[ Upstream commit 85850af4fc47132f3f2f0dd698b90f67906600b4 ]
Hybrid sleep is currently hardcoded to only operate with S3 even
on systems that might not support it.
Instead of assuming this mode is what the user wants to use, for
hybrid sleep follow the setting of `mem_sleep_current` which
will respect mem_sleep_default kernel command line and policy
decisions made by the presence of the FADT low power idle bit.
Fixes: 81d45bdf8913 ("PM / hibernate: Untangle power_down()")
Reported-and-tested-by: kolAflash <kolAflash@kolahilft.de>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216574
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a541a9559bb0a8ecc434de01d3e4826c32e8bb53 ]
The ftrace_boot_snapshot and alloc_snapshot cmdline options allocate the
snapshot buffer at boot up for use later. The ftrace_boot_snapshot in
particular requires the snapshot to be allocated because it will take a
snapshot at the end of boot up allowing to see the traces that happened
during boot so that it's not lost when user space takes over.
When a tracer is registered (started) there's a path that checks if it
requires the snapshot buffer or not, and if it does not and it was
allocated it will do a synchronization and free the snapshot buffer.
This is only required if the previous tracer was using it for "max
latency" snapshots, as it needs to make sure all max snapshots are
complete before freeing. But this is only needed if the previous tracer
was using the snapshot buffer for latency (like irqoff tracer and
friends). But it does not make sense to free it, if the previous tracer
was not using it, and the snapshot was allocated by the cmdline
parameters. This basically takes away the point of allocating it in the
first place!
Note, the allocated snapshot worked fine for just trace events, but fails
when a tracer is enabled on the cmdline.
Further investigation, this goes back even further and it does not require
a tracer on the cmdline to fail. Simply enable snapshots and then enable a
tracer, and it will remove the snapshot.
Link: https://lkml.kernel.org/r/20221005113757.041df7fe@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: 45ad21ca5530 ("tracing: Have trace_array keep track if snapshot buffer is allocated")
Reported-by: Ross Zwisler <zwisler@kernel.org>
Tested-by: Ross Zwisler <zwisler@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f4b0d318097e45cbac5e14976f8bb56aa2cef504 ]
Two conditional compilation directives "#ifdef CONFIG_TRACER_MAX_TRACE"
are used consecutively, and no other code in between. Simplify conditional
the compilation code and only use one "#ifdef CONFIG_TRACER_MAX_TRACE".
Link: https://lkml.kernel.org/r/20220602140613.545069-1-sunliming@kylinos.cn
Signed-off-by: sunliming <sunliming@kylinos.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: a541a9559bb0 ("tracing: Do not free snapshot if tracer is on cmdline")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 977ef30a7d888eeb52fb6908f99080f33e5309a8 upstream.
Starting with GCC 12.1, the created .gcda format can't be read by gcov
tool. There are 2 significant changes to the .gcda file format that
need to be supported:
a) [gcov: Use system IO buffering]
(23eb66d1d46a34cb28c4acbdf8a1deb80a7c5a05) changed that all sizes in
the format are in bytes and not in words (4B)
b) [gcov: make profile merging smarter]
(72e0c742bd01f8e7e6dcca64042b9ad7e75979de) add a new checksum to the
file header.
Tested with GCC 7.5, 10.4, 12.2 and the current master.
Link: https://lkml.kernel.org/r/624bda92-f307-30e9-9aaa-8cc678b2dfb2@suse.cz
Signed-off-by: Martin Liska <mliska@suse.cz>
Tested-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit fcd53c8a4dfa38bafb89efdd0b0f718f3a03f884 ]
Kernels built with CONFIG_PROVE_RCU=y and CONFIG_DEBUG_LOCK_ALLOC=y
attempt to emit a warning when the synchronize_rcu_tasks_generic()
function is called during early boot while the rcu_scheduler_active
variable is RCU_SCHEDULER_INACTIVE. However the warnings is not
actually be printed because the debug_lockdep_rcu_enabled() returns
false, exactly because the rcu_scheduler_active variable is still equal
to RCU_SCHEDULER_INACTIVE.
This commit therefore replaces RCU_LOCKDEP_WARN() with WARN_ONCE()
to force these warnings to actually be printed.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 093590c16b447f53e66771c8579ae66c96f6ef61 ]
The fill_page_cache_func() function allocates couple of pages to store
kvfree_rcu_bulk_data structures. This is a lightweight (GFP_NORETRY)
allocation which can fail under memory pressure. The function will,
however keep retrying even when the previous attempt has failed.
This retrying is in theory correct, but in practice the allocation is
invoked from workqueue context, which means that if the memory reclaim
gets stuck, these retries can hog the worker for quite some time.
Although the workqueues subsystem automatically adjusts concurrency, such
adjustment is not guaranteed to happen until the worker context sleeps.
And the fill_page_cache_func() function's retry loop is not guaranteed
to sleep (see the should_reclaim_retry() function).
And we have seen this function cause workqueue lockups:
kernel: BUG: workqueue lockup - pool cpus=93 node=1 flags=0x1 nice=0 stuck for 32s!
[...]
kernel: pool 74: cpus=37 node=0 flags=0x1 nice=0 hung=32s workers=2 manager: 2146
kernel: pwq 498: cpus=249 node=1 flags=0x1 nice=0 active=4/256 refcnt=5
kernel: in-flight: 1917:fill_page_cache_func
kernel: pending: dbs_work_handler, free_work, kfree_rcu_monitor
Originally, we thought that the root cause of this lockup was several
retries with direct reclaim, but this is not yet confirmed. Furthermore,
we have seen similar lockups without any heavy memory pressure. This
suggests that there are other factors contributing to these lockups.
However, it is not really clear that endless retries are desireable.
So let's make the fill_page_cache_func() function back off after
allocation failure.
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d8ef45d66c01425ff748e13ef7dd1da7a91cc93c ]
For now, this selftest module can only work in x86 because of the
kprobe cmd was fixed use of x86 registers.
This patch adapted to register names under arm and riscv, So that
this module can be worked on those platform.
Link: https://lkml.kernel.org/r/20220919125629.238242-3-zouyipeng@huawei.com
Cc: <linux-riscv@lists.infradead.org>
Cc: <mingo@redhat.com>
Cc: <paul.walmsley@sifive.com>
Cc: <palmer@dabbelt.com>
Cc: <aou@eecs.berkeley.edu>
Cc: <zanussi@kernel.org>
Cc: <liaochang1@huawei.com>
Cc: <chris.zjh@huawei.com>
Fixes: 64836248dda2 ("tracing: Add kprobe event command generation test module")
Signed-off-by: Yipeng Zou <zouyipeng@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ec5fbdfb99d18482619ac42605cb80fbb56068ee ]
Previously, update_tasks_cpumask() is not supposed to be called with
top cpuset. With cpuset partition that takes CPUs away from the top
cpuset, adjusting the cpus_mask of the tasks in the top cpuset is
necessary. Percpu kthreads, however, are ignored.
Fixes: ee8dde0cd2ce ("cpuset: Add new v2 cpuset.sched.partition flag")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 83c10cc362d91c0d8d25e60779ee52fdbbf3894d ]
The documentation for find_vpid() clearly states:
"Must be called with the tasklist_lock or rcu_read_lock() held."
Presently we do neither for find_vpid() instance in bpf_task_fd_query().
Add proper rcu_read_lock/unlock() to fix the issue.
Fixes: 41bdc4b40ed6f ("bpf: introduce bpf subcommand BPF_TASK_FD_QUERY")
Signed-off-by: Lee Jones <lee@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220912133855.1218900-1-lee@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a37a32583e282d8d815e22add29bc1e91e19951a ]
When trying to finish resolving a struct member, btf_struct_resolve
saves the member type id in a u16 temporary variable. This truncates
the 32 bit type id value if it exceeds UINT16_MAX.
As a result, structs that have members with type ids > UINT16_MAX and
which need resolution will fail with a message like this:
[67414] STRUCT ff_device size=120 vlen=12
effect_owners type_id=67434 bits_offset=960 Member exceeds struct_size
Fix this by changing the type of last_member_type_id to u32.
Fixes: a0791f0df7d2 ("bpf: fix BTF limits")
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Lorenz Bauer <oss@lmb.io>
Link: https://lore.kernel.org/r/20220910110120.339242-1-oss@lmb.io
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c0a581d7126c0bbc96163276f585fd7b4e4d8d0e upstream.
It was found that some tracing functions in kernel/trace/trace.c acquire
an arch_spinlock_t with preemption and irqs enabled. An example is the
tracing_saved_cmdlines_size_read() function which intermittently causes
a "BUG: using smp_processor_id() in preemptible" warning when the LTP
read_all_proc test is run.
That can be problematic in case preemption happens after acquiring the
lock. Add the necessary preemption or interrupt disabling code in the
appropriate places before acquiring an arch_spinlock_t.
The convention here is to disable preemption for trace_cmdline_lock and
interupt for max_lock.
Link: https://lkml.kernel.org/r/20220922145622.1744826-1-longman@redhat.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: stable@vger.kernel.org
Fixes: a35873a0993b ("tracing: Add conditional snapshot")
Fixes: 939c7a4f04fc ("tracing: Introduce saved_cmdlines_size file")
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a0fcaaed0c46cf9399d3a2d6e0c87ddb3df0e044 upstream.
The ring buffer is broken up into sub buffers (currently of page size).
Each sub buffer has a pointer to its "tail" (the last event written to the
sub buffer). When a new event is requested, the tail is locally
incremented to cover the size of the new event. This is done in a way that
there is no need for locking.
If the tail goes past the end of the sub buffer, the process of moving to
the next sub buffer takes place. After setting the current sub buffer to
the next one, the previous one that had the tail go passed the end of the
sub buffer needs to be reset back to the original tail location (before
the new event was requested) and the rest of the sub buffer needs to be
"padded".
The race happens when a reader takes control of the sub buffer. As readers
do a "swap" of sub buffers from the ring buffer to get exclusive access to
the sub buffer, it replaces the "head" sub buffer with an empty sub buffer
that goes back into the writable portion of the ring buffer. This swap can
happen as soon as the writer moves to the next sub buffer and before it
updates the last sub buffer with padding.
Because the sub buffer can be released to the reader while the writer is
still updating the padding, it is possible for the reader to see the event
that goes past the end of the sub buffer. This can cause obvious issues.
To fix this, add a few memory barriers so that the reader definitely sees
the updates to the sub buffer, and also waits until the writer has put
back the "tail" of the sub buffer back to the last event that was written
on it.
To be paranoid, it will only spin for 1 second, otherwise it will
warn and shutdown the ring buffer code. 1 second should be enough as
the writer does have preemption disabled. If the writer doesn't move
within 1 second (with preemption disabled) something is horribly
wrong. No interrupt should last 1 second!
Link: https://lore.kernel.org/all/20220830120854.7545-1-jiazi.li@transsion.com/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216369
Link: https://lkml.kernel.org/r/20220929104909.0650a36c@gandalf.local.home
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: c7b0930857e22 ("ring-buffer: prevent adding write in discarded area")
Reported-by: Jiazi.Li <jiazi.li@transsion.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7e9fbbb1b776d8d7969551565bc246f74ec53b27 upstream.
On closing of a file that represents a ring buffer or flushing the file,
there may be waiters on the ring buffer that needs to be woken up and exit
the ring_buffer_wait() function.
Add ring_buffer_wake_waiters() to wake up the waiters on the ring buffer
and allow them to exit the wait loop.
Link: https://lkml.kernel.org/r/20220928133938.28dc2c27@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 15693458c4bc0 ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ec0bbc5ec5664dcee344f79373852117dc672c86 upstream.
The wake up waiters only checks the "wakeup_full" variable and not the
"full_waiters_pending". The full_waiters_pending is set when a waiter is
added to the wait queue. The wakeup_full is only set when an event is
triggered, and it clears the full_waiters_pending to avoid multiple calls
to irq_work_queue().
The irq_work callback really needs to check both wakeup_full as well as
full_waiters_pending such that this code can be used to wake up waiters
when a file is closed that represents the ring buffer and the waiters need
to be woken up.
Link: https://lkml.kernel.org/r/20220927231824.209460321@goodmis.org
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 15693458c4bc0 ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3b19d614b61b93a131f463817e08219c9ce1fee3 upstream.
The logic to know when the shortest waiters on the ring buffer should be
woken up or not has uses a less than instead of a greater than compare,
which causes the shortest_full to actually be the longest.
Link: https://lkml.kernel.org/r/20220927231823.718039222@goodmis.org
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fa8f4a89736b654125fb254b0db753ac68a5fced upstream.
If a page is partially read, and then the splice system call is run
against the ring buffer, it will always fail to read, no matter how much
is in the ring buffer. That's because the code path for a partial read of
the page does will fail if the "full" flag is set.
The splice system call wants full pages, so if the read of the ring buffer
is not yet full, it should return zero, and the splice will block. But if
a previous read was done, where the beginning has been consumed, it should
still be given to the splice caller if the rest of the page has been
written to.
This caused the splice command to never consume data in this scenario, and
let the ring buffer just fill up and lose events.
Link: https://lkml.kernel.org/r/20220927144317.46be6b80@gandalf.local.home
Cc: stable@vger.kernel.org
Fixes: 8789a9e7df6bf ("ring-buffer: read page interface")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0ce0638edf5ec83343302b884fa208179580700a upstream.
When executing following commands like what document said, but the log
"#### all functions enabled ####" was not shown as expect:
1. Set a 'mod' filter:
$ echo 'write*:mod:ext3' > /sys/kernel/tracing/set_ftrace_filter
2. Invert above filter:
$ echo '!write*:mod:ext3' >> /sys/kernel/tracing/set_ftrace_filter
3. Read the file:
$ cat /sys/kernel/tracing/set_ftrace_filter
By some debugging, I found that flag FTRACE_HASH_FL_MOD was not unset
after inversion like above step 2 and then result of ftrace_hash_empty()
is incorrect.
Link: https://lkml.kernel.org/r/20220926152008.2239274-1-zhengyejian1@huawei.com
Cc: <mingo@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 8c08f0d5c6fb ("ftrace: Have cached module filters be an active filter")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 747f7a2901174c9afa805dddfb7b24db6f65e985 upstream.
The KLP transition code depends on the TIF_PATCH_PENDING and
the task->patch_state to stay in sync. On a normal (forward)
transition, TIF_PATCH_PENDING will be set on every task in
the system, while on a reverse transition (after a failed
forward one) first TIF_PATCH_PENDING will be cleared from
every task, followed by it being set on tasks that need to
be transitioned back to the original code.
However, the fork code copies over the TIF_PATCH_PENDING flag
from the parent to the child early on, in dup_task_struct and
setup_thread_stack. Much later, klp_copy_process will set
child->patch_state to match that of the parent.
However, the parent's patch_state may have been changed by KLP loading
or unloading since it was initially copied over into the child.
This results in the KLP code occasionally hitting this warning in
klp_complete_transition:
for_each_process_thread(g, task) {
WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
task->patch_state = KLP_UNDEFINED;
}
Set, or clear, the TIF_PATCH_PENDING flag in the child task
depending on whether or not it is needed at the time
klp_copy_process is called, at a point in copy_process where the
tasklist_lock is held exclusively, preventing races with the KLP
code.
The KLP code does have a few places where the state is changed
without the tasklist_lock held, but those should not cause
problems because klp_update_patch_state(current) cannot be
called while the current task is in the middle of fork,
klp_check_and_switch_task() which is called under the pi_lock,
which prevents rescheduling, and manipulation of the patch
state of idle tasks, which do not fork.
This should prevent this warning from triggering again in the
future, and close the race for both normal and reverse transitions.
Signed-off-by: Rik van Riel <riel@surriel.com>
Reported-by: Breno Leitao <leitao@debian.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Fixes: d83a7cb375ee ("livepatch: change to a per-task consistency model")
Cc: stable@kernel.org
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220808150019.03d6a67b@imladris.surriel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 82806744fd7dde603b64c151eeddaa4ee62193fd upstream.
swiotlb_find_slots() skips slots according to io tlb aligned mask
calculated from min aligned mask and original physical address
offset. This affects max mapping size. The mapping size can't
achieve the IO_TLB_SEGSIZE * IO_TLB_SIZE when original offset is
non-zero. This will cause system boot up failure in Hyper-V
Isolation VM where swiotlb force is enabled. Scsi layer use return
value of dma_max_mapping_size() to set max segment size and it
finally calls swiotlb_max_mapping_size(). Hyper-V storage driver
sets min align mask to 4k - 1. Scsi layer may pass 256k length of
request buffer with 0~4k offset and Hyper-V storage driver can't
get swiotlb bounce buffer via DMA API. Swiotlb_find_slots() can't
find 256k length bounce buffer with offset. Make swiotlb_max_mapping
_size() take min align mask into account.
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Rishabh Bhatnagar <risbhat@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c0feea594e058223973db94c1c32a830c9807c86 ]
Like Hillf Danton mentioned
syzbot should have been able to catch cancel_work_sync() in work context
by checking lockdep_map in __flush_work() for both flush and cancel.
in [1], being unable to report an obvious deadlock scenario shown below is
broken. From locking dependency perspective, sync version of cancel request
should behave as if flush request, for it waits for completion of work if
that work has already started execution.
----------
#include <linux/module.h>
#include <linux/sched.h>
static DEFINE_MUTEX(mutex);
static void work_fn(struct work_struct *work)
{
schedule_timeout_uninterruptible(HZ / 5);
mutex_lock(&mutex);
mutex_unlock(&mutex);
}
static DECLARE_WORK(work, work_fn);
static int __init test_init(void)
{
schedule_work(&work);
schedule_timeout_uninterruptible(HZ / 10);
mutex_lock(&mutex);
cancel_work_sync(&work);
mutex_unlock(&mutex);
return -EINVAL;
}
module_init(test_init);
MODULE_LICENSE("GPL");
----------
The check this patch restores was added by commit 0976dfc1d0cd80a4
("workqueue: Catch more locking problems with flush_work()").
Then, lockdep's crossrelease feature was added by commit b09be676e0ff25bd
("locking/lockdep: Implement the 'crossrelease' feature"). As a result,
this check was once removed by commit fd1a5b04dfb899f8 ("workqueue: Remove
now redundant lock acquisitions wrt. workqueue flushes").
But lockdep's crossrelease feature was removed by commit e966eaeeb623f099
("locking/lockdep: Remove the cross-release locking checks"). At this
point, this check should have been restored.
Then, commit d6e89786bed977f3 ("workqueue: skip lockdep wq dependency in
cancel_work_sync()") introduced a boolean flag in order to distinguish
flush_work() and cancel_work_sync(), for checking "struct workqueue_struct"
dependency when called from cancel_work_sync() was causing false positives.
Then, commit 87915adc3f0acdf0 ("workqueue: re-add lockdep dependencies for
flushing") tried to restore "struct work_struct" dependency check, but by
error checked this boolean flag. Like an example shown above indicates,
"struct work_struct" dependency needs to be checked for both flush_work()
and cancel_work_sync().
Link: https://lkml.kernel.org/r/20220504044800.4966-1-hdanton@sina.com [1]
Reported-by: Hillf Danton <hdanton@sina.com>
Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Fixes: 87915adc3f0acdf0 ("workqueue: re-add lockdep dependencies for flushing")
Cc: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 54c3931957f6a6194d5972eccc36d052964b2abe ]
Currently, The arguments passing to lockdep_hardirqs_{on,off} was fixed
in CALLER_ADDR0.
The function trace_hardirqs_on_caller should have been intended to use
caller_addr to represent the address that caller wants to be traced.
For example, lockdep log in riscv showing the last {enabled,disabled} at
__trace_hardirqs_{on,off} all the time(if called by):
[ 57.853175] hardirqs last enabled at (2519): __trace_hardirqs_on+0xc/0x14
[ 57.853848] hardirqs last disabled at (2520): __trace_hardirqs_off+0xc/0x14
After use trace_hardirqs_xx_caller, we can get more effective information:
[ 53.781428] hardirqs last enabled at (2595): restore_all+0xe/0x66
[ 53.782185] hardirqs last disabled at (2596): ret_from_exception+0xa/0x10
Link: https://lkml.kernel.org/r/20220901104515.135162-2-zouyipeng@huawei.com
Cc: stable@vger.kernel.org
Fixes: c3bc8fd637a96 ("tracing: Centralize preemptirq tracepoints and unify their usage")
Signed-off-by: Yipeng Zou <zouyipeng@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3f0461613ebcdc8c4073e235053d06d5aa58750f ]
The second operand passed to slot_addr() is declared as int or unsigned int
in all call sites. The left-shift to get the offset of a slot can overflow
if swiotlb size is larger than 4G.
Convert the macro to an inline function and declare the second argument as
phys_addr_t to avoid the potential overflow.
Fixes: 26a7e094783d ("swiotlb: refactor swiotlb_tbl_map_single")
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 85eaeb5058f0f04dffb124c97c86b4f18db0b833 ]
Fix a nested dead lock as part of ODP flow by using mmput_async().
From the below call trace [1] can see that calling mmput() once we have
the umem_odp->umem_mutex locked as required by
ib_umem_odp_map_dma_and_lock() might trigger in the same task the
exit_mmap()->__mmu_notifier_release()->mlx5_ib_invalidate_range() which
may dead lock when trying to lock the same mutex.
Moving to use mmput_async() will solve the problem as the above
exit_mmap() flow will be called in other task and will be executed once
the lock will be available.
[1]
[64843.077665] task:kworker/u133:2 state:D stack: 0 pid:80906 ppid:
2 flags:0x00004000
[64843.077672] Workqueue: mlx5_ib_page_fault mlx5_ib_eqe_pf_action [mlx5_ib]
[64843.077719] Call Trace:
[64843.077722] <TASK>
[64843.077724] __schedule+0x23d/0x590
[64843.077729] schedule+0x4e/0xb0
[64843.077735] schedule_preempt_disabled+0xe/0x10
[64843.077740] __mutex_lock.constprop.0+0x263/0x490
[64843.077747] __mutex_lock_slowpath+0x13/0x20
[64843.077752] mutex_lock+0x34/0x40
[64843.077758] mlx5_ib_invalidate_range+0x48/0x270 [mlx5_ib]
[64843.077808] __mmu_notifier_release+0x1a4/0x200
[64843.077816] exit_mmap+0x1bc/0x200
[64843.077822] ? walk_page_range+0x9c/0x120
[64843.077828] ? __cond_resched+0x1a/0x50
[64843.077833] ? mutex_lock+0x13/0x40
[64843.077839] ? uprobe_clear_state+0xac/0x120
[64843.077860] mmput+0x5f/0x140
[64843.077867] ib_umem_odp_map_dma_and_lock+0x21b/0x580 [ib_core]
[64843.077931] pagefault_real_mr+0x9a/0x140 [mlx5_ib]
[64843.077962] pagefault_mr+0xb4/0x550 [mlx5_ib]
[64843.077992] pagefault_single_data_segment.constprop.0+0x2ac/0x560
[mlx5_ib]
[64843.078022] mlx5_ib_eqe_pf_action+0x528/0x780 [mlx5_ib]
[64843.078051] process_one_work+0x22b/0x3d0
[64843.078059] worker_thread+0x53/0x410
[64843.078065] ? process_one_work+0x3d0/0x3d0
[64843.078073] kthread+0x12a/0x150
[64843.078079] ? set_kthread_struct+0x50/0x50
[64843.078085] ret_from_fork+0x22/0x30
[64843.078093] </TASK>
Fixes: 36f30e486dce ("IB/core: Improve ODP to use hmm_range_fault()")
Reviewed-by: Maor Gottlieb <maorg@nvidia.com>
Signed-off-by: Yishai Hadas <yishaih@nvidia.com>
Link: https://lore.kernel.org/r/74d93541ea533ef7daec6f126deb1072500aeb16.1661251841.git.leonro@nvidia.com
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4f7e7236435ca0abe005c674ebd6892c6e83aeb3 ]
Bringing up a CPU may involve creating and destroying tasks which requires
read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
cpus_read_lock(). However, cpuset's ->attach(), which may be called with
thredagroup_rwsem write-locked, also wants to disable CPU hotplug and
acquires cpus_read_lock(), leading to a deadlock.
Fix it by guaranteeing that ->attach() is always called with CPU hotplug
disabled and removing cpus_read_lock() call from cpuset_attach().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-and-tested-by: Imran Khan <imran.f.khan@oracle.com>
Reported-and-tested-by: Xuewen Yan <xuewen.yan@unisoc.com>
Fixes: 05c7b7a92cc8 ("cgroup/cpuset: Fix a race between cpuset_attach() and cpu hotplug")
Cc: stable@vger.kernel.org # v5.17+
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 671c11f0619e5ccb380bcf0f062f69ba95fc974a ]
cgroup_update_dfl_csses() write-lock the threadgroup_rwsem as updating the
csses can trigger process migrations. However, if the subtree doesn't
contain any tasks, there aren't gonna be any cgroup migrations. This
condition can be trivially detected by testing whether
mgctx.preloaded_src_csets is empty. Elide write-locking threadgroup_rwsem if
the subtree is empty.
After this optimization, the usage pattern of creating a cgroup, enabling
the necessary controllers, and then seeding it with CLONE_INTO_CGROUP and
then removing the cgroup after it becomes empty doesn't need to write-lock
threadgroup_rwsem at all.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit a657182a5c5150cdfacb6640aad1d2712571a409 upstream.
Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which
is based on a customized syzkaller:
BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0
Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489
CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x9c/0xc9
print_address_description.constprop.0+0x1f/0x1f0
? bpf_int_jit_compile+0x1257/0x13f0
kasan_report.cold+0xeb/0x197
? kvmalloc_node+0x170/0x200
? bpf_int_jit_compile+0x1257/0x13f0
bpf_int_jit_compile+0x1257/0x13f0
? arch_prepare_bpf_dispatcher+0xd0/0xd0
? rcu_read_lock_sched_held+0x43/0x70
bpf_prog_select_runtime+0x3e8/0x640
? bpf_obj_name_cpy+0x149/0x1b0
bpf_prog_load+0x102f/0x2220
? __bpf_prog_put.constprop.0+0x220/0x220
? find_held_lock+0x2c/0x110
? __might_fault+0xd6/0x180
? lock_downgrade+0x6e0/0x6e0
? lock_is_held_type+0xa6/0x120
? __might_fault+0x147/0x180
__sys_bpf+0x137b/0x6070
? bpf_perf_link_attach+0x530/0x530
? new_sync_read+0x600/0x600
? __fget_files+0x255/0x450
? lock_downgrade+0x6e0/0x6e0
? fput+0x30/0x1a0
? ksys_write+0x1a8/0x260
__x64_sys_bpf+0x7a/0xc0
? syscall_enter_from_user_mode+0x21/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f917c4e2c2d
The problem here is that a range of tnum_range(0, map->max_entries - 1) has
limited ability to represent the concrete tight range with the tnum as the
set of resulting states from value + mask can result in a superset of the
actual intended range, and as such a tnum_in(range, reg->var_off) check may
yield true when it shouldn't, for example tnum_range(0, 2) would result in
00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here
represented by a less precise superset of {0, 1, 2, 3}. As the register is
known const scalar, really just use the concrete reg->var_off.value for the
upper index check.
Fixes: d2e4c1e6c294 ("bpf: Constant map key tracking for prog array pokes")
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/984b37f9fdf7ac36831d2137415a4a915744c1b6.1661462653.git.daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a8faed3a02eeb75857a3b5d660fa80fe79db77a3 upstream.
When CONFIG_ADVISE_SYSCALLS is not set/enabled and CONFIG_COMPAT is
set/enabled, the riscv compat_syscall_table references
'compat_sys_fadvise64_64', which is not defined:
riscv64-linux-ld: arch/riscv/kernel/compat_syscall_table.o:(.rodata+0x6f8):
undefined reference to `compat_sys_fadvise64_64'
Add 'fadvise64_64' to kernel/sys_ni.c as a conditional COMPAT function so
that when CONFIG_ADVISE_SYSCALLS is not set, there is a fallback function
available.
Link: https://lkml.kernel.org/r/20220807220934.5689-1-rdunlap@infradead.org
Fixes: d3ac21cacc24 ("mm: Support compiling out madvise and fadvise")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ad982c3be4e60c7d39c03f782733503cbd88fd2a upstream.
Audit_alloc_mark() assign pathname to audit_mark->path, on error path
from fsnotify_add_inode_mark(), fsnotify_put_mark will free memory
of audit_mark->path, but the caller of audit_alloc_mark will free
the pathname again, so there will be double free problem.
Fix this by resetting audit_mark->path to NULL pointer on error path
from fsnotify_add_inode_mark().
Cc: stable@vger.kernel.org
Fixes: 7b1293234084d ("fsnotify: Add group pointer in fsnotify_init_mark()")
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4c46091ee985ae84c60c5e95055d779fcd291d87 upstream.
Syzbot found a Use After Free bug in compute_effective_progs().
The reproducer creates a number of BPF links, and causes a fault
injected alloc to fail, while calling bpf_link_detach on them.
Link detach triggers the link to be freed by bpf_link_free(),
which calls __cgroup_bpf_detach() and update_effective_progs().
If the memory allocation in this function fails, the function restores
the pointer to the bpf_cgroup_link on the cgroup list, but the memory
gets freed just after it returns. After this, every subsequent call to
update_effective_progs() causes this already deallocated pointer to be
dereferenced in prog_list_length(), and triggers KASAN UAF error.
To fix this issue don't preserve the pointer to the prog or link in the
list, but remove it and replace it with a dummy prog without shrinking
the table. The subsequent call to __cgroup_bpf_detach() or
__cgroup_bpf_detach() will correct it.
Fixes: af6eea57437a ("bpf: Implement bpf_link-based cgroup BPF program attachment")
Reported-by: <syzbot+f264bffdfbd5614f3bb2@syzkaller.appspotmail.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://syzkaller.appspot.com/bug?id=8ebf179a95c2a2670f7cf1ba62429ec044369db4
Link: https://lore.kernel.org/bpf/20220517180420.87954-1-tadeusz.struk@linaro.org
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ab8384442ee512fc0fc72deeb036110843d0e7ff upstream.
Both $comm and $COMM can be used to get current->comm in eprobes and the
filtering and histogram logic. Make kprobes and uprobes consistent in this
regard and allow both $comm and $COMM as well. Currently kprobes and
uprobes only handle $comm, which is inconsistent with the other utilities,
and can be confusing to users.
Link: https://lkml.kernel.org/r/20220820134401.317014913@goodmis.org
Link: https://lore.kernel.org/all/20220820220442.776e1ddaf8836e82edb34d01@kernel.org/
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 533059281ee5 ("tracing: probeevent: Introduce new argument fetching code")
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7c56a8733d0a2a4be2438a7512566e5ce552fccf ]
In some circumstances it may be interesting to reconfigure the watchdog
from inside the kernel.
On PowerPC, this may helpful before and after a LPAR migration (LPM) is
initiated, because it implies some latencies, watchdog, and especially NMI
watchdog is expected to be triggered during this operation. Reconfiguring
the watchdog with a factor, would prevent it to happen too frequently
during LPM.
Rename lockup_detector_reconfigure() as __lockup_detector_reconfigure() and
create a new function lockup_detector_reconfigure() calling
__lockup_detector_reconfigure() under the protection of watchdog_mutex.
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
[mpe: Squash in build fix from Laurent, reported by Sachin]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220713154729.80789-3-ldufour@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit ef1e93d2eeb58a1f08c37b22a2314b94bc045f15 upstream.
bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().
So acquiring an extra map uref in bpf_iter_init_hash_map() and
releasing it in bpf_iter_fini_hash_map().
Fixes: d6c4503cc296 ("bpf: Implement bpf iterator for hash maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f76fa6b338055054f80c72b29c97fb95c1becadc upstream.
bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().
Alternative fix is acquiring an extra bpf_link reference just like
a pinned map iterator does, but it introduces unnecessary dependency
on bpf_link instead of bpf_map.
So choose another fix: acquiring an extra map uref in .init_seq_private
for array map iterator.
Fixes: d3cc2ab546ad ("bpf: Implement bpf iterator for array maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b2380577d4fe1c0ef3fa50417f1e441c016e4cbe upstream.
Make filtering consistent with histograms. As "cpu" can be a field of an
event, allow for "common_cpu" to keep it from being confused with the
"cpu" field of the event.
Link: https://lkml.kernel.org/r/20220820134401.513062765@goodmis.org
Link: https://lore.kernel.org/all/20220820220920.e42fa32b70505b1904f0a0ad@kernel.org/
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 1e3bac71c5053 ("tracing/histogram: Rename "cpu" to "common_cpu"")
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 13765de8148f71fa795e0a6607de37c49ea5915a upstream.
Syzbot found a GPF in reweight_entity. This has been bisected to
commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid
sched_task_group")
There is a race between sched_post_fork() and setpriority(PRIO_PGRP)
within a thread group that causes a null-ptr-deref in
reweight_entity() in CFS. The scenario is that the main process spawns
number of new threads, which then call setpriority(PRIO_PGRP, 0, -20),
wait, and exit. For each of the new threads the copy_process() gets
invoked, which adds the new task_struct and calls sched_post_fork()
for it.
In the above scenario there is a possibility that
setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread
in the group that is just being created by copy_process(), and for
which the sched_post_fork() has not been executed yet. This will
trigger a null pointer dereference in reweight_entity(), as it will
try to access the run queue pointer, which hasn't been set.
Before the mentioned change the cfs_rq pointer for the task has been
set in sched_fork(), which is called much earlier in copy_process(),
before the new task is added to the thread_group. Now it is done in
the sched_post_fork(), which is called after that. To fix the issue
the remove the update_load param from the update_load param() function
and call reweight_task() only if the task flag doesn't have the
TASK_NEW flag set.
Fixes: 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: syzbot+af7a719bc92395ee41b3@syzkaller.appspotmail.com
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220203161846.1160750-1-tadeusz.struk@linaro.org
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b8ac29b40183a6038919768b5d189c9bd91ce9b4 ]
The rng's random_init() function contributes the real time to the rng at
boot time, so that events can at least start in relation to something
particular in the real world. But this clock might not yet be set that
point in boot, so nothing is contributed. In addition, the relation
between minor clock changes from, say, NTP, and the cycle counter is
potentially useful entropic data.
This commit addresses this by mixing in a time stamp on calls to
settimeofday and adjtimex. No entropy is credited in doing so, so it
doesn't make initialization faster, but it is still useful input to
have.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 28156108fecb1f808b21d216e8ea8f0d205a530c ]
The commit 2ebb17717550 ("sched/core: Offload wakee task activation if it
the wakee is descheduling") checked rq->nr_running <= 1 to avoid task
stacking when WF_ON_CPU.
Per the ordering of writes to p->on_rq and p->on_cpu, observing p->on_cpu
(WF_ON_CPU) in ttwu_queue_cond() implies !p->on_rq, IOW p has gone through
the deactivate_task() in __schedule(), thus p has been accounted out of
rq->nr_running. As such, the task being the only runnable task on the rq
implies reading rq->nr_running == 0 at that point.
The benchmark result is in [1].
[1] https://lore.kernel.org/all/e34de686-4e85-bde1-9f3c-9bbc86b38627@linux.alibaba.com/
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-2-dtcccc@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b6e8d40d43ae4dec00c8fea2593eeea3114b8f44 ]
With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating
that the cpuset will just use the effective CPUs of its parent. So
cpuset_can_attach() can call task_can_attach() with an empty mask.
This can lead to cpumask_any_and() returns nr_cpu_ids causing the call
to dl_bw_of() to crash due to percpu value access of an out of bound
CPU value. For example:
[80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0
:
[80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0
:
[80468.207946] Call Trace:
[80468.208947] cpuset_can_attach+0xa0/0x140
[80468.209953] cgroup_migrate_execute+0x8c/0x490
[80468.210931] cgroup_update_dfl_csses+0x254/0x270
[80468.211898] cgroup_subtree_control_write+0x322/0x400
[80468.212854] kernfs_fop_write_iter+0x11c/0x1b0
[80468.213777] new_sync_write+0x11f/0x1b0
[80468.214689] vfs_write+0x1eb/0x280
[80468.215592] ksys_write+0x5f/0xe0
[80468.216463] do_syscall_64+0x5c/0x80
[80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix that by using effective_cpus instead. For cgroup v1, effective_cpus
is the same as cpus_allowed. For v2, effective_cpus is the real cpumask
to be used by tasks within the cpuset anyway.
Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to
reflect the change. In addition, a check is added to task_can_attach()
to guard against the possibility that cpumask_any_and() may return a
value >= nr_cpu_ids.
Fixes: 7f51412a415d ("sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220803015451.2219567-1-longman@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 772b6539fdda31462cc08368e78df60b31a58bab ]
Both functions are doing almost the same, that is checking if admission
control is still respected.
With exclusive cpusets, dl_task_can_attach() checks if the destination
cpuset (i.e. its root domain) has enough CPU capacity to accommodate the
task.
dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in
case the CPU is hot-plugged out.
dl_task_can_attach() is used to check if a task can be admitted while
dl_cpu_busy() is used to check if a CPU can be hotplugged out.
Make dl_cpu_busy() able to deal with a task and use it instead of
dl_task_can_attach() in task_can_attach().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 28f6c37a2910f565b4f5960df52b2eccae28c891 ]
kernel_text_address() treats ftrace_trampoline, kprobe_insn_slot
and bpf_text_address as valid kprobe addresses - which is not ideal.
These text areas are removable and changeable without any notification
to kprobes, and probing on them can trigger unexpected behavior:
https://lkml.org/lkml/2022/7/26/1148
Considering that jump_label and static_call text are already
forbiden to probe, kernel_text_address() should be replaced with
core_kernel_text() and is_module_text_address() to check other text
areas which are unsafe to kprobe.
[ mingo: Rewrote the changelog. ]
Fixes: 5b485629ba0d ("kprobes, extable: Identify kprobes trampolines as kernel text area")
Fixes: 74451e66d516 ("bpf: make jited programs visible in traces")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20220801033719.228248-1-chenzhongjin@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 151c8e499f4705010780189377f85b57400ccbf5 ]
Using msleep() is problematic because it's compared against
ratelimiter.c's ktime_get_coarse_boottime_ns(), which means on systems
with slow jiffies (such as UML's forced HZ=100), the result is
inaccurate. So switch to using schedule_hrtimeout().
However, hrtimer gives us access only to the traditional posix timers,
and none of the _COARSE variants. So now, rather than being too
imprecise like jiffies, it's too precise.
One solution would be to give it a large "range" value, but this will
still fire early on a loaded system. A better solution is to align the
timeout to the actual coarse timer, and then round up to the nearest
tick, plus change.
So add the timeout to the current coarse time, and then
schedule_hrtimer() until the absolute computed time.
This should hopefully reduce flakes in CI as well. Note that we keep the
retry loop in case the entire function is running behind, because the
test could still be scheduled out, by either the kernel or by the
hypervisor's kernel, in which case restarting the test and hoping to not
be scheduled out still helps.
Fixes: e7096c131e51 ("net: WireGuard secure network tunnel")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9c7c48d6a1e2eb5192ad5294c1c4dbd42a88e88b ]
The commit 7337224fc150 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
accidently made bpf_prog_ksym_set_name() conservative for bpf subprograms.
Fixed it so instead of "bpf_prog_tag_F" the stack traces print "bpf_prog_tag_full_subprog_name".
Fixes: 7337224fc150 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220714211637.17150-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5c66d1b9b30f737fcef85a0b75bfe0590e16b62a ]
dequeue_task_rt() only decrements 'rt_rq->rt_nr_running' after having
called sched_update_tick_dependency() preventing it from re-enabling the
tick on systems that no longer have pending SCHED_RT tasks but have
multiple runnable SCHED_OTHER tasks:
dequeue_task_rt()
dequeue_rt_entity()
dequeue_rt_stack()
dequeue_top_rt_rq()
sub_nr_running() // decrements rq->nr_running
sched_update_tick_dependency()
sched_can_stop_tick() // checks rq->rt.rt_nr_running,
...
__dequeue_rt_entity()
dec_rt_tasks() // decrements rq->rt.rt_nr_running
...
Every other scheduler class performs the operation in the opposite
order, and sched_update_tick_dependency() expects the values to be
updated as such. So avoid the misbehaviour by inverting the order in
which the above operations are performed in the RT scheduler.
Fixes: 76d92ac305f2 ("sched: Migrate sched to use new tick dependency mask model")
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220628092259.330171-1-nsaenzju@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>