[ Upstream commit 8ef9dc0f14ba6124c62547a4fdc59b163d8b864e ]
We got the following lockdep splat while running fstests (specifically
btrfs/003 and btrfs/020 in a row) with the new rc. This was uncovered
by 87579e9b7d8d ("loop: use worker per cgroup instead of kworker") which
converted loop to using workqueues, which comes with lockdep
annotations that don't exist with kworkers. The lockdep splat is as
follows:
WARNING: possible circular locking dependency detected
5.14.0-rc2-custom+ #34 Not tainted
------------------------------------------------------
losetup/156417 is trying to acquire lock:
ffff9c7645b02d38 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x84/0x600
but task is already holding lock:
ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #5 (&lo->lo_mutex){+.+.}-{3:3}:
__mutex_lock+0xba/0x7c0
lo_open+0x28/0x60 [loop]
blkdev_get_whole+0x28/0xf0
blkdev_get_by_dev.part.0+0x168/0x3c0
blkdev_open+0xd2/0xe0
do_dentry_open+0x163/0x3a0
path_openat+0x74d/0xa40
do_filp_open+0x9c/0x140
do_sys_openat2+0xb1/0x170
__x64_sys_openat+0x54/0x90
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #4 (&disk->open_mutex){+.+.}-{3:3}:
__mutex_lock+0xba/0x7c0
blkdev_get_by_dev.part.0+0xd1/0x3c0
blkdev_get_by_path+0xc0/0xd0
btrfs_scan_one_device+0x52/0x1f0 [btrfs]
btrfs_control_ioctl+0xac/0x170 [btrfs]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #3 (uuid_mutex){+.+.}-{3:3}:
__mutex_lock+0xba/0x7c0
btrfs_rm_device+0x48/0x6a0 [btrfs]
btrfs_ioctl+0x2d1c/0x3110 [btrfs]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #2 (sb_writers#11){.+.+}-{0:0}:
lo_write_bvec+0x112/0x290 [loop]
loop_process_work+0x25f/0xcb0 [loop]
process_one_work+0x28f/0x5d0
worker_thread+0x55/0x3c0
kthread+0x140/0x170
ret_from_fork+0x22/0x30
-> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
process_one_work+0x266/0x5d0
worker_thread+0x55/0x3c0
kthread+0x140/0x170
ret_from_fork+0x22/0x30
-> #0 ((wq_completion)loop0){+.+.}-{0:0}:
__lock_acquire+0x1130/0x1dc0
lock_acquire+0xf5/0x320
flush_workqueue+0xae/0x600
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x650 [loop]
lo_ioctl+0x29d/0x780 [loop]
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
(wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&lo->lo_mutex);
lock(&disk->open_mutex);
lock(&lo->lo_mutex);
lock((wq_completion)loop0);
*** DEADLOCK ***
1 lock held by losetup/156417:
#0: ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop]
stack backtrace:
CPU: 8 PID: 156417 Comm: losetup Not tainted 5.14.0-rc2-custom+ #34
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
dump_stack_lvl+0x57/0x72
check_noncircular+0x10a/0x120
__lock_acquire+0x1130/0x1dc0
lock_acquire+0xf5/0x320
? flush_workqueue+0x84/0x600
flush_workqueue+0xae/0x600
? flush_workqueue+0x84/0x600
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x650 [loop]
lo_ioctl+0x29d/0x780 [loop]
? __lock_acquire+0x3a0/0x1dc0
? update_dl_rq_load_avg+0x152/0x360
? lock_is_held_type+0xa5/0x120
? find_held_lock.constprop.0+0x2b/0x80
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f645884de6b
Usually the uuid_mutex exists to protect the fs_devices that map
together all of the devices that match a specific uuid. In rm_device
we're messing with the uuid of a device, so it makes sense to protect
that here.
However in doing that it pulls in a whole host of lockdep dependencies,
as we call mnt_may_write() on the sb before we grab the uuid_mutex, thus
we end up with the dependency chain under the uuid_mutex being added
under the normal sb write dependency chain, which causes problems with
loop devices.
We don't need the uuid mutex here however. If we call
btrfs_scan_one_device() before we scratch the super block we will find
the fs_devices and not find the device itself and return EBUSY because
the fs_devices is open. If we call it after the scratch happens it will
not appear to be a valid btrfs file system.
We do not need to worry about other fs_devices modifying operations here
because we're protected by the exclusive operations locking.
So drop the uuid_mutex here in order to fix the lockdep splat.
A more detailed explanation from the discussion:
We are worried about rm and scan racing with each other, before this
change we'll zero the device out under the UUID mutex so when scan does
run it'll make sure that it can go through the whole device scan thing
without rm messing with us.
We aren't worried if the scratch happens first, because the result is we
don't think this is a btrfs device and we bail out.
The only case we are concerned with is we scratch _after_ scan is able
to read the superblock and gets a seemingly valid super block, so lets
consider this case.
Scan will call device_list_add() with the device we're removing. We'll
call find_fsid_with_metadata_uuid() and get our fs_devices for this
UUID. At this point we lock the fs_devices->device_list_mutex. This is
what protects us in this case, but we have two cases here.
1. We aren't to the device removal part of the RM. We found our device,
and device name matches our path, we go down and we set total_devices
to our super number of devices, which doesn't affect anything because
we haven't done the remove yet.
2. We are past the device removal part, which is protected by the
device_list_mutex. Scan doesn't find the device, it goes down and
does the
if (fs_devices->opened)
return -EBUSY;
check and we bail out.
Nothing about this situation is ideal, but the lockdep splat is real,
and the fix is safe, tho admittedly a bit scary looking.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ copy more from the discussion ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 44bee215f72f13874c0e734a0712c2e3264c0108 ]
Fix a warning reported by smatch that ret could be returned without
initialized. The dedupe operations are supposed to to return 0 for a 0
length range but the caller does not pass olen == 0. To keep this
behaviour and also fix the warning initialize ret to 0.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Sidong Yang <realwakka@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7427f3bb49d81525b7dd1d0f7c5f6bbc752e6f0e ]
So far, glock_hash_walk took a reference on each glock it iterated over, and it
was the examiner's responsibility to drop those references. Dropping the final
reference to a glock can sleep and the examiners are called in a RCU critical
section with spin locks held, so examiners that didn't need the extra reference
had to drop it asynchronously via gfs2_glock_queue_put or similar. This wasn't
done correctly in thaw_glock which did call gfs2_glock_put, and not at all in
dump_glock_func.
Change glock_hash_walk to not take glock references at all. That way, the
examiners that don't need them won't have to bother with slow asynchronous
puts, and the examiners that do need references can take them themselves.
Reported-by: Alexander Aring <aahringo@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 486408d690e130c3adacf816754b97558d715f46 ]
In gfs2_inode_lookup and gfs2_create_inode, we're calling
gfs2_cancel_delete_work which currently cancels any remote delete work
(delete_work_func) synchronously. This means that if the work is
currently running, it will wait for it to finish. We're doing this to
pevent a previous instance of an inode from having any influence on the
next instance.
However, delete_work_func uses gfs2_inode_lookup internally, and we can
end up in a deadlock when delete_work_func gets interrupted at the wrong
time. For example,
(1) An inode's iopen glock has delete work queued, but the inode
itself has been evicted from the inode cache.
(2) The delete work is preempted before reaching gfs2_inode_lookup.
(3) Another process recreates the inode (gfs2_create_inode). It tries
to cancel any outstanding delete work, which blocks waiting for
the ongoing delete work to finish.
(4) The delete work calls gfs2_inode_lookup, which blocks waiting for
gfs2_create_inode to instantiate and unlock the new inode =>
deadlock.
It turns out that when the delete work notices that its inode has been
re-instantiated, it will do nothing. This means that it's safe to
cancel the delete work asynchronously. This prevents the kind of
deadlock described above.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 49d67e445742bbcb03106b735b2ab39f6e5c56bc ]
The tracefs file system is by default mounted such that only root user can
access it. But there are legitimate reasons to create a group and allow
those added to the group to have access to tracing. By changing the
permissions of the tracefs mount point to allow access, it will allow
group access to the tracefs directory.
There should not be any real reason to allow all access to the tracefs
directory as it contains sensitive information. Have the default
permission of directories being created not have any OTH (other) bits set,
such that an admin that wants to give permission to a group has to first
disable all OTH bits in the file system.
Link: https://lkml.kernel.org/r/20210818153038.664127804@goodmis.org
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a130e8fbc7de796eb6e680724d87f4737a26d0ac ]
/proc/uptime reports idle time by reading the CPUTIME_IDLE field from
the per-cpu kcpustats. However, on NO_HZ systems, idle time is not
continually updated on idle cpus, leading this value to appear
incorrectly small.
/proc/stat performs an accounting update when reading idle time; we
can use the same approach for uptime.
With this patch, /proc/stat and /proc/uptime now agree on idle time.
Additionally, the following shows idle time tick up consistently on an
idle machine:
(while true; do cat /proc/uptime; sleep 1; done) | awk '{print $2-prev; prev=$2}'
Reported-by: Luigi Rizzo <lrizzo@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lkml.kernel.org/r/20210827165438.3280779-1-joshdon@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7f595d6a6cdc336834552069a2e0a4f6d4756ddf ]
fscrypt currently requires a 512-bit master key when AES-256-XTS is
used, since AES-256-XTS keys are 512-bit and fscrypt requires that the
master key be at least as long any key that will be derived from it.
However, this is overly strict because AES-256-XTS doesn't actually have
a 512-bit security strength, but rather 256-bit. The fact that XTS
takes twice the expected key size is a quirk of the XTS mode. It is
sufficient to use 256 bits of entropy for AES-256-XTS, provided that it
is first properly expanded into a 512-bit key, which HKDF-SHA512 does.
Therefore, relax the check of the master key size to use the security
strength of the derived key rather than the size of the derived key
(except for v1 encryption policies, which don't use HKDF).
Besides making things more flexible for userspace, this is needed in
order for the use of a KDF which only takes a 256-bit key to be
introduced into the fscrypt key hierarchy. This will happen with
hardware-wrapped keys support, as all known hardware which supports that
feature uses an SP800-108 KDF using AES-256-CMAC, so the wrapped keys
are wrapped 256-bit AES keys. Moreover, there is interest in fscrypt
supporting the same type of AES-256-CMAC based KDF in software as an
alternative to HKDF-SHA512. There is no security problem with such
features, so fix the key length check to work properly with them.
Reviewed-by: Paul Crowley <paulcrowley@google.com>
Link: https://lore.kernel.org/r/20210921030303.5598-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d0e36a62bd4c60c09acc40e06ba4831a4d0bc75b upstream.
Fix the error path in free_dqentry(), pass out the error number if the
block to free is not correct.
Fixes: 1ccd14b9c2 ("quota: Split off quota tree handling into a separate file")
Link: https://lore.kernel.org/r/20211008093821.1001186-3-yi.zhang@huawei.com
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Cc: stable@kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9bf3d20331295b1ecb81f4ed9ef358c51699a050 upstream.
The block number in the quota tree on disk should be smaller than the
v2_disk_dqinfo.dqi_blocks. If the quota file was corrupted, we may be
allocating an 'allocated' block and that would lead to a loop in a tree,
which will probably trigger oops later. This patch adds a check for the
block number in the quota tree to prevent such potential issue.
Link: https://lore.kernel.org/r/20211008093821.1001186-2-yi.zhang@huawei.com
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Cc: stable@kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9a254403760041528bc8f69fe2f5e1ef86950991 upstream.
Example for triggering use after free in a overlay on ext4 setup:
aio_read
ovl_read_iter
vfs_iter_read
ext4_file_read_iter
ext4_dio_read_iter
iomap_dio_rw -> -EIOCBQUEUED
/*
* Here IO is completed in a separate thread,
* ovl_aio_cleanup_handler() frees aio_req which has iocb embedded
*/
file_accessed(iocb->ki_filp); /**BOOM**/
Fix by introducing a refcount in ovl_aio_req similarly to aio_kiocb. This
guarantees that iocb is only freed after vfs_read/write_iter() returns on
underlying fs.
Fixes: 2406a307ac ("ovl: implement async IO routines")
Signed-off-by: yangerkun <yangerkun@huawei.com>
Link: https://lore.kernel.org/r/20210930032228.3199690-3-yangerkun@huawei.com/
Cc: <stable@vger.kernel.org> # v5.6
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5c78a5e7aa835c4f08a7c90fe02d19f95a776f29 upstream.
In open_ctree() in btrfs_check_rw_degradable() [1], we check each block
group individually if at least the minimum number of devices is available
for that profile. If all the devices are available, then we don't have to
check degradable.
[1]
open_ctree()
::
3559 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
Also before calling btrfs_check_rw_degradable() in open_ctee() at the
line number shown below [2] we call btrfs_read_chunk_tree() and down to
add_missing_dev() to record number of missing devices.
[2]
open_ctree()
::
3454 ret = btrfs_read_chunk_tree(fs_info);
btrfs_read_chunk_tree()
read_one_chunk() / read_one_dev()
add_missing_dev()
So, check if there is any missing device before btrfs_check_rw_degradable()
in open_ctree().
Also, with this the mount command could save ~16ms.[3] in the most
common case, that is no device is missing.
[3]
1) * 16934.96 us | btrfs_check_rw_degradable [btrfs]();
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 10adb1152d957a4d570ad630f93a88bb961616c1 upstream.
At replay_dir_deletes(), if find_dir_range() returns an error we break out
of the main while loop and then assign a value of 0 (success) to the 'ret'
variable, resulting in completely ignoring that an error happened. Fix
that by jumping to the 'out' label when find_dir_range() returns an error
(negative value).
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5d03dbebba2594d2e6fbf3b5dd9060c5a835de3b upstream.
Reported bug: https://github.com/kdave/btrfs-progs/issues/389
There's a problem with scrub reporting aborted status but returning
error code 0, on a filesystem with missing and readded device.
Roughly these steps:
- mkfs -d raid1 dev1 dev2
- fill with data
- unmount
- make dev1 disappear
- mount -o degraded
- copy more data
- make dev1 appear again
Running scrub afterwards reports that the command was aborted, but the
system log message says the exit code was 0.
It seems that the cause of the error is decrementing
fs_devices->missing_devices but not clearing device->dev_state. Every
time we umount filesystem, it would call close_ctree, And it would
eventually involve btrfs_close_one_device to close the device, but it
only decrements fs_devices->missing_devices but does not clear the
device BTRFS_DEV_STATE_MISSING bit. Worse, this bug will cause Integer
Overflow, because every time umount, fs_devices->missing_devices will
decrease. If fs_devices->missing_devices value hit 0, it would overflow.
With added debugging:
loop1: detected capacity change from 0 to 20971520
BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 1 transid 21 /dev/loop1 scanned by systemd-udevd (2311)
loop2: detected capacity change from 0 to 20971520
BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 2 transid 17 /dev/loop2 scanned by systemd-udevd (2313)
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 0
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 18446744073709551615
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 18446744073709551615
If fs_devices->missing_devices is 0, next time it would be 18446744073709551615
After apply this patch, the fs_devices->missing_devices seems to be
right:
$ truncate -s 10g test1
$ truncate -s 10g test2
$ losetup /dev/loop1 test1
$ losetup /dev/loop2 test2
$ mkfs.btrfs -draid1 -mraid1 /dev/loop1 /dev/loop2 -f
$ losetup -d /dev/loop2
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ dmesg
loop1: detected capacity change from 0 to 20971520
loop2: detected capacity change from 0 to 20971520
BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 1 transid 5 /dev/loop1 scanned by mkfs.btrfs (1863)
BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 2 transid 5 /dev/loop2 scanned by mkfs.btrfs (1863)
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): checking UUID tree
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Li Zhang <zhanglikernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 712a951025c0667ff00b25afc360f74e639dfabe upstream.
It is possible to trigger a crash by splicing anon pipe bufs to the fuse
device.
The reason for this is that anon_pipe_buf_release() will reuse buf->page if
the refcount is 1, but that page might have already been stolen and its
flags modified (e.g. PG_lru added).
This happens in the unlikely case of fuse_dev_splice_write() getting around
to calling pipe_buf_release() after a page has been stolen, added to the
page cache and removed from the page cache.
Fix by calling pipe_buf_release() right after the page was inserted into
the page cache. In this case the page has an elevated refcount so any
release function will know that the page isn't reusable.
Reported-by: Frank Dinoff <fdinoff@google.com>
Link: https://lore.kernel.org/r/CAAmZXrsGg2xsP1CK+cbuEMumtrqdvD-NKnWzhNcvn71RV3c1yw@mail.gmail.com/
Fixes: dd3bb14f44 ("fuse: support splice() writing to fuse device")
Cc: <stable@vger.kernel.org> # v2.6.35
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1811bc401aa58c7bdb0df3205aa6613b49d32127 upstream.
After we drop i_data sem, we need to reload the ext4_ext_path
structure since the extent tree can change once i_data_sem is
released.
This addresses the BUG:
[52117.465187] ------------[ cut here ]------------
[52117.465686] kernel BUG at fs/ext4/extents.c:1756!
...
[52117.478306] Call Trace:
[52117.478565] ext4_ext_shift_extents+0x3ee/0x710
[52117.479020] ext4_fallocate+0x139c/0x1b40
[52117.479405] ? __do_sys_newfstat+0x6b/0x80
[52117.479805] vfs_fallocate+0x151/0x4b0
[52117.480177] ksys_fallocate+0x4a/0xa0
[52117.480533] __x64_sys_fallocate+0x22/0x30
[52117.480930] do_syscall_64+0x35/0x80
[52117.481277] entry_SYSCALL_64_after_hwframe+0x44/0xae
[52117.481769] RIP: 0033:0x7fa062f855ca
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20210903062748.4118886-4-yangerkun@huawei.com
Signed-off-by: yangerkun <yangerkun@huawei.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4268496e48dc681cfa53b92357314b5d7221e625 upstream.
Like ext4_ext_rm_leaf, we can ensure that there are enough credits
before every call that will consume credits. As part of this fix we
fold the functionality of ext4_access_path() into
ext4_ext_shift_path_extents(). This change is needed as a preparation
for the next bugfix patch.
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20210903062748.4118886-3-yangerkun@huawei.com
Signed-off-by: yangerkun <yangerkun@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 39fec6889d15a658c3a3ebb06fd69d3584ddffd3 upstream.
Ext4 file system has default lazy inode table initialization setup once
it is mounted. However, it has issue on computing the next schedule time
that makes the timeout same amount in jiffies but different real time in
secs if with various HZ values. Therefore, fix by measuring the current
time in a more granular unit nanoseconds and make the next schedule time
independent of the HZ value.
Fixes: bfff68738f ("ext4: add support for lazy inode table initialization")
Signed-off-by: Shaoying Xu <shaoyi@amazon.com>
Cc: stable@vger.kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20210902164412.9994-2-shaoyi@amazon.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0c336d6e33f4bedc443404c89f43c91c8bd9ee11 upstream.
When calculating i_blocks, there was a mistake that was masked with a
32-bit variable. So i_blocks for files larger than 4 GiB had incorrect
values. Mask with a 64-bit variable instead of 32-bit one.
Fixes: 5f2aa07507 ("exfat: add inode operations")
Cc: stable@vger.kernel.org # v5.7+
Reported-by: Ganapathi Kamath <hgkamath@hotmail.com>
Signed-off-by: Sungjong Seo <sj1557.seo@samsung.com>
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 839b63860eb3835da165642923120d305925561d upstream.
Patch series "ocfs2: Truncate data corruption fix".
As further testing has shown, commit 5314454ea3f ("ocfs2: fix data
corruption after conversion from inline format") didn't fix all the data
corruption issues the customer started observing after 6dbf7bb555
("fs: Don't invalidate page buffers in block_write_full_page()") This
time I have tracked them down to two bugs in ocfs2 truncation code.
One bug (truncating page cache before clearing tail cluster and setting
i_size) could cause data corruption even before 6dbf7bb555, but before
that commit it needed a race with page fault, after 6dbf7bb555 it
started to be pretty deterministic.
Another bug (zeroing pages beyond old i_size) used to be harmless
inefficiency before commit 6dbf7bb555. But after commit 6dbf7bb555
in combination with the first bug it resulted in deterministic data
corruption.
Although fixing only the first problem is needed to stop data
corruption, I've fixed both issues to make the code more robust.
This patch (of 2):
ocfs2_truncate_file() did unmap invalidate page cache pages before
zeroing partial tail cluster and setting i_size. Thus some pages could
be left (and likely have left if the cluster zeroing happened) in the
page cache beyond i_size after truncate finished letting user possibly
see stale data once the file was extended again. Also the tail cluster
zeroing was not guaranteed to finish before truncate finished causing
possible stale data exposure. The problem started to be particularly
easy to hit after commit 6dbf7bb555 "fs: Don't invalidate page buffers
in block_write_full_page()" stopped invalidation of pages beyond i_size
from page writeback path.
Fix these problems by unmapping and invalidating pages in the page cache
after the i_size is reduced and tail cluster is zeroed out.
Link: https://lkml.kernel.org/r/20211025150008.29002-1-jack@suse.cz
Link: https://lkml.kernel.org/r/20211025151332.11301-1-jack@suse.cz
Fixes: ccd979bdbc ("[PATCH] OCFS2: The Second Oracle Cluster Filesystem")
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e96a1866b40570b5950cda8602c2819189c62a48 upstream.
When isofs image is suitably corrupted isofs_read_inode() can read data
beyond the end of buffer. Sanity-check the directory entry length before
using it.
Reported-and-tested-by: syzbot+6fc7fb214625d82af7d1@syzkaller.appspotmail.com
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6f1b228529ae49b0f85ab89bcdb6c365df401558 upstream.
Encountered a race between ocfs2_test_bg_bit_allocatable() and
jbd2_journal_put_journal_head() resulting in the below vmcore.
PID: 106879 TASK: ffff880244ba9c00 CPU: 2 COMMAND: "loop3"
Call trace:
panic
oops_end
no_context
__bad_area_nosemaphore
bad_area_nosemaphore
__do_page_fault
do_page_fault
page_fault
[exception RIP: ocfs2_block_group_find_clear_bits+316]
ocfs2_block_group_find_clear_bits [ocfs2]
ocfs2_cluster_group_search [ocfs2]
ocfs2_search_chain [ocfs2]
ocfs2_claim_suballoc_bits [ocfs2]
__ocfs2_claim_clusters [ocfs2]
ocfs2_claim_clusters [ocfs2]
ocfs2_local_alloc_slide_window [ocfs2]
ocfs2_reserve_local_alloc_bits [ocfs2]
ocfs2_reserve_clusters_with_limit [ocfs2]
ocfs2_reserve_clusters [ocfs2]
ocfs2_lock_refcount_allocators [ocfs2]
ocfs2_make_clusters_writable [ocfs2]
ocfs2_replace_cow [ocfs2]
ocfs2_refcount_cow [ocfs2]
ocfs2_file_write_iter [ocfs2]
lo_rw_aio
loop_queue_work
kthread_worker_fn
kthread
ret_from_fork
When ocfs2_test_bg_bit_allocatable() called bh2jh(bg_bh), the
bg_bh->b_private NULL as jbd2_journal_put_journal_head() raced and
released the jounal head from the buffer head. Needed to take bit lock
for the bit 'BH_JournalHead' to fix this race.
Link: https://lkml.kernel.org/r/1634820718-6043-1-git-send-email-gautham.ananthakrishna@oracle.com
Signed-off-by: Gautham Ananthakrishna <gautham.ananthakrishna@oracle.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: <rajesh.sivaramasubramaniom@oracle.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 61bb4a1c417e5b95d9edb4f887f131de32e419cb upstream.
After commit 618f003199c6 ("ext4: fix memory leak in
ext4_fill_super"), after the file system is remounted read-only, there
is a race where the kmmpd thread can exit, causing sbi->s_mmp_tsk to
point at freed memory, which the call to ext4_stop_mmpd() can trip
over.
Fix this by only allowing kmmpd() to exit when it is stopped via
ext4_stop_mmpd().
Link: https://lore.kernel.org/r/20210707002433.3719773-1-tytso@mit.edu
Reported-by: Ye Bin <yebin10@huawei.com>
Bug-Report-Link: <20210629143603.2166962-1-yebin10@huawei.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 792bb6eb862333658bf1bd2260133f0507e2da8d upstream.
[ 97.866748] a.out/2890 is trying to acquire lock:
[ 97.867829] ffff8881046763e8 (&ctx->uring_lock){+.+.}-{3:3}, at:
io_wq_submit_work+0x155/0x240
[ 97.869735]
[ 97.869735] but task is already holding lock:
[ 97.871033] ffff88810dfe0be8 (&ctx->uring_lock){+.+.}-{3:3}, at:
__x64_sys_io_uring_enter+0x3f0/0x5b0
[ 97.873074]
[ 97.873074] other info that might help us debug this:
[ 97.874520] Possible unsafe locking scenario:
[ 97.874520]
[ 97.875845] CPU0
[ 97.876440] ----
[ 97.877048] lock(&ctx->uring_lock);
[ 97.877961] lock(&ctx->uring_lock);
[ 97.878881]
[ 97.878881] *** DEADLOCK ***
[ 97.878881]
[ 97.880341] May be due to missing lock nesting notation
[ 97.880341]
[ 97.881952] 1 lock held by a.out/2890:
[ 97.882873] #0: ffff88810dfe0be8 (&ctx->uring_lock){+.+.}-{3:3}, at:
__x64_sys_io_uring_enter+0x3f0/0x5b0
[ 97.885108]
[ 97.885108] stack backtrace:
[ 97.890457] Call Trace:
[ 97.891121] dump_stack+0xac/0xe3
[ 97.891972] __lock_acquire+0xab6/0x13a0
[ 97.892940] lock_acquire+0x2c3/0x390
[ 97.894894] __mutex_lock+0xae/0x9f0
[ 97.901101] io_wq_submit_work+0x155/0x240
[ 97.902112] io_wq_cancel_cb+0x162/0x490
[ 97.904126] io_async_find_and_cancel+0x3b/0x140
[ 97.905247] io_issue_sqe+0x86d/0x13e0
[ 97.909122] __io_queue_sqe+0x10b/0x550
[ 97.913971] io_queue_sqe+0x235/0x470
[ 97.914894] io_submit_sqes+0xcce/0xf10
[ 97.917872] __x64_sys_io_uring_enter+0x3fb/0x5b0
[ 97.921424] do_syscall_64+0x2d/0x40
[ 97.922329] entry_SYSCALL_64_after_hwframe+0x44/0xa9
While holding uring_lock, e.g. from inline execution, async cancel
request may attempt cancellations through io_wq_submit_work, which may
try to grab a lock. Delay it to task_work, so we do it from a clean
context and don't have to worry about locking.
Cc: <stable@vger.kernel.org> # 5.5+
Fixes: c07e6719511e ("io_uring: hold uring_lock while completing failed polled io in io_wq_submit_work()")
Reported-by: Abaci <abaci@linux.alibaba.com>
Reported-by: Hao Xu <haoxu@linux.alibaba.com>
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Lee: The first hunk solves a different (double free) issue in v5.10.
Only the first hunk of the original patch is relevant to v5.10 AND
the first hunk of the original patch is only relevant to v5.10]
Reported-by: syzbot+59d8a1f4e60c20c066cf@syzkaller.appspotmail.com
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 77a5b9e3d14cbce49ceed2766b2003c034c066dc ]
Currently inode_in_dir() ignores errors returned from
btrfs_lookup_dir_index_item() and from btrfs_lookup_dir_item(), treating
any errors as if the directory entry does not exists in the fs/subvolume
tree, which is obviously not correct, as we can get errors such as -EIO
when reading extent buffers while searching the fs/subvolume's tree.
Fix that by making inode_in_dir() return the errors and making its only
caller, add_inode_ref(), deal with returned errors as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 032146cda85566abcd1c4884d9d23e4e30a07e9a upstream.
If we open a file without read access and then pass the fd to a syscall
whose implementation calls kernel_read_file_from_fd(), we get a warning
from __kernel_read():
if (WARN_ON_ONCE(!(file->f_mode & FMODE_READ)))
This currently affects both finit_module() and kexec_file_load(), but it
could affect other syscalls in the future.
Link: https://lkml.kernel.org/r/20211007220110.600005-1-willy@infradead.org
Fixes: b844f0ecbc ("vfs: define kernel_copy_file_from_fd()")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: Hao Sun <sunhao.th@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cb185d5f1ebf900f4ae3bf84cee212e6dd035aca upstream.
A race is possible when a process exits, its VMAs are removed by
exit_mmap() and at the same time userfaultfd_writeprotect() is called.
The race was detected by KASAN on a development kernel, but it appears
to be possible on vanilla kernels as well.
Use mmget_not_zero() to prevent the race as done in other userfaultfd
operations.
Link: https://lkml.kernel.org/r/20210921200247.25749-1-namit@vmware.com
Fixes: 63b2d4174c ("userfaultfd: wp: add the writeprotect API to userfaultfd ioctl")
Signed-off-by: Nadav Amit <namit@vmware.com>
Tested-by: Li Wang <liwang@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b15fa9224e6e1239414525d8d556d824701849fc upstream.
Starting with kernel 5.11 built with CONFIG_FORTIFY_SOURCE mouting an
ocfs2 filesystem with either o2cb or pcmk cluster stack fails with the
trace below. Problem seems to be that strings for cluster stack and
cluster name are not guaranteed to be null terminated in the disk
representation, while strlcpy assumes that the source string is always
null terminated. This causes a read outside of the source string
triggering the buffer overflow detection.
detected buffer overflow in strlen
------------[ cut here ]------------
kernel BUG at lib/string.c:1149!
invalid opcode: 0000 [#1] SMP PTI
CPU: 1 PID: 910 Comm: mount.ocfs2 Not tainted 5.14.0-1-amd64 #1
Debian 5.14.6-2
RIP: 0010:fortify_panic+0xf/0x11
...
Call Trace:
ocfs2_initialize_super.isra.0.cold+0xc/0x18 [ocfs2]
ocfs2_fill_super+0x359/0x19b0 [ocfs2]
mount_bdev+0x185/0x1b0
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x454/0xa20
__x64_sys_mount+0x103/0x140
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Link: https://lkml.kernel.org/r/20210929180654.32460-1-vvidic@valentin-vidic.from.hr
Signed-off-by: Valentin Vidic <vvidic@valentin-vidic.from.hr>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5314454ea3ff6fc746eaf71b9a7ceebed52888fa upstream.
Commit 6dbf7bb555 ("fs: Don't invalidate page buffers in
block_write_full_page()") uncovered a latent bug in ocfs2 conversion
from inline inode format to a normal inode format.
The code in ocfs2_convert_inline_data_to_extents() attempts to zero out
the whole cluster allocated for file data by grabbing, zeroing, and
dirtying all pages covering this cluster. However these pages are
beyond i_size, thus writeback code generally ignores these dirty pages
and no blocks were ever actually zeroed on the disk.
This oversight was fixed by commit 693c241a5f ("ocfs2: No need to zero
pages past i_size.") for standard ocfs2 write path, inline conversion
path was apparently forgotten; the commit log also has a reasoning why
the zeroing actually is not needed.
After commit 6dbf7bb555, things became worse as writeback code stopped
invalidating buffers on pages beyond i_size and thus these pages end up
with clean PageDirty bit but with buffers attached to these pages being
still dirty. So when a file is converted from inline format, then
writeback triggers, and then the file is grown so that these pages
become valid, the invalid dirtiness state is preserved,
mark_buffer_dirty() does nothing on these pages (buffers are already
dirty) but page is never written back because it is clean. So data
written to these pages is lost once pages are reclaimed.
Simple reproducer for the problem is:
xfs_io -f -c "pwrite 0 2000" -c "pwrite 2000 2000" -c "fsync" \
-c "pwrite 4000 2000" ocfs2_file
After unmounting and mounting the fs again, you can observe that end of
'ocfs2_file' has lost its contents.
Fix the problem by not doing the pointless zeroing during conversion
from inline format similarly as in the standard write path.
[akpm@linux-foundation.org: fix whitespace, per Joseph]
Link: https://lkml.kernel.org/r/20210930095405.21433-1-jack@suse.cz
Fixes: 6dbf7bb555 ("fs: Don't invalidate page buffers in block_write_full_page()")
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Tested-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Acked-by: Gang He <ghe@suse.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Jun Piao <piaojun@huawei.com>
Cc: "Markov, Andrey" <Markov.Andrey@Dell.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1bd85aa65d0e7b5e4d09240f492f37c569fdd431 upstream.
Currently, we check the wb_err too early for directories, before all of
the unsafe child requests have been waited on. In order to fix that we
need to check the mapping->wb_err later nearer to the end of ceph_fsync.
We also have an overly-complex method for tracking errors after
blocklisting. The errors recorded in cleanup_session_requests go to a
completely separate field in the inode, but we end up reporting them the
same way we would for any other error (in fsync).
There's no real benefit to tracking these errors in two different
places, since the only reporting mechanism for them is in fsync, and
we'd need to advance them both every time.
Given that, we can just remove i_meta_err, and convert the places that
used it to instead just use mapping->wb_err instead. That also fixes
the original problem by ensuring that we do a check_and_advance of the
wb_err at the end of the fsync op.
Cc: stable@vger.kernel.org
URL: https://tracker.ceph.com/issues/52864
Reported-by: Patrick Donnelly <pdonnell@redhat.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 98d0a6fb7303a6f4a120b8b8ed05b86ff5db53e8 upstream.
Currently when mounting, we may end up finding an existing superblock
that corresponds to a blocklisted MDS client. This means that the new
mount ends up being unusable.
If we've found an existing superblock with a client that is already
blocklisted, and the client is not configured to recover on its own,
fail the match. Ditto if the superblock has been forcibly unmounted.
While we're in here, also rename "other" to the more conventional "fsc".
Cc: stable@vger.kernel.org
URL: https://bugzilla.redhat.com/show_bug.cgi?id=1901499
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Reviewed-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c20106944eb679fa3ab7e686fe5f6ba30fbc51e5 ]
If nfsd has existing listening sockets without any processes, then an error
returned from svc_create_xprt() for an additional transport will remove
those existing listeners. We're seeing this in practice when userspace
attempts to create rpcrdma transports without having the rpcrdma modules
present before creating nfsd kernel processes. Fix this by checking for
existing sockets before calling nfsd_destroy().
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
The linux-5.10.y backport of commit "io_uring: add ->splice_fd_in checks"
includes a typo: "|" where "||" should be. (The original upstream commit
is fine.)
Fixes: 54eb6211b9 ("io_uring: add ->splice_fd_in checks")
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org # v5.10
Signed-off-by: Kamal Mostafa <kamal@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4afb912f439c4bc4e6a4f3e7547f2e69e354108f upstream.
Error injection testing uncovered a case where we'd end up with a
corrupt file system with a missing extent in the middle of a file. This
occurs because the if statement to decide if we should abort is wrong.
The only way we would abort in this case is if we got a ret !=
-EOPNOTSUPP and we called from the file clone code. However the
prealloc code uses this path too. Instead we need to abort if there is
an error, and the only error we _don't_ abort on is -EOPNOTSUPP and only
if we came from the clone file code.
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d175209be04d7d263fa1a54cde7608c706c9d0d7 upstream.
I hit a stuck relocation on btrfs/061 during my overnight testing. This
turned out to be because we had left over extent entries in our extent
root for a data reloc inode that no longer existed. This happened
because in btrfs_drop_extents() we only update refs if we have SHAREABLE
set or we are the tree_root. This regression was introduced by
aeb935a455 ("btrfs: don't set SHAREABLE flag for data reloc tree")
where we stopped setting SHAREABLE for the data reloc tree.
The problem here is we actually do want to update extent references for
data extents in the data reloc tree, in fact we only don't want to
update extent references if the file extents are in the log tree.
Update this check to only skip updating references in the case of the
log tree.
This is relatively rare, because you have to be running scrub at the
same time, which is what btrfs/061 does. The data reloc inode has its
extents pre-allocated, and then we copy the extent into the
pre-allocated chunks. We theoretically should never be calling
btrfs_drop_extents() on a data reloc inode. The exception of course is
with scrub, if our pre-allocated extent falls inside of the block group
we are scrubbing, then the block group will be marked read only and we
will be forced to cow that extent. This means we will call
btrfs_drop_extents() on that range when we COW that file extent.
This isn't really problematic if we do this, the data reloc inode
requires that our extent lengths match exactly with the extent we are
copying, thankfully we validate the extent is correct with
get_new_location(), so if we happen to COW only part of the extent we
won't link it in when we do the relocation, so we are safe from any
other shenanigans that arise because of this interaction with scrub.
Fixes: aeb935a455 ("btrfs: don't set SHAREABLE flag for data reloc tree")
CC: stable@vger.kernel.org # 5.8+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cfd312695b71df04c3a2597859ff12c470d1e2e4 upstream.
At replay_one_name(), we are treating any error from btrfs_lookup_inode()
as if the inode does not exists. Fix this by checking for an error and
returning it to the caller.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 52db77791fe24538c8aa2a183248399715f6b380 upstream.
At __inode_add_ref(), we treating any error returned from
btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning
that there is no existing directory entry in the fs/subvolume tree.
This is not correct since we can get errors such as, for example, -EIO
when reading extent buffers while searching the fs/subvolume's btree.
So fix that and return the error to the caller when it is not -ENOENT.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e15ac6413745e3def00e663de00aea5a717311c1 upstream.
At replay_one_one(), we are treating any error returned from
btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning
that there is no existing directory entry in the fs/subvolume tree.
This is not correct since we can get errors such as, for example, -EIO
when reading extent buffers while searching the fs/subvolume's btree.
So fix that and return the error to the caller when it is not -ENOENT.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 9b3b353ef330e20bc2d99bf3165cc044cff26a09 ]
Commit 9d682ea6bc ("vboxsf: Fix the check for the old binary
mount-arguments struct") was meant to fix a build error due to sign
mismatch in 'char' and the use of character constants, but it just moved
the error elsewhere, in that on some architectures characters and signed
and on others they are unsigned, and that's just how the C standard
works.
The proper fix is a simple "don't do that then". The code was just
being silly and odd, and it should never have cared about signed vs
unsigned characters in the first place, since what it is testing is not
four "characters", but four bytes.
And the way to compare four bytes is by using "memcmp()".
Which compilers will know to just turn into a single 32-bit compare with
a constant, as long as you don't have crazy debug options enabled.
Link: https://lore.kernel.org/lkml/20210927094123.576521-1-arnd@kernel.org/
Cc: Arnd Bergmann <arnd@kernel.org>
Cc: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 55ce2f649b9e88111270333a8127e23f4f8f42d7 ]
Current error path of ext4_write_inline_data_end() is not correct.
Firstly, it should pass out the error value if ext4_get_inode_loc()
return fail, or else it could trigger infinite loop if we inject error
here. And then it's better to add inode to orphan list if it return fail
in ext4_journal_stop(), otherwise we could not restore inline xattr
entry after power failure. Finally, we need to reset the 'ret' value if
ext4_write_inline_data_end() return success in ext4_write_end() and
ext4_journalled_write_end(), otherwise we could not get the error return
value of ext4_journal_stop().
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20210716122024.1105856-3-yi.zhang@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4df031ff5876d94b48dd9ee486ba5522382a06b2 ]
After commit 3da40c7b08 ("ext4: only call ext4_truncate when size <=
isize"), i_disksize could always be updated to i_size in ext4_setattr(),
and we could sure that i_disksize <= i_size since holding inode lock and
if i_disksize < i_size there are delalloc writes pending in the range
upto i_size. If the end of the current write is <= i_size, there's no
need to touch i_disksize since writeback will push i_disksize upto
i_size eventually. So we can switch to check i_size instead of
i_disksize in ext4_da_write_end() when write to the end of the file.
we also could remove ext4_mark_inode_dirty() together because we defer
inode dirtying to generic_write_end() or ext4_da_write_inline_data_end().
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20210716122024.1105856-2-yi.zhang@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f2e717d655040d632c9015f19aa4275f8b16e7f2 upstream.
RFC3530 notes that the 'dircount' field may be zero, in which case the
recommendation is to ignore it, and only enforce the 'maxcount' field.
In RFC5661, this recommendation to ignore a zero valued field becomes a
requirement.
Fixes: aee3776441 ("nfsd4: fix rd_dircount enforcement")
Cc: <stable@vger.kernel.org>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1d625050c7c2dd877e108e382b8aaf1ae3cfe1f4 upstream.
init_nfsd() should not unregister pernet subsys if the register fails
but should instead unwind from the last successful operation which is
register_filesystem().
Unregistering a failed register_pernet_subsys() call can result in
a kernel GPF as revealed by programmatically injecting an error in
register_pernet_subsys().
Verified the fix handled failure gracefully with no lingering nfsd
entry in /proc/filesystems. This change was introduced by the commit
bd5ae9288d64 ("nfsd: register pernet ops last, unregister first"),
the original error handling logic was correct.
Fixes: bd5ae9288d64 ("nfsd: register pernet ops last, unregister first")
Cc: stable@vger.kernel.org
Signed-off-by: Patrick Ho <Patrick.Ho@netapp.com>
Acked-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1dc1eed46f9fa4cb8a07baa24fb44c96d6dd35c9 upstream.
Normally the check at open time suffices, but e.g loop device does set
IOCB_DIRECT after doing its own checks (which are not sufficent for
overlayfs).
Make sure we don't call the underlying filesystem read/write method with
the IOCB_DIRECT if it's not supported.
Reported-by: Huang Jianan <huangjianan@oppo.com>
Fixes: 16914e6fc7 ("ovl: add ovl_read_iter()")
Cc: <stable@vger.kernel.org> # v4.19
Tested-by: Huang Jianan <huangjianan@oppo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b06d893ef2492245d0319b4136edb4c346b687a3 ]
Address warning:
fs/smbfs_client/smb2pdu.c:2425 create_sd_buf()
warn: struct type mismatch 'smb3_acl vs cifs_acl'
Pointed out by Dan Carpenter via smatch code analysis tool
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Ronnie Sahlberg <lsahlber@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 372d1f3e1bfede719864d0d1fbf3146b1e638c88 ]
The ext2_error() function syncs the filesystem so it sleeps. The caller
is holding a spinlock so it's not allowed to sleep.
ext2_statfs() <- disables preempt
-> ext2_count_free_blocks()
-> ext2_get_group_desc()
Fix this by using WARN() to print an error message and a stack trace
instead of using ext2_error().
Link: https://lore.kernel.org/r/20210921203233.GA16529@kili
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6b225baababf1e3d41a4250e802cbd193e1343fb ]
When we get an error flushing one device, during a super block commit, we
record the error in the device structure, in the field 'last_flush_error'.
This is used to later check if we should error out the super block commit,
depending on whether the number of flush errors is greater than or equals
to the maximum tolerated device failures for a raid profile.
However if we get a transient device flush error, unmount the filesystem
and later try to mount it, we can fail the mount because we treat that
past error as critical and consider the device is missing. Even if it's
very likely that the error will happen again, as it's probably due to a
hardware related problem, there may be cases where the error might not
happen again. One example is during testing, and a test case like the
new generic/648 from fstests always triggers this. The test cases
generic/019 and generic/475 also trigger this scenario, but very
sporadically.
When this happens we get an error like this:
$ mount /dev/sdc /mnt
mount: /mnt wrong fs type, bad option, bad superblock on /dev/sdc, missing codepage or helper program, or other error.
$ dmesg
(...)
[12918.886926] BTRFS warning (device sdc): chunk 13631488 missing 1 devices, max tolerance is 0 for writable mount
[12918.888293] BTRFS warning (device sdc): writable mount is not allowed due to too many missing devices
[12918.890853] BTRFS error (device sdc): open_ctree failed
The failure happens because when btrfs_check_rw_degradable() is called at
mount time, or at remount from RO to RW time, is sees a non zero value in
a device's ->last_flush_error attribute, and therefore considers that the
device is 'missing'.
Fix this by setting a device's ->last_flush_error to zero when we close a
device, making sure the error is not seen on the next mount attempt. We
only need to track flush errors during the current mount, so that we never
commit a super block if such errors happened.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>