f5bdbed036
35666 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Steven Rostedt (Google)
|
cee5151c54 |
ring-buffer: Do not attempt to read past "commit"
[ Upstream commit 95a404bd60af6c4d9d8db01ad14fe8957ece31ca ] When iterating over the ring buffer while the ring buffer is active, the writer can corrupt the reader. There's barriers to help detect this and handle it, but that code missed the case where the last event was at the very end of the page and has only 4 bytes left. The checks to detect the corruption by the writer to reads needs to see the length of the event. If the length in the first 4 bytes is zero then the length is stored in the second 4 bytes. But if the writer is in the process of updating that code, there's a small window where the length in the first 4 bytes could be zero even though the length is only 4 bytes. That will cause rb_event_length() to read the next 4 bytes which could happen to be off the allocated page. To protect against this, fail immediately if the next event pointer is less than 8 bytes from the end of the commit (last byte of data), as all events must be a minimum of 8 bytes anyway. Link: https://lore.kernel.org/all/20230905141245.26470-1-Tze-nan.Wu@mediatek.com/ Link: https://lore.kernel.org/linux-trace-kernel/20230907122820.0899019c@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Reported-by: Tze-nan Wu <Tze-nan.Wu@mediatek.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Zheng Yejian
|
9ccce21bd7 |
ring-buffer: Avoid softlockup in ring_buffer_resize()
[ Upstream commit f6bd2c92488c30ef53b5bd80c52f0a7eee9d545a ] When user resize all trace ring buffer through file 'buffer_size_kb', then in ring_buffer_resize(), kernel allocates buffer pages for each cpu in a loop. If the kernel preemption model is PREEMPT_NONE and there are many cpus and there are many buffer pages to be allocated, it may not give up cpu for a long time and finally cause a softlockup. To avoid it, call cond_resched() after each cpu buffer allocation. Link: https://lore.kernel.org/linux-trace-kernel/20230906081930.3939106-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Sergey Senozhatsky
|
c793005999 |
dma-debug: don't call __dma_entry_alloc_check_leak() under free_entries_lock
[ Upstream commit fb5a4315591dae307a65fc246ca80b5159d296e1 ] __dma_entry_alloc_check_leak() calls into printk -> serial console output (qcom geni) and grabs port->lock under free_entries_lock spin lock, which is a reverse locking dependency chain as qcom_geni IRQ handler can call into dma-debug code and grab free_entries_lock under port->lock. Move __dma_entry_alloc_check_leak() call out of free_entries_lock scope so that we don't acquire serial console's port->lock under it. Trimmed-down lockdep splat: The existing dependency chain (in reverse order) is: -> #2 (free_entries_lock){-.-.}-{2:2}: _raw_spin_lock_irqsave+0x60/0x80 dma_entry_alloc+0x38/0x110 debug_dma_map_page+0x60/0xf8 dma_map_page_attrs+0x1e0/0x230 dma_map_single_attrs.constprop.0+0x6c/0xc8 geni_se_rx_dma_prep+0x40/0xcc qcom_geni_serial_isr+0x310/0x510 __handle_irq_event_percpu+0x110/0x244 handle_irq_event_percpu+0x20/0x54 handle_irq_event+0x50/0x88 handle_fasteoi_irq+0xa4/0xcc handle_irq_desc+0x28/0x40 generic_handle_domain_irq+0x24/0x30 gic_handle_irq+0xc4/0x148 do_interrupt_handler+0xa4/0xb0 el1_interrupt+0x34/0x64 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x64/0x68 arch_local_irq_enable+0x4/0x8 ____do_softirq+0x18/0x24 ... -> #1 (&port_lock_key){-.-.}-{2:2}: _raw_spin_lock_irqsave+0x60/0x80 qcom_geni_serial_console_write+0x184/0x1dc console_flush_all+0x344/0x454 console_unlock+0x94/0xf0 vprintk_emit+0x238/0x24c vprintk_default+0x3c/0x48 vprintk+0xb4/0xbc _printk+0x68/0x90 register_console+0x230/0x38c uart_add_one_port+0x338/0x494 qcom_geni_serial_probe+0x390/0x424 platform_probe+0x70/0xc0 really_probe+0x148/0x280 __driver_probe_device+0xfc/0x114 driver_probe_device+0x44/0x100 __device_attach_driver+0x64/0xdc bus_for_each_drv+0xb0/0xd8 __device_attach+0xe4/0x140 device_initial_probe+0x1c/0x28 bus_probe_device+0x44/0xb0 device_add+0x538/0x668 of_device_add+0x44/0x50 of_platform_device_create_pdata+0x94/0xc8 of_platform_bus_create+0x270/0x304 of_platform_populate+0xac/0xc4 devm_of_platform_populate+0x60/0xac geni_se_probe+0x154/0x160 platform_probe+0x70/0xc0 ... -> #0 (console_owner){-...}-{0:0}: __lock_acquire+0xdf8/0x109c lock_acquire+0x234/0x284 console_flush_all+0x330/0x454 console_unlock+0x94/0xf0 vprintk_emit+0x238/0x24c vprintk_default+0x3c/0x48 vprintk+0xb4/0xbc _printk+0x68/0x90 dma_entry_alloc+0xb4/0x110 debug_dma_map_sg+0xdc/0x2f8 __dma_map_sg_attrs+0xac/0xe4 dma_map_sgtable+0x30/0x4c get_pages+0x1d4/0x1e4 [msm] msm_gem_pin_pages_locked+0x38/0xac [msm] msm_gem_pin_vma_locked+0x58/0x88 [msm] msm_ioctl_gem_submit+0xde4/0x13ac [msm] drm_ioctl_kernel+0xe0/0x15c drm_ioctl+0x2e8/0x3f4 vfs_ioctl+0x30/0x50 ... Chain exists of: console_owner --> &port_lock_key --> free_entries_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(free_entries_lock); lock(&port_lock_key); lock(free_entries_lock); lock(console_owner); *** DEADLOCK *** Call trace: dump_backtrace+0xb4/0xf0 show_stack+0x20/0x30 dump_stack_lvl+0x60/0x84 dump_stack+0x18/0x24 print_circular_bug+0x1cc/0x234 check_noncircular+0x78/0xac __lock_acquire+0xdf8/0x109c lock_acquire+0x234/0x284 console_flush_all+0x330/0x454 console_unlock+0x94/0xf0 vprintk_emit+0x238/0x24c vprintk_default+0x3c/0x48 vprintk+0xb4/0xbc _printk+0x68/0x90 dma_entry_alloc+0xb4/0x110 debug_dma_map_sg+0xdc/0x2f8 __dma_map_sg_attrs+0xac/0xe4 dma_map_sgtable+0x30/0x4c get_pages+0x1d4/0x1e4 [msm] msm_gem_pin_pages_locked+0x38/0xac [msm] msm_gem_pin_vma_locked+0x58/0x88 [msm] msm_ioctl_gem_submit+0xde4/0x13ac [msm] drm_ioctl_kernel+0xe0/0x15c drm_ioctl+0x2e8/0x3f4 vfs_ioctl+0x30/0x50 ... Reported-by: Rob Clark <robdclark@chromium.org> Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org> Acked-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Toke Høiland-Jørgensen
|
388c9d3eef |
bpf: Avoid deadlock when using queue and stack maps from NMI
[ Upstream commit a34a9f1a19afe9c60ca0ea61dfeee63a1c2baac8 ]
Sysbot discovered that the queue and stack maps can deadlock if they are
being used from a BPF program that can be called from NMI context (such as
one that is attached to a perf HW counter event). To fix this, add an
in_nmi() check and use raw_spin_trylock() in NMI context, erroring out if
grabbing the lock fails.
Fixes:
|
||
Steven Rostedt (Google)
|
9b65bff30a |
tracing: Have event inject files inc the trace array ref count
[ Upstream commit e5c624f027ac74f97e97c8f36c69228ac9f1102d ]
The event inject files add events for a specific trace array. For an
instance, if the file is opened and the instance is deleted, reading or
writing to the file will cause a use after free.
Up the ref count of the trace_array when a event inject file is opened.
Link: https://lkml.kernel.org/r/20230907024804.292337868@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes:
|
||
Steven Rostedt (Google)
|
407bf1c140 |
tracing: Increase trace array ref count on enable and filter files
[ Upstream commit f5ca233e2e66dc1c249bf07eefa37e34a6c9346a ]
When the trace event enable and filter files are opened, increment the
trace array ref counter, otherwise they can be accessed when the trace
array is being deleted. The ref counter keeps the trace array from being
deleted while those files are opened.
Link: https://lkml.kernel.org/r/20230907024803.456187066@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
Steven Rostedt (Google)
|
b3183f5f05 |
tracing: Have option files inc the trace array ref count
commit 7e2cfbd2d3c86afcd5c26b5c4b1dd251f63c5838 upstream.
The option files update the options for a given trace array. For an
instance, if the file is opened and the instance is deleted, reading or
writing to the file will cause a use after free.
Up the ref count of the trace_array when an option file is opened.
Link: https://lkml.kernel.org/r/20230907024804.086679464@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes:
|
||
Steven Rostedt (Google)
|
ec7eb8b064 |
tracing: Have current_trace inc the trace array ref count
commit 9b37febc578b2e1ad76a105aab11d00af5ec3d27 upstream.
The current_trace updates the trace array tracer. For an instance, if the
file is opened and the instance is deleted, reading or writing to the file
will cause a use after free.
Up the ref count of the trace array when current_trace is opened.
Link: https://lkml.kernel.org/r/20230907024803.877687227@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes:
|
||
Paul E. McKenney
|
3f72fdb20f |
scftorture: Forgive memory-allocation failure if KASAN
[ Upstream commit 013608cd0812bdb21fc26d39ed8fdd2fc76e8b9b ] Kernels built with CONFIG_KASAN=y quarantine newly freed memory in order to better detect use-after-free errors. However, this can exhaust memory more quickly in allocator-heavy tests, which can result in spurious scftorture failure. This commit therefore forgives memory-allocation failure in kernels built with CONFIG_KASAN=y, but continues counting the errors for use in detailed test-result analyses. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Zqiang
|
55887adc76 |
rcuscale: Move rcu_scale_writer() schedule_timeout_uninterruptible() to _idle()
[ Upstream commit e60c122a1614b4f65b29a7bef9d83b9fd30e937a ] The rcuscale.holdoff module parameter can be used to delay the start of rcu_scale_writer() kthread. However, the hung-task timeout will trigger when the timeout specified by rcuscale.holdoff is greater than hung_task_timeout_secs: runqemu kvm nographic slirp qemuparams="-smp 4 -m 2048M" bootparams="rcuscale.shutdown=0 rcuscale.holdoff=300" [ 247.071753] INFO: task rcu_scale_write:59 blocked for more than 122 seconds. [ 247.072529] Not tainted 6.4.0-rc1-00134-gb9ed6de8d4ff #7 [ 247.073400] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 247.074331] task:rcu_scale_write state:D stack:30144 pid:59 ppid:2 flags:0x00004000 [ 247.075346] Call Trace: [ 247.075660] <TASK> [ 247.075965] __schedule+0x635/0x1280 [ 247.076448] ? __pfx___schedule+0x10/0x10 [ 247.076967] ? schedule_timeout+0x2dc/0x4d0 [ 247.077471] ? __pfx_lock_release+0x10/0x10 [ 247.078018] ? enqueue_timer+0xe2/0x220 [ 247.078522] schedule+0x84/0x120 [ 247.078957] schedule_timeout+0x2e1/0x4d0 [ 247.079447] ? __pfx_schedule_timeout+0x10/0x10 [ 247.080032] ? __pfx_rcu_scale_writer+0x10/0x10 [ 247.080591] ? __pfx_process_timeout+0x10/0x10 [ 247.081163] ? __pfx_sched_set_fifo_low+0x10/0x10 [ 247.081760] ? __pfx_rcu_scale_writer+0x10/0x10 [ 247.082287] rcu_scale_writer+0x6b1/0x7f0 [ 247.082773] ? mark_held_locks+0x29/0xa0 [ 247.083252] ? __pfx_rcu_scale_writer+0x10/0x10 [ 247.083865] ? __pfx_rcu_scale_writer+0x10/0x10 [ 247.084412] kthread+0x179/0x1c0 [ 247.084759] ? __pfx_kthread+0x10/0x10 [ 247.085098] ret_from_fork+0x2c/0x50 [ 247.085433] </TASK> This commit therefore replaces schedule_timeout_uninterruptible() with schedule_timeout_idle(). Signed-off-by: Zqiang <qiang.zhang1211@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Wander Lairson Costa
|
f8bab887a4 |
kernel/fork: beware of __put_task_struct() calling context
[ Upstream commit d243b34459cea30cfe5f3a9b2feb44e7daff9938 ] Under PREEMPT_RT, __put_task_struct() indirectly acquires sleeping locks. Therefore, it can't be called from an non-preemptible context. One practical example is splat inside inactive_task_timer(), which is called in a interrupt context: CPU: 1 PID: 2848 Comm: life Kdump: loaded Tainted: G W --------- Hardware name: HP ProLiant DL388p Gen8, BIOS P70 07/15/2012 Call Trace: dump_stack_lvl+0x57/0x7d mark_lock_irq.cold+0x33/0xba mark_lock+0x1e7/0x400 mark_usage+0x11d/0x140 __lock_acquire+0x30d/0x930 lock_acquire.part.0+0x9c/0x210 rt_spin_lock+0x27/0xe0 refill_obj_stock+0x3d/0x3a0 kmem_cache_free+0x357/0x560 inactive_task_timer+0x1ad/0x340 __run_hrtimer+0x8a/0x1a0 __hrtimer_run_queues+0x91/0x130 hrtimer_interrupt+0x10f/0x220 __sysvec_apic_timer_interrupt+0x7b/0xd0 sysvec_apic_timer_interrupt+0x4f/0xd0 asm_sysvec_apic_timer_interrupt+0x12/0x20 RIP: 0033:0x7fff196bf6f5 Instead of calling __put_task_struct() directly, we defer it using call_rcu(). A more natural approach would use a workqueue, but since in PREEMPT_RT, we can't allocate dynamic memory from atomic context, the code would become more complex because we would need to put the work_struct instance in the task_struct and initialize it when we allocate a new task_struct. The issue is reproducible with stress-ng: while true; do stress-ng --sched deadline --sched-period 1000000000 \ --sched-runtime 800000000 --sched-deadline \ 1000000000 --mmapfork 23 -t 20 done Reported-by: Hu Chunyu <chuhu@redhat.com> Suggested-by: Oleg Nesterov <oleg@redhat.com> Suggested-by: Valentin Schneider <vschneid@redhat.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Wander Lairson Costa <wander@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230614122323.37957-2-wander@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Brian Foster
|
5103216b86 |
tracing: Zero the pipe cpumask on alloc to avoid spurious -EBUSY
commit 3d07fa1dd19035eb0b13ae6697efd5caa9033e74 upstream. The pipe cpumask used to serialize opens between the main and percpu trace pipes is not zeroed or initialized. This can result in spurious -EBUSY returns if underlying memory is not fully zeroed. This has been observed by immediate failure to read the main trace_pipe file on an otherwise newly booted and idle system: # cat /sys/kernel/debug/tracing/trace_pipe cat: /sys/kernel/debug/tracing/trace_pipe: Device or resource busy Zero the allocation of pipe_cpumask to avoid the problem. Link: https://lore.kernel.org/linux-trace-kernel/20230831125500.986862-1-bfoster@redhat.com Cc: stable@vger.kernel.org Fixes: c2489bb7e6be ("tracing: Introduce pipe_cpumask to avoid race on trace_pipes") Reviewed-by: Zheng Yejian <zhengyejian1@huawei.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Kees Cook
|
8c90c4e619 |
printk: ringbuffer: Fix truncating buffer size min_t cast
commit 53e9e33ede37a247d926db5e4a9e56b55204e66c upstream.
If an output buffer size exceeded U16_MAX, the min_t(u16, ...) cast in
copy_data() was causing writes to truncate. This manifested as output
bytes being skipped, seen as %NUL bytes in pstore dumps when the available
record size was larger than 65536. Fix the cast to no longer truncate
the calculation.
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: John Ogness <john.ogness@linutronix.de>
Reported-by: Vijay Balakrishna <vijayb@linux.microsoft.com>
Link: https://lore.kernel.org/lkml/d8bb1ec7-a4c5-43a2-9de0-9643a70b899f@linux.microsoft.com/
Fixes:
|
||
Zheng Yejian
|
c5d30d6aa8 |
tracing: Fix race issue between cpu buffer write and swap
[ Upstream commit 3163f635b20e9e1fb4659e74f47918c9dddfe64e ]
Warning happened in rb_end_commit() at code:
if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing)))
WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142
rb_commit+0x402/0x4a0
Call Trace:
ring_buffer_unlock_commit+0x42/0x250
trace_buffer_unlock_commit_regs+0x3b/0x250
trace_event_buffer_commit+0xe5/0x440
trace_event_buffer_reserve+0x11c/0x150
trace_event_raw_event_sched_switch+0x23c/0x2c0
__traceiter_sched_switch+0x59/0x80
__schedule+0x72b/0x1580
schedule+0x92/0x120
worker_thread+0xa0/0x6f0
It is because the race between writing event into cpu buffer and swapping
cpu buffer through file per_cpu/cpu0/snapshot:
Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1
-------- --------
tracing_snapshot_write()
[...]
ring_buffer_lock_reserve()
cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a';
[...]
rb_reserve_next_event()
[...]
ring_buffer_swap_cpu()
if (local_read(&cpu_buffer_a->committing))
goto out_dec;
if (local_read(&cpu_buffer_b->committing))
goto out_dec;
buffer_a->buffers[cpu] = cpu_buffer_b;
buffer_b->buffers[cpu] = cpu_buffer_a;
// 2. cpu_buffer has swapped here.
rb_start_commit(cpu_buffer);
if (unlikely(READ_ONCE(cpu_buffer->buffer)
!= buffer)) { // 3. This check passed due to 'cpu_buffer->buffer'
[...] // has not changed here.
return NULL;
}
cpu_buffer_b->buffer = buffer_a;
cpu_buffer_a->buffer = buffer_b;
[...]
// 4. Reserve event from 'cpu_buffer_a'.
ring_buffer_unlock_commit()
[...]
cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!!
rb_commit(cpu_buffer)
rb_end_commit() // 6. WARN for the wrong 'committing' state !!!
Based on above analysis, we can easily reproduce by following testcase:
``` bash
#!/bin/bash
dmesg -n 7
sysctl -w kernel.panic_on_warn=1
TR=/sys/kernel/tracing
echo 7 > ${TR}/buffer_size_kb
echo "sched:sched_switch" > ${TR}/set_event
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
```
To fix it, IIUC, we can use smp_call_function_single() to do the swap on
the target cpu where the buffer is located, so that above race would be
avoided.
Link: https://lore.kernel.org/linux-trace-kernel/20230831132739.4070878-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Fixes:
|
||
Lu Jialin
|
629079f502 |
cgroup:namespace: Remove unused cgroup_namespaces_init()
[ Upstream commit 82b90b6c5b38e457c7081d50dff11ecbafc1e61a ]
cgroup_namspace_init() just return 0. Therefore, there is no need to
call it during start_kernel. Just remove it.
Fixes:
|
||
Gaosheng Cui
|
98ef243d59 |
audit: fix possible soft lockup in __audit_inode_child()
[ Upstream commit b59bc6e37237e37eadf50cd5de369e913f524463 ]
Tracefs or debugfs maybe cause hundreds to thousands of PATH records,
too many PATH records maybe cause soft lockup.
For example:
1. CONFIG_KASAN=y && CONFIG_PREEMPTION=n
2. auditctl -a exit,always -S open -k key
3. sysctl -w kernel.watchdog_thresh=5
4. mkdir /sys/kernel/debug/tracing/instances/test
There may be a soft lockup as follows:
watchdog: BUG: soft lockup - CPU#45 stuck for 7s! [mkdir:15498]
Kernel panic - not syncing: softlockup: hung tasks
Call trace:
dump_backtrace+0x0/0x30c
show_stack+0x20/0x30
dump_stack+0x11c/0x174
panic+0x27c/0x494
watchdog_timer_fn+0x2bc/0x390
__run_hrtimer+0x148/0x4fc
__hrtimer_run_queues+0x154/0x210
hrtimer_interrupt+0x2c4/0x760
arch_timer_handler_phys+0x48/0x60
handle_percpu_devid_irq+0xe0/0x340
__handle_domain_irq+0xbc/0x130
gic_handle_irq+0x78/0x460
el1_irq+0xb8/0x140
__audit_inode_child+0x240/0x7bc
tracefs_create_file+0x1b8/0x2a0
trace_create_file+0x18/0x50
event_create_dir+0x204/0x30c
__trace_add_new_event+0xac/0x100
event_trace_add_tracer+0xa0/0x130
trace_array_create_dir+0x60/0x140
trace_array_create+0x1e0/0x370
instance_mkdir+0x90/0xd0
tracefs_syscall_mkdir+0x68/0xa0
vfs_mkdir+0x21c/0x34c
do_mkdirat+0x1b4/0x1d4
__arm64_sys_mkdirat+0x4c/0x60
el0_svc_common.constprop.0+0xa8/0x240
do_el0_svc+0x8c/0xc0
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb4
el0_sync+0x160/0x180
Therefore, we add cond_resched() to __audit_inode_child() to fix it.
Fixes:
|
||
Yafang Shao
|
b275f0ae35 |
bpf: Clear the probe_addr for uprobe
[ Upstream commit 5125e757e62f6c1d5478db4c2b61a744060ddf3f ]
To avoid returning uninitialized or random values when querying the file
descriptor (fd) and accessing probe_addr, it is necessary to clear the
variable prior to its use.
Fixes:
|
||
Waiman Long
|
066fbd8bc9 |
refscale: Fix uninitalized use of wait_queue_head_t
[ Upstream commit f5063e8948dad7f31adb007284a5d5038ae31bb8 ]
Running the refscale test occasionally crashes the kernel with the
following error:
[ 8569.952896] BUG: unable to handle page fault for address: ffffffffffffffe8
[ 8569.952900] #PF: supervisor read access in kernel mode
[ 8569.952902] #PF: error_code(0x0000) - not-present page
[ 8569.952904] PGD c4b048067 P4D c4b049067 PUD c4b04b067 PMD 0
[ 8569.952910] Oops: 0000 [#1] PREEMPT_RT SMP NOPTI
[ 8569.952916] Hardware name: Dell Inc. PowerEdge R750/0WMWCR, BIOS 1.2.4 05/28/2021
[ 8569.952917] RIP: 0010:prepare_to_wait_event+0x101/0x190
:
[ 8569.952940] Call Trace:
[ 8569.952941] <TASK>
[ 8569.952944] ref_scale_reader+0x380/0x4a0 [refscale]
[ 8569.952959] kthread+0x10e/0x130
[ 8569.952966] ret_from_fork+0x1f/0x30
[ 8569.952973] </TASK>
The likely cause is that init_waitqueue_head() is called after the call to
the torture_create_kthread() function that creates the ref_scale_reader
kthread. Although this init_waitqueue_head() call will very likely
complete before this kthread is created and starts running, it is
possible that the calling kthread will be delayed between the calls to
torture_create_kthread() and init_waitqueue_head(). In this case, the
new kthread will use the waitqueue head before it is properly initialized,
which is not good for the kernel's health and well-being.
The above crash happened here:
static inline void __add_wait_queue(...)
{
:
if (!(wq->flags & WQ_FLAG_PRIORITY)) <=== Crash here
The offset of flags from list_head entry in wait_queue_entry is
-0x18. If reader_tasks[i].wq.head.next is NULL as allocated reader_task
structure is zero initialized, the instruction will try to access address
0xffffffffffffffe8, which is exactly the fault address listed above.
This commit therefore invokes init_waitqueue_head() before creating
the kthread.
Fixes:
|
||
Zheng Yejian
|
0c0547d2a6 |
tracing: Introduce pipe_cpumask to avoid race on trace_pipes
[ Upstream commit c2489bb7e6be2e8cdced12c16c42fa128403ac03 ] There is race issue when concurrently splice_read main trace_pipe and per_cpu trace_pipes which will result in data read out being different from what actually writen. As suggested by Steven: > I believe we should add a ref count to trace_pipe and the per_cpu > trace_pipes, where if they are opened, nothing else can read it. > > Opening trace_pipe locks all per_cpu ref counts, if any of them are > open, then the trace_pipe open will fail (and releases any ref counts > it had taken). > > Opening a per_cpu trace_pipe will up the ref count for just that > CPU buffer. This will allow multiple tasks to read different per_cpu > trace_pipe files, but will prevent the main trace_pipe file from > being opened. But because we only need to know whether per_cpu trace_pipe is open or not, using a cpumask instead of using ref count may be easier. After this patch, users will find that: - Main trace_pipe can be opened by only one user, and if it is opened, all per_cpu trace_pipes cannot be opened; - Per_cpu trace_pipes can be opened by multiple users, but each per_cpu trace_pipe can only be opened by one user. And if one of them is opened, main trace_pipe cannot be opened. Link: https://lore.kernel.org/linux-trace-kernel/20230818022645.1948314-1-zhengyejian1@huawei.com Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Masami Hiramatsu (Google)
|
0111b7bb51 |
kprobes: Prohibit probing on CFI preamble symbol
[ Upstream commit de02f2ac5d8cfb311f44f2bf144cc20002f1fbbd ] Do not allow to probe on "__cfi_" or "__pfx_" started symbol, because those are used for CFI and not executed. Probing it will break the CFI. Link: https://lore.kernel.org/all/168904024679.116016.18089228029322008512.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Christoph Hellwig
|
f71b0b4a49 |
modules: only allow symbol_get of EXPORT_SYMBOL_GPL modules
commit 9011e49d54dcc7653ebb8a1e05b5badb5ecfa9f9 upstream. It has recently come to my attention that nvidia is circumventing the protection added in |
||
Paul E. McKenney
|
d93ba6e46e |
rcu-tasks: Add trc_inspect_reader() checks for exiting critical section
commit 18f08e758f34e6dfe0668bee51bd2af7adacf381 upstream. Currently, trc_inspect_reader() treats a task exiting its RCU Tasks Trace read-side critical section the same as being within that critical section. However, this can fail because that task might have already checked its .need_qs field, which means that it might never decrement the all-important trc_n_readers_need_end counter. Of course, for that to happen, the task would need to never again execute an RCU Tasks Trace read-side critical section, but this really could happen if the system's last trampoline was removed. Note that exit from such a critical section cannot be treated as a quiescent state due to the possibility of nested critical sections. This means that if trc_inspect_reader() sees a negative nesting value, it must set up to try again later. This commit therefore ignores tasks that are exiting their RCU Tasks Trace read-side critical sections so that they will be rechecked later. [ paulmck: Apply feedback from Neeraj Upadhyay and Boqun Feng. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Joel Fernandes <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Paul E. McKenney
|
3e22624f8f |
rcu-tasks: Wait for trc_read_check_handler() IPIs
commit cbe0d8d91415c9692fe88191940d98952b6855d9 upstream. Currently, RCU Tasks Trace initializes the trc_n_readers_need_end counter to the value one, increments it before each trc_read_check_handler() IPI, then decrements it within trc_read_check_handler() if the target task was in a quiescent state (or if the target task moved to some other CPU while the IPI was in flight), complaining if the new value was zero. The rationale for complaining is that the initial value of one must be decremented away before zero can be reached, and this decrement has not yet happened. Except that trc_read_check_handler() is initiated with an asynchronous smp_call_function_single(), which might be significantly delayed. This can result in false-positive complaints about the counter reaching zero. This commit therefore waits for in-flight IPI handlers to complete before decrementing away the initial value of one from the trc_n_readers_need_end counter. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Joel Fernandes <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Neeraj Upadhyay
|
9190c1f0ae |
rcu-tasks: Fix IPI failure handling in trc_wait_for_one_reader
commit 46aa886c483f57ef13cd5ea0a85e70b93eb1d381 upstream. The trc_wait_for_one_reader() function is called at multiple stages of trace rcu-tasks GP function, rcu_tasks_wait_gp(): - First, it is called as part of per task function - rcu_tasks_trace_pertask(), for all non-idle tasks. As part of per task processing, this function add the task in the holdout list and if the task is currently running on a CPU, it sends IPI to the task's CPU. The IPI handler takes action depending on whether task is in trace rcu-tasks read side critical section or not: - a. If the task is in trace rcu-tasks read side critical section (t->trc_reader_nesting != 0), the IPI handler sets the task's ->trc_reader_special.b.need_qs, so that this task notifies exit from its outermost read side critical section (by decrementing trc_n_readers_need_end) to the GP handling function. trc_wait_for_one_reader() also increments trc_n_readers_need_end, so that the trace rcu-tasks GP handler function waits for this task's read side exit notification. The IPI handler also sets t->trc_reader_checked to true, and no further IPIs are sent for this task, for this trace rcu-tasks grace period and this task can be removed from holdout list. - b. If the task is in the process of exiting its trace rcu-tasks read side critical section, (t->trc_reader_nesting < 0), defer this task's processing to future calls to trc_wait_for_one_reader(). - c. If task is not in rcu-task read side critical section, t->trc_reader_nesting == 0, ->trc_reader_checked is set for this task, so that this task is removed from holdout list. - Second, trc_wait_for_one_reader() is called as part of post scan, in function rcu_tasks_trace_postscan(), for all idle tasks. - Third, in function check_all_holdout_tasks_trace(), this function is called for each task in the holdout list, but only if there isn't a pending IPI for the task (->trc_ipi_to_cpu == -1). This function removed the task from holdout list, if IPI handler has completed the required work, to ensure that the current trace rcu-tasks grace period either waits for this task, or this task is not in a trace rcu-tasks read side critical section. Now, considering the scenario where smp_call_function_single() fails in first case, inside rcu_tasks_trace_pertask(). In this case, ->trc_ipi_to_cpu is set to the current CPU for that task. This will result in trc_wait_for_one_reader() getting skipped in third case, inside check_all_holdout_tasks_trace(), for this task. This further results in ->trc_reader_checked never getting set for this task, and the task not getting removed from holdout list. This can cause the current trace rcu-tasks grace period to stall. Fix the above problem, by resetting ->trc_ipi_to_cpu to -1, on smp_call_function_single() failure, so that future IPI calls can be send for this task. Note that all three of the trc_wait_for_one_reader() function's callers (rcu_tasks_trace_pertask(), rcu_tasks_trace_postscan(), check_all_holdout_tasks_trace()) hold cpu_read_lock(). This means that smp_call_function_single() cannot race with CPU hotplug, and thus should never fail. Therefore, also add a warning in order to report any such failure in case smp_call_function_single() grows some other reason for failure. Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Joel Fernandes <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Paul E. McKenney
|
ad4f8c117b |
rcu: Prevent expedited GP from enabling tick on offline CPU
commit 147f04b14adde831eb4a0a1e378667429732f9e8 upstream. If an RCU expedited grace period starts just when a CPU is in the process of going offline, so that the outgoing CPU has completed its pass through stop-machine but has not yet completed its final dive into the idle loop, RCU will attempt to enable that CPU's scheduling-clock tick via a call to tick_dep_set_cpu(). For this to happen, that CPU has to have been online when the expedited grace period completed its CPU-selection phase. This is pointless: The outgoing CPU has interrupts disabled, so it cannot take a scheduling-clock tick anyway. In addition, the tick_dep_set_cpu() function's eventual call to irq_work_queue_on() will splat as follows: smpboot: CPU 1 is now offline WARNING: CPU: 6 PID: 124 at kernel/irq_work.c:95 +irq_work_queue_on+0x57/0x60 Modules linked in: CPU: 6 PID: 124 Comm: kworker/6:2 Not tainted 5.15.0-rc1+ #3 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS +rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014 Workqueue: rcu_gp wait_rcu_exp_gp RIP: 0010:irq_work_queue_on+0x57/0x60 Code: 8b 05 1d c7 ea 62 a9 00 00 f0 00 75 21 4c 89 ce 44 89 c7 e8 +9b 37 fa ff ba 01 00 00 00 89 d0 c3 4c 89 cf e8 3b ff ff ff eb ee <0f> 0b eb b7 +0f 0b eb db 90 48 c7 c0 98 2a 02 00 65 48 03 05 91 6f RSP: 0000:ffffb12cc038fe48 EFLAGS: 00010282 RAX: 0000000000000001 RBX: 0000000000005208 RCX: 0000000000000020 RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff9ad01f45a680 RBP: 000000000004c990 R08: 0000000000000001 R09: ffff9ad01f45a680 R10: ffffb12cc0317db0 R11: 0000000000000001 R12: 00000000fffecee8 R13: 0000000000000001 R14: 0000000000026980 R15: ffffffff9e53ae00 FS: 0000000000000000(0000) GS:ffff9ad01f580000(0000) +knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000000de0c000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: tick_nohz_dep_set_cpu+0x59/0x70 rcu_exp_wait_wake+0x54e/0x870 ? sync_rcu_exp_select_cpus+0x1fc/0x390 process_one_work+0x1ef/0x3c0 ? process_one_work+0x3c0/0x3c0 worker_thread+0x28/0x3c0 ? process_one_work+0x3c0/0x3c0 kthread+0x115/0x140 ? set_kthread_struct+0x40/0x40 ret_from_fork+0x22/0x30 ---[ end trace c5bf75eb6aa80bc6 ]--- This commit therefore avoids invoking tick_dep_set_cpu() on offlined CPUs to limit both futility and false-positive splats. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
James Morse
|
ecd62c8512 |
module: Expose module_init_layout_section()
commit 2abcc4b5a64a65a2d2287ba0be5c2871c1552416 upstream. module_init_layout_section() choses whether the core module loader considers a section as init or not. This affects the placement of the exit section when module unloading is disabled. This code will never run, so it can be free()d once the module has been initialised. arm and arm64 need to count the number of PLTs they need before applying relocations based on the section name. The init PLTs are stored separately so they can be free()d. arm and arm64 both use within_module_init() to decide which list of PLTs to use when applying the relocation. Because within_module_init()'s behaviour changes when module unloading is disabled, both architecture would need to take this into account when counting the PLTs. Today neither architecture does this, meaning when module unloading is disabled there are insufficient PLTs in the init section to load some modules, resulting in warnings: | WARNING: CPU: 2 PID: 51 at arch/arm64/kernel/module-plts.c:99 module_emit_plt_entry+0x184/0x1cc | Modules linked in: crct10dif_common | CPU: 2 PID: 51 Comm: modprobe Not tainted 6.5.0-rc4-yocto-standard-dirty #15208 | Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 | pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : module_emit_plt_entry+0x184/0x1cc | lr : module_emit_plt_entry+0x94/0x1cc | sp : ffffffc0803bba60 [...] | Call trace: | module_emit_plt_entry+0x184/0x1cc | apply_relocate_add+0x2bc/0x8e4 | load_module+0xe34/0x1bd4 | init_module_from_file+0x84/0xc0 | __arm64_sys_finit_module+0x1b8/0x27c | invoke_syscall.constprop.0+0x5c/0x104 | do_el0_svc+0x58/0x160 | el0_svc+0x38/0x110 | el0t_64_sync_handler+0xc0/0xc4 | el0t_64_sync+0x190/0x194 Instead of duplicating module_init_layout_section()s logic, expose it. Reported-by: Adam Johnston <adam.johnston@arm.com> Fixes: 055f23b74b20 ("module: check for exit sections in layout_sections() instead of module_init_section()") Cc: stable@vger.kernel.org Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Dietmar Eggemann
|
2d69f68ad4 |
cgroup/cpuset: Free DL BW in case can_attach() fails
commit 2ef269ef1ac006acf974793d975539244d77b28f upstream. cpuset_can_attach() can fail. Postpone DL BW allocation until all tasks have been checked. DL BW is not allocated per-task but as a sum over all DL tasks migrating. If multiple controllers are attached to the cgroup next to the cpuset controller a non-cpuset can_attach() can fail. In this case free DL BW in cpuset_cancel_attach(). Finally, update cpuset DL task count (nr_deadline_tasks) only in cpuset_attach(). Suggested-by: Waiman Long <longman@redhat.com> Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Reviewed-by: Waiman Long <longman@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org> [ Fix conflicts in kernel/cgroup/cpuset.c due to new code being applied that is not applicable on this branch. Reject new code. ] Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Dietmar Eggemann
|
4603c2a104 |
sched/deadline: Create DL BW alloc, free & check overflow interface
commit 85989106feb734437e2d598b639991b9185a43a6 upstream. While moving a set of tasks between exclusive cpusets, cpuset_can_attach() -> task_can_attach() calls dl_cpu_busy(..., p) for DL BW overflow checking and per-task DL BW allocation on the destination root_domain for the DL tasks in this set. This approach has the issue of not freeing already allocated DL BW in the following error cases: (1) The set of tasks includes multiple DL tasks and DL BW overflow checking fails for one of the subsequent DL tasks. (2) Another controller next to the cpuset controller which is attached to the same cgroup fails in its can_attach(). To address this problem rework dl_cpu_busy(): (1) Split it into dl_bw_check_overflow() & dl_bw_alloc() and add a dedicated dl_bw_free(). (2) dl_bw_alloc() & dl_bw_free() take a `u64 dl_bw` parameter instead of a `struct task_struct *p` used in dl_cpu_busy(). This allows to allocate DL BW for a set of tasks too rather than only for a single task. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Juri Lelli
|
c9546921a4 |
cgroup/cpuset: Iterate only if DEADLINE tasks are present
commit c0f78fd5edcf29b2822ac165f9248a6c165e8554 upstream. update_tasks_root_domain currently iterates over all tasks even if no DEADLINE task is present on the cpuset/root domain for which bandwidth accounting is being rebuilt. This has been reported to introduce 10+ ms delays on suspend-resume operations. Skip the costly iteration for cpusets that don't contain DEADLINE tasks. Reported-by: Qais Yousef (Google) <qyousef@layalina.io> Link: https://lore.kernel.org/lkml/20230206221428.2125324-1-qyousef@layalina.io/ Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Reviewed-by: Waiman Long <longman@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Juri Lelli
|
5ac05ce568 |
sched/cpuset: Keep track of SCHED_DEADLINE task in cpusets
commit 6c24849f5515e4966d94fa5279bdff4acf2e9489 upstream. Qais reported that iterating over all tasks when rebuilding root domains for finding out which ones are DEADLINE and need their bandwidth correctly restored on such root domains can be a costly operation (10+ ms delays on suspend-resume). To fix the problem keep track of the number of DEADLINE tasks belonging to each cpuset and then use this information (followup patch) to only perform the above iteration if DEADLINE tasks are actually present in the cpuset for which a corresponding root domain is being rebuilt. Reported-by: Qais Yousef (Google) <qyousef@layalina.io> Link: https://lore.kernel.org/lkml/20230206221428.2125324-1-qyousef@layalina.io/ Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Reviewed-by: Waiman Long <longman@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org> [ Fix conflicts in kernel/cgroup/cpuset.c and kernel/sched/deadline.c due to pulling new fields and functions. Remove new code and match the patch diff. ] Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Juri Lelli
|
b950133d9a |
sched/cpuset: Bring back cpuset_mutex
commit 111cd11bbc54850f24191c52ff217da88a5e639b upstream.
Turns out percpu_cpuset_rwsem - commit
|
||
Juri Lelli
|
312713e3ea |
cgroup/cpuset: Rename functions dealing with DEADLINE accounting
commit ad3a557daf6915296a43ef97a3e9c48e076c9dd8 upstream. rebuild_root_domains() and update_tasks_root_domain() have neutral names, but actually deal with DEADLINE bandwidth accounting. Rename them to use 'dl_' prefix so that intent is more clear. No functional change. Suggested-by: Qais Yousef (Google) <qyousef@layalina.io> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Reviewed-by: Waiman Long <longman@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Nicholas Piggin
|
b2125926ba |
timers/nohz: Switch to ONESHOT_STOPPED in the low-res handler when the tick is stopped
commit 62c1256d544747b38e77ca9b5bfe3a26f9592576 upstream. When tick_nohz_stop_tick() stops the tick and high resolution timers are disabled, then the clock event device is not put into ONESHOT_STOPPED mode. This can lead to spurious timer interrupts with some clock event device drivers that don't shut down entirely after firing. Eliminate these by putting the device into ONESHOT_STOPPED mode at points where it is not being reprogrammed. When there are no timers active, then tick_program_event() with KTIME_MAX can be used to stop the device. When there is a timer active, the device can be stopped at the next tick (any new timer added by timers will reprogram the tick). Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20220422141446.915024-1-npiggin@gmail.com Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Frederic Weisbecker
|
ae4f109b95 |
tick: Detect and fix jiffies update stall
commit a1ff03cd6fb9c501fff63a4a2bface9adcfa81cd upstream. On some rare cases, the timekeeper CPU may be delaying its jiffies update duty for a while. Known causes include: * The timekeeper is waiting on stop_machine in a MULTI_STOP_DISABLE_IRQ or MULTI_STOP_RUN state. Disabled interrupts prevent from timekeeping updates while waiting for the target CPU to complete its stop_machine() callback. * The timekeeper vcpu has VMEXIT'ed for a long while due to some overload on the host. Detect and fix these situations with emergency timekeeping catchups. Original-patch-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Joel Fernandes (Google)
|
c7e91047d3 |
torture: Fix hang during kthread shutdown phase
commit d52d3a2bf408ff86f3a79560b5cce80efb340239 upstream. During rcutorture shutdown, the rcu_torture_cleanup() function calls torture_cleanup_begin(), which sets the fullstop global variable to FULLSTOP_RMMOD. This causes the rcutorture threads for readers and fakewriters to exit all of their "while" loops and start shutting down. They then call torture_kthread_stopping(), which in turn waits for kthread_stop() to be called. However, rcu_torture_cleanup() has not yet called kthread_stop() on those threads, and before it gets a chance to do so, multiple instances of torture_kthread_stopping() invoke schedule_timeout_interruptible(1) in a tight loop. Tracing confirms that TIMER_SOFTIRQ can then continuously execute timer callbacks. If that TIMER_SOFTIRQ preempts the task executing rcu_torture_cleanup(), that task might never invoke kthread_stop(). This commit improves this situation by increasing the timeout passed to schedule_timeout_interruptible() from one jiffy to 1/20th of a second. This change prevents TIMER_SOFTIRQ from monopolizing its CPU, thus allowing rcu_torture_cleanup() to carry out the needed kthread_stop() invocations. Testing has shown 100 runs of TREE07 passing reliably, as oppose to the tens-of-percent failure rates seen beforehand. Cc: Paul McKenney <paulmck@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Zhouyi Zhou <zhouzhouyi@gmail.com> Cc: <stable@vger.kernel.org> # 6.0.x Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Tested-by: Zhouyi Zhou <zhouzhouyi@gmail.com> Reviewed-by: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Zheng Yejian
|
b8205dfed6 |
tracing: Fix memleak due to race between current_tracer and trace
[ Upstream commit eecb91b9f98d6427d4af5fdb8f108f52572a39e7 ]
Kmemleak report a leak in graph_trace_open():
unreferenced object 0xffff0040b95f4a00 (size 128):
comm "cat", pid 204981, jiffies 4301155872 (age 99771.964s)
hex dump (first 32 bytes):
e0 05 e7 b4 ab 7d 00 00 0b 00 01 00 00 00 00 00 .....}..........
f4 00 01 10 00 a0 ff ff 00 00 00 00 65 00 10 00 ............e...
backtrace:
[<000000005db27c8b>] kmem_cache_alloc_trace+0x348/0x5f0
[<000000007df90faa>] graph_trace_open+0xb0/0x344
[<00000000737524cd>] __tracing_open+0x450/0xb10
[<0000000098043327>] tracing_open+0x1a0/0x2a0
[<00000000291c3876>] do_dentry_open+0x3c0/0xdc0
[<000000004015bcd6>] vfs_open+0x98/0xd0
[<000000002b5f60c9>] do_open+0x520/0x8d0
[<00000000376c7820>] path_openat+0x1c0/0x3e0
[<00000000336a54b5>] do_filp_open+0x14c/0x324
[<000000002802df13>] do_sys_openat2+0x2c4/0x530
[<0000000094eea458>] __arm64_sys_openat+0x130/0x1c4
[<00000000a71d7881>] el0_svc_common.constprop.0+0xfc/0x394
[<00000000313647bf>] do_el0_svc+0xac/0xec
[<000000002ef1c651>] el0_svc+0x20/0x30
[<000000002fd4692a>] el0_sync_handler+0xb0/0xb4
[<000000000c309c35>] el0_sync+0x160/0x180
The root cause is descripted as follows:
__tracing_open() { // 1. File 'trace' is being opened;
...
*iter->trace = *tr->current_trace; // 2. Tracer 'function_graph' is
// currently set;
...
iter->trace->open(iter); // 3. Call graph_trace_open() here,
// and memory are allocated in it;
...
}
s_start() { // 4. The opened file is being read;
...
*iter->trace = *tr->current_trace; // 5. If tracer is switched to
// 'nop' or others, then memory
// in step 3 are leaked!!!
...
}
To fix it, in s_start(), close tracer before switching then reopen the
new tracer after switching. And some tracers like 'wakeup' may not update
'iter->private' in some cases when reopen, then it should be cleared
to avoid being mistakenly closed again.
Link: https://lore.kernel.org/linux-trace-kernel/20230817125539.1646321-1-zhengyejian1@huawei.com
Fixes:
|
||
Zheng Yejian
|
9c2ceffd4e |
tracing: Fix cpu buffers unavailable due to 'record_disabled' missed
[ Upstream commit b71645d6af10196c46cbe3732de2ea7d36b3ff6d ]
Trace ring buffer can no longer record anything after executing
following commands at the shell prompt:
# cd /sys/kernel/tracing
# cat tracing_cpumask
fff
# echo 0 > tracing_cpumask
# echo 1 > snapshot
# echo fff > tracing_cpumask
# echo 1 > tracing_on
# echo "hello world" > trace_marker
-bash: echo: write error: Bad file descriptor
The root cause is that:
1. After `echo 0 > tracing_cpumask`, 'record_disabled' of cpu buffers
in 'tr->array_buffer.buffer' became 1 (see tracing_set_cpumask());
2. After `echo 1 > snapshot`, 'tr->array_buffer.buffer' is swapped
with 'tr->max_buffer.buffer', then the 'record_disabled' became 0
(see update_max_tr());
3. After `echo fff > tracing_cpumask`, the 'record_disabled' become -1;
Then array_buffer and max_buffer are both unavailable due to value of
'record_disabled' is not 0.
To fix it, enable or disable both array_buffer and max_buffer at the same
time in tracing_set_cpumask().
Link: https://lkml.kernel.org/r/20230805033816.3284594-2-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Cc: <vnagarnaik@google.com>
Cc: <shuah@kernel.org>
Fixes:
|
||
Masami Hiramatsu (Google)
|
3b76d92636 |
tracing/probes: Fix to update dynamic data counter if fetcharg uses it
[ Upstream commit e38e2c6a9efc435f9de344b7c91f7697e01b47d5 ]
Fix to update dynamic data counter ('dyndata') and max length ('maxlen')
only if the fetcharg uses the dynamic data. Also get out arg->dynamic
from unlikely(). This makes dynamic data address wrong if
process_fetch_insn() returns error on !arg->dynamic case.
Link: https://lore.kernel.org/all/168908494781.123124.8160245359962103684.stgit@devnote2/
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Link: https://lore.kernel.org/all/20230710233400.5aaf024e@gandalf.local.home/
Fixes:
|
||
Steven Rostedt (VMware)
|
265a979ded |
tracing/probes: Have process_fetch_insn() take a void * instead of pt_regs
[ Upstream commit 8565a45d0858078b63c7d84074a21a42ba9ebf01 ] In preparation to allow event probes to use the process_fetch_insn() callback in trace_probe_tmpl.h, change the data passed to it from a pointer to pt_regs, as the event probe will not be using regs, and make it a void pointer instead. Update the process_fetch_insn() callers for kprobe and uprobe events to have the regs defined in the function and just typecast the void pointer parameter. Link: https://lkml.kernel.org/r/20210819041842.291622924@goodmis.org Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Stable-dep-of: e38e2c6a9efc ("tracing/probes: Fix to update dynamic data counter if fetcharg uses it") Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Chen Lin
|
66a3b2a121 |
ring-buffer: Do not swap cpu_buffer during resize process
[ Upstream commit 8a96c0288d0737ad77882024974c075345c72011 ] When ring_buffer_swap_cpu was called during resize process, the cpu buffer was swapped in the middle, resulting in incorrect state. Continuing to run in the wrong state will result in oops. This issue can be easily reproduced using the following two scripts: /tmp # cat test1.sh //#! /bin/sh for i in `seq 0 100000` do echo 2000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 echo 5000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 done /tmp # cat test2.sh //#! /bin/sh for i in `seq 0 100000` do echo irqsoff > /sys/kernel/debug/tracing/current_tracer sleep 1 echo nop > /sys/kernel/debug/tracing/current_tracer sleep 1 done /tmp # ./test1.sh & /tmp # ./test2.sh & A typical oops log is as follows, sometimes with other different oops logs. [ 231.711293] WARNING: CPU: 0 PID: 9 at kernel/trace/ring_buffer.c:2026 rb_update_pages+0x378/0x3f8 [ 231.713375] Modules linked in: [ 231.714735] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 231.716750] Hardware name: linux,dummy-virt (DT) [ 231.718152] Workqueue: events update_pages_handler [ 231.719714] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 231.721171] pc : rb_update_pages+0x378/0x3f8 [ 231.722212] lr : rb_update_pages+0x25c/0x3f8 [ 231.723248] sp : ffff800082b9bd50 [ 231.724169] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 231.726102] x26: 0000000000000001 x25: fffffffffffff010 x24: 0000000000000ff0 [ 231.728122] x23: ffff0000c3a0b600 x22: ffff0000c3a0b5c0 x21: fffffffffffffe0a [ 231.730203] x20: ffff0000c3a0b600 x19: ffff0000c0102400 x18: 0000000000000000 [ 231.732329] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffe7aa8510 [ 231.734212] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000002 [ 231.736291] x11: ffff8000826998a8 x10: ffff800082b9baf0 x9 : ffff800081137558 [ 231.738195] x8 : fffffc00030e82c8 x7 : 0000000000000000 x6 : 0000000000000001 [ 231.740192] x5 : ffff0000ffbafe00 x4 : 0000000000000000 x3 : 0000000000000000 [ 231.742118] x2 : 00000000000006aa x1 : 0000000000000001 x0 : ffff0000c0007208 [ 231.744196] Call trace: [ 231.744892] rb_update_pages+0x378/0x3f8 [ 231.745893] update_pages_handler+0x1c/0x38 [ 231.746893] process_one_work+0x1f0/0x468 [ 231.747852] worker_thread+0x54/0x410 [ 231.748737] kthread+0x124/0x138 [ 231.749549] ret_from_fork+0x10/0x20 [ 231.750434] ---[ end trace 0000000000000000 ]--- [ 233.720486] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 233.721696] Mem abort info: [ 233.721935] ESR = 0x0000000096000004 [ 233.722283] EC = 0x25: DABT (current EL), IL = 32 bits [ 233.722596] SET = 0, FnV = 0 [ 233.722805] EA = 0, S1PTW = 0 [ 233.723026] FSC = 0x04: level 0 translation fault [ 233.723458] Data abort info: [ 233.723734] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 233.724176] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 233.724589] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 233.725075] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000104943000 [ 233.725592] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 [ 233.726231] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 233.726720] Modules linked in: [ 233.727007] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 233.727777] Hardware name: linux,dummy-virt (DT) [ 233.728225] Workqueue: events update_pages_handler [ 233.728655] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 233.729054] pc : rb_update_pages+0x1a8/0x3f8 [ 233.729334] lr : rb_update_pages+0x154/0x3f8 [ 233.729592] sp : ffff800082b9bd50 [ 233.729792] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 233.730220] x26: 0000000000000000 x25: ffff800082a8b840 x24: ffff0000c0102418 [ 233.730653] x23: 0000000000000000 x22: fffffc000304c880 x21: 0000000000000003 [ 233.731105] x20: 00000000000001f4 x19: ffff0000c0102400 x18: ffff800082fcbc58 [ 233.731727] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000001 [ 233.732282] x14: ffff8000825fe0c8 x13: 0000000000000001 x12: 0000000000000000 [ 233.732709] x11: ffff8000826998a8 x10: 0000000000000ae0 x9 : ffff8000801b760c [ 233.733148] x8 : fefefefefefefeff x7 : 0000000000000018 x6 : ffff0000c03298c0 [ 233.733553] x5 : 0000000000000002 x4 : 0000000000000000 x3 : 0000000000000000 [ 233.733972] x2 : ffff0000c3a0b600 x1 : 0000000000000000 x0 : 0000000000000000 [ 233.734418] Call trace: [ 233.734593] rb_update_pages+0x1a8/0x3f8 [ 233.734853] update_pages_handler+0x1c/0x38 [ 233.735148] process_one_work+0x1f0/0x468 [ 233.735525] worker_thread+0x54/0x410 [ 233.735852] kthread+0x124/0x138 [ 233.736064] ret_from_fork+0x10/0x20 [ 233.736387] Code: 92400000 910006b5 aa000021 aa0303f7 (f9400060) [ 233.736959] ---[ end trace 0000000000000000 ]--- After analysis, the seq of the error is as follows [1-5]: int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, int cpu_id) { for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //1. get cpu_buffer, aka cpu_buffer(A) ... ... schedule_work_on(cpu, &cpu_buffer->update_pages_work); //2. 'update_pages_work' is queue on 'cpu', cpu_buffer(A) is passed to // update_pages_handler, do the update process, set 'update_done' in // complete(&cpu_buffer->update_done) and to wakeup resize process. //----> //3. Just at this moment, ring_buffer_swap_cpu is triggered, //cpu_buffer(A) be swaped to cpu_buffer(B), the max_buffer. //ring_buffer_swap_cpu is called as the 'Call trace' below. Call trace: dump_backtrace+0x0/0x2f8 show_stack+0x18/0x28 dump_stack+0x12c/0x188 ring_buffer_swap_cpu+0x2f8/0x328 update_max_tr_single+0x180/0x210 check_critical_timing+0x2b4/0x2c8 tracer_hardirqs_on+0x1c0/0x200 trace_hardirqs_on+0xec/0x378 el0_svc_common+0x64/0x260 do_el0_svc+0x90/0xf8 el0_svc+0x20/0x30 el0_sync_handler+0xb0/0xb8 el0_sync+0x180/0x1c0 //<---- /* wait for all the updates to complete */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //4. get cpu_buffer, cpu_buffer(B) is used in the following process, //the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong. //for example, cpu_buffer(A)->update_done will leave be set 1, and will //not 'wait_for_completion' at the next resize round. if (!cpu_buffer->nr_pages_to_update) continue; if (cpu_online(cpu)) wait_for_completion(&cpu_buffer->update_done); cpu_buffer->nr_pages_to_update = 0; } ... } //5. the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong, //Continuing to run in the wrong state, then oops occurs. Link: https://lore.kernel.org/linux-trace-kernel/202307191558478409990@zte.com.cn Signed-off-by: Chen Lin <chen.lin5@zte.com.cn> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
gaoxu
|
04e774fb67 |
dma-remap: use kvmalloc_array/kvfree for larger dma memory remap
[ Upstream commit 51ff97d54f02b4444dfc42e380ac4c058e12d5dd ] If dma_direct_alloc() alloc memory in size of 64MB, the inner function dma_common_contiguous_remap() will allocate 128KB memory by invoking the function kmalloc_array(). and the kmalloc_array seems to fail to try to allocate 128KB mem. Call trace: [14977.928623] qcrosvm: page allocation failure: order:5, mode:0x40cc0 [14977.928638] dump_backtrace.cfi_jt+0x0/0x8 [14977.928647] dump_stack_lvl+0x80/0xb8 [14977.928652] warn_alloc+0x164/0x200 [14977.928657] __alloc_pages_slowpath+0x9f0/0xb4c [14977.928660] __alloc_pages+0x21c/0x39c [14977.928662] kmalloc_order+0x48/0x108 [14977.928666] kmalloc_order_trace+0x34/0x154 [14977.928668] __kmalloc+0x548/0x7e4 [14977.928673] dma_direct_alloc+0x11c/0x4f8 [14977.928678] dma_alloc_attrs+0xf4/0x138 [14977.928680] gh_vm_ioctl_set_fw_name+0x3c4/0x610 [gunyah] [14977.928698] gh_vm_ioctl+0x90/0x14c [gunyah] [14977.928705] __arm64_sys_ioctl+0x184/0x210 work around by doing kvmalloc_array instead. Signed-off-by: Gao Xu <gaoxu2@hihonor.com> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Andrii Nakryiko
|
1952a4d5e4 |
bpf: aggressively forget precise markings during state checkpointing
[ Upstream commit 7a830b53c17bbadcf99f778f28aaaa4e6c41df5f ] Exploit the property of about-to-be-checkpointed state to be able to forget all precise markings up to that point even more aggressively. We now clear all potentially inherited precise markings right before checkpointing and branching off into child state. If any of children states require precise knowledge of any SCALAR register, those will be propagated backwards later on before this state is finalized, preserving correctness. There is a single selftests BPF program change, but tremendous one: 25x reduction in number of verified instructions and states in trace_virtqueue_add_sgs. Cilium results are more modest, but happen across wider range of programs. SELFTESTS RESULTS ================= $ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results.csv ~/imprecise-aggressive-results.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) ------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- loop6.bpf.linked1.o trace_virtqueue_add_sgs 398057 15114 -382943 (-96.20%) 8717 336 -8381 (-96.15%) ------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- CILIUM RESULTS ============== $ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results-cilium.csv ~/imprecise-aggressive-results-cilium.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) ------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- bpf_host.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%) bpf_host.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%) bpf_host.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%) bpf_host.o tail_nodeport_nat_ipv6_egress 3446 3406 -40 (-1.16%) 203 198 -5 (-2.46%) bpf_lxc.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%) bpf_lxc.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%) bpf_lxc.o tail_ipv4_ct_egress 5074 4897 -177 (-3.49%) 255 248 -7 (-2.75%) bpf_lxc.o tail_ipv4_ct_ingress 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%) bpf_lxc.o tail_ipv4_ct_ingress_policy_only 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%) bpf_lxc.o tail_ipv6_ct_egress 4558 4536 -22 (-0.48%) 188 187 -1 (-0.53%) bpf_lxc.o tail_ipv6_ct_ingress 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%) bpf_lxc.o tail_ipv6_ct_ingress_policy_only 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%) bpf_lxc.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%) bpf_overlay.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%) bpf_overlay.o tail_nodeport_nat_ipv6_egress 3482 3442 -40 (-1.15%) 204 201 -3 (-1.47%) bpf_xdp.o tail_nodeport_nat_egress_ipv4 17200 15619 -1581 (-9.19%) 1111 1010 -101 (-9.09%) ------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20221104163649.121784-6-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Stable-dep-of: ecdf985d7615 ("bpf: track immediate values written to stack by BPF_ST instruction") Signed-off-by: Pu Lehui <pulehui@huawei.com> Tested-by: Luiz Capitulino <luizcap@amazon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Andrii Nakryiko
|
7ca3e7459f |
bpf: stop setting precise in current state
[ Upstream commit f63181b6ae79fd3b034cde641db774268c2c3acf ] Setting reg->precise to true in current state is not necessary from correctness standpoint, but it does pessimise the whole precision (or rather "imprecision", because that's what we want to keep as much as possible) tracking. Why is somewhat subtle and my best attempt to explain this is recorded in an extensive comment for __mark_chain_precise() function. Some more careful thinking and code reading is probably required still to grok this completely, unfortunately. Whiteboarding and a bunch of extra handwaiving in person would be even more helpful, but is deemed impractical in Git commit. Next patch pushes this imprecision property even further, building on top of the insights described in this patch. End results are pretty nice, we get reduction in number of total instructions and states verified due to a better states reuse, as some of the states are now more generic and permissive due to less unnecessary precise=true requirements. SELFTESTS RESULTS ================= $ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) --------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- bpf_iter_ksym.bpf.linked1.o dump_ksym 347 285 -62 (-17.87%) 20 19 -1 (-5.00%) pyperf600_bpf_loop.bpf.linked1.o on_event 3678 3736 +58 (+1.58%) 276 285 +9 (+3.26%) setget_sockopt.bpf.linked1.o skops_sockopt 4038 3947 -91 (-2.25%) 347 343 -4 (-1.15%) test_l4lb.bpf.linked1.o balancer_ingress 4559 2611 -1948 (-42.73%) 118 105 -13 (-11.02%) test_l4lb_noinline.bpf.linked1.o balancer_ingress 6279 6268 -11 (-0.18%) 237 236 -1 (-0.42%) test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1307 1303 -4 (-0.31%) 100 99 -1 (-1.00%) test_sk_lookup.bpf.linked1.o ctx_narrow_access 456 447 -9 (-1.97%) 39 38 -1 (-2.56%) test_sysctl_loop1.bpf.linked1.o sysctl_tcp_mem 1389 1384 -5 (-0.36%) 26 25 -1 (-3.85%) test_tc_dtime.bpf.linked1.o egress_fwdns_prio101 518 485 -33 (-6.37%) 51 46 -5 (-9.80%) test_tc_dtime.bpf.linked1.o egress_host 519 468 -51 (-9.83%) 50 44 -6 (-12.00%) test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 842 1000 +158 (+18.76%) 73 88 +15 (+20.55%) xdp_synproxy_kern.bpf.linked1.o syncookie_tc 405757 373173 -32584 (-8.03%) 25735 22882 -2853 (-11.09%) xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 479055 371590 -107465 (-22.43%) 29145 22207 -6938 (-23.81%) --------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101 is left for a follow up, there might be some more precision-related bugs in existing BPF verifier logic. CILIUM RESULTS ============== $ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) ------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- ------------------- bpf_host.o cil_from_host 762 556 -206 (-27.03%) 43 37 -6 (-13.95%) bpf_host.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%) bpf_host.o tail_nodeport_nat_egress_ipv4 33592 33566 -26 (-0.08%) 2163 2161 -2 (-0.09%) bpf_lxc.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%) bpf_overlay.o tail_nodeport_nat_egress_ipv4 33581 33543 -38 (-0.11%) 2160 2157 -3 (-0.14%) bpf_xdp.o tail_handle_nat_fwd_ipv4 21659 20920 -739 (-3.41%) 1440 1376 -64 (-4.44%) bpf_xdp.o tail_handle_nat_fwd_ipv6 17084 17039 -45 (-0.26%) 907 905 -2 (-0.22%) bpf_xdp.o tail_lb_ipv4 73442 73430 -12 (-0.02%) 4370 4369 -1 (-0.02%) bpf_xdp.o tail_lb_ipv6 152114 151895 -219 (-0.14%) 6493 6479 -14 (-0.22%) bpf_xdp.o tail_nodeport_nat_egress_ipv4 17377 17200 -177 (-1.02%) 1125 1111 -14 (-1.24%) bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6405 6397 -8 (-0.12%) 309 308 -1 (-0.32%) bpf_xdp.o tail_rev_nodeport_lb4 7126 6934 -192 (-2.69%) 414 402 -12 (-2.90%) bpf_xdp.o tail_rev_nodeport_lb6 18059 17905 -154 (-0.85%) 1105 1096 -9 (-0.81%) ------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- ------------------- Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20221104163649.121784-5-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Stable-dep-of: ecdf985d7615 ("bpf: track immediate values written to stack by BPF_ST instruction") Signed-off-by: Pu Lehui <pulehui@huawei.com> Tested-by: Luiz Capitulino <luizcap@amazon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Andrii Nakryiko
|
2474ec58b9 |
bpf: allow precision tracking for programs with subprogs
[ Upstream commit be2ef8161572ec1973124ebc50f56dafc2925e07 ] Stop forcing precise=true for SCALAR registers when BPF program has any subprograms. Current restriction means that any BPF program, as soon as it uses subprograms, will end up not getting any of the precision tracking benefits in reduction of number of verified states. This patch keeps the fallback mark_all_scalars_precise() behavior if precise marking has to cross function frames. E.g., if subprogram requires R1 (first input arg) to be marked precise, ideally we'd need to backtrack to the parent function and keep marking R1 and its dependencies as precise. But right now we give up and force all the SCALARs in any of the current and parent states to be forced to precise=true. We can lift that restriction in the future. But this patch fixes two issues identified when trying to enable precision tracking for subprogs. First, prevent "escaping" from top-most state in a global subprog. While with entry-level BPF program we never end up requesting precision for R1-R5 registers, because R2-R5 are not initialized (and so not readable in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is implicitly precise. With global subprogs, though, it's different, as global subprog a) can have up to 5 SCALAR input arguments, which might get marked as precise=true and b) it is validated in isolation from its main entry BPF program. b) means that we can end up exhausting parent state chain and still not mark all registers in reg_mask as precise, which would lead to verifier bug warning. To handle that, we need to consider two cases. First, if the very first state is not immediately "checkpointed" (i.e., stored in state lookup hashtable), it will get correct first_insn_idx and last_insn_idx instruction set during state checkpointing. As such, this case is already handled and __mark_chain_precision() already handles that by just doing nothing when we reach to the very first parent state. st->parent will be NULL and we'll just stop. Perhaps some extra check for reg_mask and stack_mask is due here, but this patch doesn't address that issue. More problematic second case is when global function's initial state is immediately checkpointed before we manage to process the very first instruction. This is happening because when there is a call to global subprog from the main program the very first subprog's instruction is marked as pruning point, so before we manage to process first instruction we have to check and checkpoint state. This patch adds a special handling for such "empty" state, which is identified by having st->last_insn_idx set to -1. In such case, we check that we are indeed validating global subprog, and with some sanity checking we mark input args as precise if requested. Note that we also initialize state->first_insn_idx with correct start insn_idx offset. For main program zero is correct value, but for any subprog it's quite confusing to not have first_insn_idx set. This doesn't have any functional impact, but helps with debugging and state printing. We also explicitly initialize state->last_insns_idx instead of relying on is_state_visited() to do this with env->prev_insns_idx, which will be -1 on the very first instruction. This concludes necessary changes to handle specifically global subprog's precision tracking. Second identified problem was missed handling of BPF helper functions that call into subprogs (e.g., bpf_loop and few others). From precision tracking and backtracking logic's standpoint those are effectively calls into subprogs and should be called as BPF_PSEUDO_CALL calls. This patch takes the least intrusive way and just checks against a short list of current BPF helpers that do call subprogs, encapsulated in is_callback_calling_function() function. But to prevent accidentally forgetting to add new BPF helpers to this "list", we also do a sanity check in __check_func_call, which has to be called for each such special BPF helper, to validate that BPF helper is indeed recognized as callback-calling one. This should catch any missed checks in the future. Adding some special flags to be added in function proto definitions seemed like an overkill in this case. With the above changes, it's possible to remove forceful setting of reg->precise to true in __mark_reg_unknown, which turns on precision tracking both inside subprogs and entry progs that have subprogs. No warnings or errors were detected across all the selftests, but also when validating with veristat against internal Meta BPF objects and Cilium objects. Further, in some BPF programs there are noticeable reduction in number of states and instructions validated due to more effective precision tracking, especially benefiting syncookie test. $ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) ---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- pyperf600_bpf_loop.bpf.linked1.o on_event 3966 3678 -288 (-7.26%) 306 276 -30 (-9.80%) pyperf_global.bpf.linked1.o on_event 7563 7530 -33 (-0.44%) 520 517 -3 (-0.58%) pyperf_subprogs.bpf.linked1.o on_event 36358 36934 +576 (+1.58%) 2499 2531 +32 (+1.28%) setget_sockopt.bpf.linked1.o skops_sockopt 3965 4038 +73 (+1.84%) 343 347 +4 (+1.17%) test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 64965 64901 -64 (-0.10%) 4619 4612 -7 (-0.15%) test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1491 1307 -184 (-12.34%) 110 100 -10 (-9.09%) test_pkt_access.bpf.linked1.o test_pkt_access 354 349 -5 (-1.41%) 25 24 -1 (-4.00%) test_sock_fields.bpf.linked1.o egress_read_sock_fields 435 375 -60 (-13.79%) 22 20 -2 (-9.09%) test_sysctl_loop2.bpf.linked1.o sysctl_tcp_mem 1508 1501 -7 (-0.46%) 29 28 -1 (-3.45%) test_tc_dtime.bpf.linked1.o egress_fwdns_prio100 468 435 -33 (-7.05%) 45 41 -4 (-8.89%) test_tc_dtime.bpf.linked1.o ingress_fwdns_prio100 398 408 +10 (+2.51%) 42 39 -3 (-7.14%) test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 1096 842 -254 (-23.18%) 97 73 -24 (-24.74%) test_tcp_hdr_options.bpf.linked1.o estab 2758 2408 -350 (-12.69%) 208 181 -27 (-12.98%) test_urandom_usdt.bpf.linked1.o urand_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%) test_urandom_usdt.bpf.linked1.o urand_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%) test_urandom_usdt.bpf.linked1.o urandlib_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%) test_urandom_usdt.bpf.linked1.o urandlib_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%) test_xdp_noinline.bpf.linked1.o balancer_ingress_v6 4302 4294 -8 (-0.19%) 257 256 -1 (-0.39%) xdp_synproxy_kern.bpf.linked1.o syncookie_tc 583722 405757 -177965 (-30.49%) 35846 25735 -10111 (-28.21%) xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 609123 479055 -130068 (-21.35%) 35452 29145 -6307 (-17.79%) ---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20221104163649.121784-4-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Stable-dep-of: ecdf985d7615 ("bpf: track immediate values written to stack by BPF_ST instruction") Signed-off-by: Pu Lehui <pulehui@huawei.com> Tested-by: Luiz Capitulino <luizcap@amazon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Douglas Anderson
|
426656e8dd |
tracing: Fix sleeping while atomic in kdb ftdump
commit 495fcec8648cdfb483b5b9ab310f3839f07cb3b8 upstream. If you drop into kdb and type "ftdump" you'll get a sleeping while atomic warning from memory allocation in trace_find_next_entry(). This appears to have been caused by commit |
||
Jiri Olsa
|
3048cb0dc0 |
bpf: Disable preemption in bpf_event_output
commit d62cc390c2e99ae267ffe4b8d7e2e08b6c758c32 upstream.
We received report [1] of kernel crash, which is caused by
using nesting protection without disabled preemption.
The bpf_event_output can be called by programs executed by
bpf_prog_run_array_cg function that disabled migration but
keeps preemption enabled.
This can cause task to be preempted by another one inside the
nesting protection and lead eventually to two tasks using same
perf_sample_data buffer and cause crashes like:
BUG: kernel NULL pointer dereference, address: 0000000000000001
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
...
? perf_output_sample+0x12a/0x9a0
? finish_task_switch.isra.0+0x81/0x280
? perf_event_output+0x66/0xa0
? bpf_event_output+0x13a/0x190
? bpf_event_output_data+0x22/0x40
? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb
? xa_load+0x87/0xe0
? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0
? release_sock+0x3e/0x90
? sk_setsockopt+0x1a1/0x12f0
? udp_pre_connect+0x36/0x50
? inet_dgram_connect+0x93/0xa0
? __sys_connect+0xb4/0xe0
? udp_setsockopt+0x27/0x40
? __pfx_udp_push_pending_frames+0x10/0x10
? __sys_setsockopt+0xdf/0x1a0
? __x64_sys_connect+0xf/0x20
? do_syscall_64+0x3a/0x90
? entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fixing this by disabling preemption in bpf_event_output.
[1] https://github.com/cilium/cilium/issues/26756
Cc: stable@vger.kernel.org
Reported-by: Oleg "livelace" Popov <o.popov@livelace.ru>
Closes: https://github.com/cilium/cilium/issues/26756
Fixes:
|
||
Peter Zijlstra
|
3f7395c382 |
perf: Fix function pointer case
commit 1af6239d1d3e61d33fd2f0ba53d3d1a67cc50574 upstream.
With the advent of CFI it is no longer acceptible to cast function
pointers.
The robot complains thusly:
kernel-events-core.c⚠️cast-from-int-(-)(struct-perf_cpu_pmu_context-)-to-remote_function_f-(aka-int-(-)(void-)-)-converts-to-incompatible-function-type
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Cixi Geng <cixi.geng1@unisoc.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
||
Zheng Yejian
|
a6d2fd1703 |
tracing: Fix warning in trace_buffered_event_disable()
[ Upstream commit dea499781a1150d285c62b26659f62fb00824fce ]
Warning happened in trace_buffered_event_disable() at
WARN_ON_ONCE(!trace_buffered_event_ref)
Call Trace:
? __warn+0xa5/0x1b0
? trace_buffered_event_disable+0x189/0x1b0
__ftrace_event_enable_disable+0x19e/0x3e0
free_probe_data+0x3b/0xa0
unregister_ftrace_function_probe_func+0x6b8/0x800
event_enable_func+0x2f0/0x3d0
ftrace_process_regex.isra.0+0x12d/0x1b0
ftrace_filter_write+0xe6/0x140
vfs_write+0x1c9/0x6f0
[...]
The cause of the warning is in __ftrace_event_enable_disable(),
trace_buffered_event_enable() was called once while
trace_buffered_event_disable() was called twice.
Reproduction script show as below, for analysis, see the comments:
```
#!/bin/bash
cd /sys/kernel/tracing/
# 1. Register a 'disable_event' command, then:
# 1) SOFT_DISABLED_BIT was set;
# 2) trace_buffered_event_enable() was called first time;
echo 'cmdline_proc_show:disable_event:initcall:initcall_finish' > \
set_ftrace_filter
# 2. Enable the event registered, then:
# 1) SOFT_DISABLED_BIT was cleared;
# 2) trace_buffered_event_disable() was called first time;
echo 1 > events/initcall/initcall_finish/enable
# 3. Try to call into cmdline_proc_show(), then SOFT_DISABLED_BIT was
# set again!!!
cat /proc/cmdline
# 4. Unregister the 'disable_event' command, then:
# 1) SOFT_DISABLED_BIT was cleared again;
# 2) trace_buffered_event_disable() was called second time!!!
echo '!cmdline_proc_show:disable_event:initcall:initcall_finish' > \
set_ftrace_filter
```
To fix it, IIUC, we can change to call trace_buffered_event_enable() at
fist time soft-mode enabled, and call trace_buffered_event_disable() at
last time soft-mode disabled.
Link: https://lore.kernel.org/linux-trace-kernel/20230726095804.920457-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Fixes:
|
||
Zheng Yejian
|
0efbdbc453 |
ring-buffer: Fix wrong stat of cpu_buffer->read
[ Upstream commit 2d093282b0d4357373497f65db6a05eb0c28b7c8 ]
When pages are removed in rb_remove_pages(), 'cpu_buffer->read' is set
to 0 in order to make sure any read iterators reset themselves. However,
this will mess 'entries' stating, see following steps:
# cd /sys/kernel/tracing/
# 1. Enlarge ring buffer prepare for later reducing:
# echo 20 > per_cpu/cpu0/buffer_size_kb
# 2. Write a log into ring buffer of cpu0:
# taskset -c 0 echo "hello1" > trace_marker
# 3. Read the log:
# cat per_cpu/cpu0/trace_pipe
<...>-332 [000] ..... 62.406844: tracing_mark_write: hello1
# 4. Stop reading and see the stats, now 0 entries, and 1 event readed:
# cat per_cpu/cpu0/stats
entries: 0
[...]
read events: 1
# 5. Reduce the ring buffer
# echo 7 > per_cpu/cpu0/buffer_size_kb
# 6. Now entries became unexpected 1 because actually no entries!!!
# cat per_cpu/cpu0/stats
entries: 1
[...]
read events: 0
To fix it, introduce 'page_removed' field to count total removed pages
since last reset, then use it to let read iterators reset themselves
instead of changing the 'read' pointer.
Link: https://lore.kernel.org/linux-trace-kernel/20230724054040.3489499-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Cc: <vnagarnaik@google.com>
Fixes:
|
||
Masami Hiramatsu
|
840ce9cfc8 |
tracing: Show real address for trace event arguments
[ Upstream commit efbbdaa22bb78761bff8dfdde027ad04bedd47ce ] To help debugging kernel, show real address for trace event arguments in tracefs/trace{,pipe} instead of hashed pointer value. Since ftrace human-readable format uses vsprintf(), all %p are translated to hash values instead of pointer address. However, when debugging the kernel, raw address value gives a hint when comparing with the memory mapping in the kernel. (Those are sometimes used with crash log, which is not hashed too) So converting %p with %px when calling trace_seq_printf(). Moreover, this is not improving the security because the tracefs can be used only by root user and the raw address values are readable from tracefs/percpu/cpu*/trace_pipe_raw file. Link: https://lkml.kernel.org/r/160277370703.29307.5134475491761971203.stgit@devnote2 Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Stable-dep-of: d5a821896360 ("tracing: Fix memory leak of iter->temp when reading trace_pipe") Signed-off-by: Sasha Levin <sashal@kernel.org> |