);
if (IS_ERR(larval))
goto unlock;
hlist_add_head(&inst->list, &tmpl->instances);
inst->tmpl = tmpl;
unlock:
up_write(&crypto_alg_sem);
err = PTR_ERR(larval);
if (IS_ERR(larval))
goto err;
crypto_wait_for_test(larval);
err = 0;
err:
return err;
}
EXPORT_SYMBOL_GPL(crypto_register_instance);
void crypto_unregister_instance(struct crypto_instance *inst)
{
LIST_HEAD(list);
down_write(&crypto_alg_sem);
crypto_remove_spawns(&inst->alg, &list, NULL);
crypto_remove_instance(inst, &list);
up_write(&crypto_alg_sem);
crypto_remove_final(&list);
}
EXPORT_SYMBOL_GPL(crypto_unregister_instance);
int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
const char *name, u32 type, u32 mask)
{
struct crypto_alg *alg;
int err = -EAGAIN;
if (WARN_ON_ONCE(inst == NULL))
return -EINVAL;
/* Allow the result of crypto_attr_alg_name() to be passed directly */
if (IS_ERR(name))
return PTR_ERR(name);
alg = crypto_find_alg(name, spawn->frontend, type, mask);
if (IS_ERR(alg))
return PTR_ERR(alg);
down_write(&crypto_alg_sem);
if (!crypto_is_moribund(alg)) {
list_add(&spawn->list, &alg->cra_users);
spawn->alg = alg;
spawn->mask = mask;
spawn->next = inst->spawns;
inst->spawns = spawn;
inst->alg.cra_flags |=
(alg->cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
err = 0;
}
up_write(&crypto_alg_sem);
if (err)
crypto_mod_put(alg);
return err;
}
EXPORT_SYMBOL_GPL(crypto_grab_spawn);
void crypto_drop_spawn(struct crypto_spawn *spawn)
{
if (!spawn->alg) /* not yet initialized? */
return;
down_write(&crypto_alg_sem);
if (!spawn->dead)
list_del(&spawn->list);
up_write(&crypto_alg_sem);
if (!spawn->registered)
crypto_mod_put(spawn->alg);
}
EXPORT_SYMBOL_GPL(crypto_drop_spawn);
static struct crypto_alg *crypto_spawn_alg(struct crypto_spawn *spawn)
{
struct crypto_alg *alg = ERR_PTR(-EAGAIN);
struct crypto_alg *target;
bool shoot = false;
down_read(&crypto_alg_sem);
if (!spawn->dead) {
alg = spawn->alg;
if (!crypto_mod_get(alg)) {
target = crypto_alg_get(alg);
shoot = true;
alg = ERR_PTR(-EAGAIN);
}
}
up_read(&crypto_alg_sem);
if (shoot) {
crypto_shoot_alg(target);
crypto_alg_put(target);
}
return alg;
}
struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
u32 mask)
{
struct crypto_alg *alg;
struct crypto_tfm *tfm;
alg = crypto_spawn_alg(spawn);
if (IS_ERR(alg))
return ERR_CAST(alg);
tfm = ERR_PTR(-EINVAL);
if (unlikely((alg->cra_flags ^ type) & mask))
goto out_put_alg;
tfm = __crypto_alloc_tfm(alg, type, mask);
if (IS_ERR(tfm))
goto out_put_alg;
return tfm;
out_put_alg:
crypto_mod_put(alg);
return tfm;
}
EXPORT_SYMBOL_GPL(crypto_spawn_tfm);
void *crypto_spawn_tfm2(struct crypto_spawn *spawn)
{
struct crypto_alg *alg;
struct crypto_tfm *tfm;
alg = crypto_spawn_alg(spawn);
if (IS_ERR(alg))
return ERR_CAST(alg);
tfm = crypto_create_tfm(alg, spawn->frontend);
if (IS_ERR(tfm))
goto out_put_alg;
return tfm;
out_put_alg:
crypto_mod_put(alg);
return tfm;
}
EXPORT_SYMBOL_GPL(crypto_spawn_tfm2);
int crypto_register_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&crypto_chain, nb);
}
EXPORT_SYMBOL_GPL(crypto_register_notifier);
int crypto_unregister_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&crypto_chain, nb);
}
EXPORT_SYMBOL_GPL(crypto_unregister_notifier);
struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb)
{
struct rtattr *rta = tb[0];
struct crypto_attr_type *algt;
if (!rta)
return ERR_PTR(-ENOENT);
if (RTA_PAYLOAD(rta) < sizeof(*algt))
return ERR_PTR(-EINVAL);
if (rta->rta_type != CRYPTOA_TYPE)
return ERR_PTR(-EINVAL);
algt = RTA_DATA(rta);
return algt;
}
EXPORT_SYMBOL_GPL(crypto_get_attr_type);
/**
* crypto_check_attr_type() - check algorithm type and compute inherited mask
* @tb: the template parameters
* @type: the algorithm type the template would be instantiated as
* @mask_ret: (output) the mask that should be passed to crypto_grab_*()
* to restrict the flags of any inner algorithms
*
* Validate that the algorithm type the user requested is compatible with the
* one the template would actually be instantiated as. E.g., if the user is
* doing crypto_alloc_shash("cbc(aes)", ...), this would return an error because
* the "cbc" template creates an "skcipher" algorithm, not an "shash" algorithm.
*
* Also compute the mask to use to restrict the flags of any inner algorithms.
*
* Return: 0 on success; -errno on failure
*/
int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret)
{
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
if ((algt->type ^ type) & algt->mask)
return -EINVAL;
*mask_ret = crypto_algt_inherited_mask(algt);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_check_attr_type);
const char *crypto_attr_alg_name(struct rtattr *rta)
{
struct crypto_attr_alg *alga;
if (!rta)
return ERR_PTR(-ENOENT);
if (RTA_PAYLOAD(rta) < sizeof(*alga))
return ERR_PTR(-EINVAL);
if (rta->rta_type != CRYPTOA_ALG)
return ERR_PTR(-EINVAL);
alga = RTA_DATA(rta);
alga->name[CRYPTO_MAX_ALG_NAME - 1] = 0;
return alga->name;
}
EXPORT_SYMBOL_GPL(crypto_attr_alg_name);
int crypto_attr_u32(struct rtattr *rta, u32 *num)
{
struct crypto_attr_u32 *nu32;
if (!rta)
return -ENOENT;
if (RTA_PAYLOAD(rta) < sizeof(*nu32))
return -EINVAL;
if (rta->rta_type != CRYPTOA_U32)
return -EINVAL;
nu32 = RTA_DATA(rta);
*num = nu32->num;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_attr_u32);
int crypto_inst_setname(struct crypto_instance *inst, const char *name,
struct crypto_alg *alg)
{
if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", name,
alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
name, alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_inst_setname);
void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen)
{
INIT_LIST_HEAD(&queue->list);
queue->backlog = &queue->list;
queue->qlen = 0;
queue->max_qlen = max_qlen;
}
EXPORT_SYMBOL_GPL(crypto_init_queue);
int crypto_enqueue_request(struct crypto_queue *queue,
struct crypto_async_request *request)
{
int err = -EINPROGRESS;
if (unlikely(queue->qlen >= queue->max_qlen)) {
if (!(request->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -ENOSPC;
goto out;
}
err = -EBUSY;
if (queue->backlog == &queue->list)
queue->backlog = &request->list;
}
queue->qlen++;
list_add_tail(&request->list, &queue->list);
out:
return err;
}
EXPORT_SYMBOL_GPL(crypto_enqueue_request);
void crypto_enqueue_request_head(struct crypto_queue *queue,
struct crypto_async_request *request)
{
queue->qlen++;
list_add(&request->list, &queue->list);
}
EXPORT_SYMBOL_GPL(crypto_enqueue_request_head);
struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue)
{
struct list_head *request;
if (unlikely(!queue->qlen))
return NULL;
queue->qlen--;
if (queue->backlog != &queue->list)
queue->backlog = queue->backlog->next;
request = queue->list.next;
list_del(request);
return list_entry(request, struct crypto_async_request, list);
}
EXPORT_SYMBOL_GPL(crypto_dequeue_request);
static inline void crypto_inc_byte(u8 *a, unsigned int size)
{
u8 *b = (a + size);
u8 c;
for (; size; size--) {
c = *--b + 1;
*b = c;
if (c)
break;
}
}
void crypto_inc(u8 *a, unsigned int size)
{
__be32 *b = (__be32 *)(a + size);
u32 c;
if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
IS_ALIGNED((unsigned long)b, __alignof__(*b)))
for (; size >= 4; size -= 4) {
c = be32_to_cpu(*--b) + 1;
*b = cpu_to_be32(c);
if (likely(c))
return;
}
crypto_inc_byte(a, size);
}
EXPORT_SYMBOL_GPL(crypto_inc);
void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int len)
{
int relalign = 0;
if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) {
int size = sizeof(unsigned long);
int d = (((unsigned long)dst ^ (unsigned long)src1) |
((unsigned long)dst ^ (unsigned long)src2)) &
(size - 1);
relalign = d ? 1 << __ffs(d) : size;
/*
* If we care about alignment, process as many bytes as
* needed to advance dst and src to values whose alignments
* equal their relative alignment. This will allow us to
* process the remainder of the input using optimal strides.
*/
while (((unsigned long)dst & (relalign - 1)) && len > 0) {
*dst++ = *src1++ ^ *src2++;
len--;
}
}
while (IS_ENABLED(CONFIG_64BIT) && len >= 8 && !(relalign & 7)) {
*(u64 *)dst = *(u64 *)src1 ^ *(u64 *)src2;
dst += 8;
src1 += 8;
src2 += 8;
len -= 8;
}
while (len >= 4 && !(relalign & 3)) {
*(u32 *)dst = *(u32 *)src1 ^ *(u32 *)src2;
dst += 4;
src1 += 4;
src2 += 4;
len -= 4;
}
while (len >= 2 && !(relalign & 1)) {
*(u16 *)dst = *(u16 *)src1 ^ *(u16 *)src2;
dst += 2;
src1 += 2;
src2 += 2;
len -= 2;
}
while (len--)
*dst++ = *src1++ ^ *src2++;
}
EXPORT_SYMBOL_GPL(__crypto_xor);
unsigned int crypto_alg_extsize(struct crypto_alg *alg)
{
return alg->cra_ctxsize +
(alg->cra_alignmask & ~(crypto_tfm_ctx_alignment() - 1));
}
EXPORT_SYMBOL_GPL(crypto_alg_extsize);
int crypto_type_has_alg(const char *name, const struct crypto_type *frontend,
u32 type, u32 mask)
{
int ret = 0;
struct crypto_alg *alg = crypto_find_alg(name, frontend, type, mask);
if (!IS_ERR(alg)) {
crypto_mod_put(alg);
ret = 1;
}
return ret;
}
EXPORT_SYMBOL_GPL(crypto_type_has_alg);
#ifdef CONFIG_CRYPTO_STATS
void crypto_stats_init(struct crypto_alg *alg)
{
memset(&alg->stats, 0, sizeof(alg->stats));
}
EXPORT_SYMBOL_GPL(crypto_stats_init);
void crypto_stats_get(struct crypto_alg *alg)
{
crypto_alg_get(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_get);
void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg,
int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.aead.err_cnt);
} else {
atomic64_inc(&alg->stats.aead.encrypt_cnt);
atomic64_add(cryptlen, &alg->stats.aead.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_aead_encrypt);
void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg,
int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.aead.err_cnt);
} else {
atomic64_inc(&alg->stats.aead.decrypt_cnt);
atomic64_add(cryptlen, &alg->stats.aead.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_aead_decrypt);
void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.akcipher.err_cnt);
} else {
atomic64_inc(&alg->stats.akcipher.encrypt_cnt);
atomic64_add(src_len, &alg->stats.akcipher.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_encrypt);
void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.akcipher.err_cnt);
} else {
atomic64_inc(&alg->stats.akcipher.decrypt_cnt);
atomic64_add(src_len, &alg->stats.akcipher.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_decrypt);
void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.akcipher.err_cnt);
else
atomic64_inc(&alg->stats.akcipher.sign_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_sign);
void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.akcipher.err_cnt);
else
atomic64_inc(&alg->stats.akcipher.verify_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_verify);
void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.compress.err_cnt);
} else {
atomic64_inc(&alg->stats.compress.compress_cnt);
atomic64_add(slen, &alg->stats.compress.compress_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_compress);
void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.compress.err_cnt);
} else {
atomic64_inc(&alg->stats.compress.decompress_cnt);
atomic64_add(slen, &alg->stats.compress.decompress_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_decompress);
void crypto_stats_ahash_update(unsigned int nbytes, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.hash.err_cnt);
else
atomic64_add(nbytes, &alg->stats.hash.hash_tlen);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ahash_update);
void crypto_stats_ahash_final(unsigned int nbytes, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.hash.err_cnt);
} else {
atomic64_inc(&alg->stats.hash.hash_cnt);
atomic64_add(nbytes, &alg->stats.hash.hash_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ahash_final);
void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
{
if (ret)
atomic64_inc(&alg->stats.kpp.err_cnt);
else
atomic64_inc(&alg->stats.kpp.setsecret_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_set_secret);
void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
{
if (ret)
atomic64_inc(&alg->stats.kpp.err_cnt);
else
atomic64_inc(&alg->stats.kpp.generate_public_key_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_generate_public_key);
void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
{
if (ret)
atomic64_inc(&alg->stats.kpp.err_cnt);
else
atomic64_inc(&alg->stats.kpp.compute_shared_secret_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_compute_shared_secret);
void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.rng.err_cnt);
else
atomic64_inc(&alg->stats.rng.seed_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_rng_seed);
void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen,
int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.rng.err_cnt);
} else {
atomic64_inc(&alg->stats.rng.generate_cnt);
atomic64_add(dlen, &alg->stats.rng.generate_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_rng_generate);
void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.cipher.err_cnt);
} else {
atomic64_inc(&alg->stats.cipher.encrypt_cnt);
atomic64_add(cryptlen, &alg->stats.cipher.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_skcipher_encrypt);
void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.cipher.err_cnt);
} else {
atomic64_inc(&alg->stats.cipher.decrypt_cnt);
atomic64_add(cryptlen, &alg->stats.cipher.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_skcipher_decrypt);
#endif
static int __init crypto_algapi_init(void)
{
crypto_init_proc();
return 0;
}
static void __exit crypto_algapi_exit(void)
{
crypto_exit_proc();
}
module_init(crypto_algapi_init);
module_exit(crypto_algapi_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cryptographic algorithms API");
MODULE_SOFTDEP("pre: cryptomgr");