We weren't restoring FLAGS at all on SYSEXIT. Apparently no one cared.
With this patch applied, native kernels should always honor
task_pt_regs()->flags, which opens the door for some sys_iopl()
cleanups. I'll do those as a separate series, though, since getting
it right will involve tweaking some paravirt ops.
( The short version is that, before this patch, sys_iopl(), invoked via
SYSENTER, wasn't guaranteed to ever transfer the updated
regs->flags, so sys_iopl() had to change the hardware flags register
as well. )
Reported-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3f98b207472dc9784838eb5ca2b89dcc845ce269.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This makes the 32-bit code work just like the 64-bit code. It should
speed up syscalls on 32-bit kernels on Skylake by something like 20
cycles (by analogy to the 64-bit compat case).
It also cleans up NT just like we do for the 64-bit case.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/07daef3d44bd1ed62a2c866e143e8df64edb40ee.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CLAC is slow, and the SYSENTER code already has an unlikely path
that runs if unusual flags are set. Drop the CLAC and instead rely
on the unlikely path to clear AC.
This seems to save ~24 cycles on my Skylake laptop. (Hey, Intel,
make this faster please!)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/90d6db2189f9add83bc7bddd75a0c19ebbd676b2.1457578375.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The fork of a process with four page table levels is broken since
git commit 6252d702c5311ce9 "[S390] dynamic page tables."
All new mm contexts are created with three page table levels and
an asce limit of 4TB. If the parent has four levels dup_mmap will
add vmas to the new context which are outside of the asce limit.
The subsequent call to copy_page_range will walk the three level
page table structure of the new process with non-zero pgd and pud
indexes. This leads to memory clobbers as the pgd_index *and* the
pud_index is added to the mm->pgd pointer without a pgd_deref
in between.
The init_new_context() function is selecting the number of page
table levels for a new context. The function is used by mm_init()
which in turn is called by dup_mm() and mm_alloc(). These two are
used by fork() and exec(). The init_new_context() function can
distinguish the two cases by looking at mm->context.asce_limit,
for fork() the mm struct has been copied and the number of page
table levels may not change. For exec() the mm_alloc() function
set the new mm structure to zero, in this case a three-level page
table is created as the temporary stack space is located at
STACK_TOP_MAX = 4TB.
This fixes CVE-2016-2143.
Reported-by: Marcin Kościelnicki <koriakin@0x04.net>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poison prior to returning.
In the case of cpuidle, CPUs exit the kernel a number of levels deep in
C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
If CPUs lose context and return to the kernel via a cold path, we
restore a prior context saved in __cpu_suspend_enter are forgotten, and
we never remove the poison they placed in the stack shadow area by
functions calls between this and the actual exit of the kernel.
Thus, (depending on stackframe layout) subsequent calls to instrumented
functions may hit this stale poison, resulting in (spurious) KASAN
splats to the console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a write is directed at a known bad block perform the following:
1/ write the data
2/ send a clear poison command
3/ invalidate the poison out of the cache hierarchy
Cc: <x86@kernel.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Force the DRA7xx Ethernet internal clock source to stay enabled
per TI erratum i877:
http://www.ti.com/lit/er/sprz429h/sprz429h.pdf
Otherwise, if the Ethernet internal clock source is disabled, the
chip will age prematurely, and the RGMII I/O timing will soon
fail to meet the delay time and skew specifications for 1000Mbps
Ethernet.
This fix should go in as soon as possible.
Basic build, boot, and PM test results are available here:
http://www.pwsan.com/omap/testlogs/omap-critical-fixes-for-v4.5-rc/20160307014209/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW3UuoAAoJEMePsQ0LvSpL4JIP/j9A1ax1c6kGfNujSzBMrVL3
I68l27ohfbo/MKMc/KsqkdahzGimIUmqkJGxrnA19UMhfyMb6l3pzlVswxfUUd10
EXl/aKlPDa+Xl+A+TCwK78C69ZXHk4nqsNDSixuoIVfxM2uTZZZmNK3FOR+/EaQ8
kUq3zwkg31HgsYxIyvqcCwpsxmDwKXx6fQ3sX5A6tQGvtsdeNofWJOVoGpZe0Ott
tmt09VEvSGvXVEL1Um6U5A+8Mw6GPWa9/wih8nYaE70BswuOmIMUxeCkrShDadpn
4Z8rqZg1Q8sdnI7ZCARS2WZ63+wrcjq04Yycf7m8feUc7cIDqlahWnrIWKuvpPAz
P20LgrwRQDgifM2TzJupPRUKX+7BoACOXTIt2A3HuOIsZRfqysFx4qoOEdQNBlVq
mOOwA/o8ly8hJI7uym8elrPY4MjZ4f6l2h/mFom0XrlS/1NcxXwuGqi9SJNneFSm
ALyCIW7YnemoOex0tUcHUg2fiGaRceWlSmzHxI0WgVyOj86hrXc8OnpjnPmuhMQV
i4pkL4Y1/UxZepd0b6QOTUC+LQvsWL008XLUr0SPm1d2Co9sxyzN8i0pXh07bsm0
sOflS6DtwWSNenX/OVVQWk0r5amNwiFFpiw7tBWIeXYi4glhyizqdGjbzxRjxJUf
QfFex23RAWtf/1ZrvqQO
=kJw8
-----END PGP SIGNATURE-----
Merge tag 'for-v4.5-rc/omap-critical-fixes-a' of git://git.kernel.org/pub/scm/linux/kernel/git/pjw/omap-pending into fixes
ARM: OMAP2+: critical DRA7xx fix for v4.5-rc
Force the DRA7xx Ethernet internal clock source to stay enabled
per TI erratum i877:
http://www.ti.com/lit/er/sprz429h/sprz429h.pdf
Otherwise, if the Ethernet internal clock source is disabled, the
chip will age prematurely, and the RGMII I/O timing will soon
fail to meet the delay time and skew specifications for 1000Mbps
Ethernet.
This fix should go in as soon as possible.
Basic build, boot, and PM test results are available here:
http://www.pwsan.com/omap/testlogs/omap-critical-fixes-for-v4.5-rc/20160307014209/
* tag 'for-v4.5-rc/omap-critical-fixes-a' of git://git.kernel.org/pub/scm/linux/kernel/git/pjw/omap-pending:
ARM: dts: dra7: do not gate cpsw clock due to errata i877
ARM: OMAP2+: hwmod: Introduce ti,no-idle dt property
Signed-off-by: Olof Johansson <olof@lixom.net>
Commit 66b3923a1a0f ("arm64: hugetlb: add support for PTE contiguous bit")
introduced support for huge pages using the contiguous bit in the PTE
as opposed to block mappings, which may be slightly unwieldy (512M) in
64k page configurations.
Unfortunately, this support has resulted in some late regressions when
running the libhugetlbfs test suite with 64k pages and CONFIG_DEBUG_VM
as a result of a BUG:
| readback (2M: 64): ------------[ cut here ]------------
| kernel BUG at fs/hugetlbfs/inode.c:446!
| Internal error: Oops - BUG: 0 [#1] SMP
| Modules linked in:
| CPU: 7 PID: 1448 Comm: readback Not tainted 4.5.0-rc7 #148
| Hardware name: linux,dummy-virt (DT)
| task: fffffe0040964b00 ti: fffffe00c2668000 task.ti: fffffe00c2668000
| PC is at remove_inode_hugepages+0x44c/0x480
| LR is at remove_inode_hugepages+0x264/0x480
Rather than revert the entire patch, simply avoid advertising the
contiguous huge page sizes for now while people are actively working on
a fix. This patch can then be reverted once things have been sorted out.
Cc: David Woods <dwoods@ezchip.com>
Reported-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit dfd55ad85e4a ("arm64: vmemmap: use virtual projection of linear
region") fixed an issue where the struct page array would overflow into the
adjacent virtual memory region if system RAM was placed so high up in
physical memory that its addresses were not representable in the build time
configured virtual address size.
However, the fix failed to take into account that the vmemmap region needs
to be relatively aligned with respect to the sparsemem section size, so that
a sequence of page structs corresponding with a sparsemem section in the
linear region appears naturally aligned in the vmemmap region.
So round up vmemmap to sparsemem section size. Since this essentially moves
the projection of the linear region up in memory, also revert the reduction
of the size of the vmemmap region.
Cc: <stable@vger.kernel.org>
Fixes: dfd55ad85e4a ("arm64: vmemmap: use virtual projection of linear region")
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: David Daney <david.daney@cavium.com>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Rename dma_*_writecombine() to dma_*_wc(), so that the naming
is coherent across the various write-combining APIs. Keep the
old names for compatibility for a while, these can be removed
at a later time. A guard is left to enable backporting of the
rename, and later remove of the old mapping defines seemlessly.
Build tested successfully with allmodconfig.
The following Coccinelle SmPL patch was used for this simple
transformation:
@ rename_dma_alloc_writecombine @
expression dev, size, dma_addr, gfp;
@@
-dma_alloc_writecombine(dev, size, dma_addr, gfp)
+dma_alloc_wc(dev, size, dma_addr, gfp)
@ rename_dma_free_writecombine @
expression dev, size, cpu_addr, dma_addr;
@@
-dma_free_writecombine(dev, size, cpu_addr, dma_addr)
+dma_free_wc(dev, size, cpu_addr, dma_addr)
@ rename_dma_mmap_writecombine @
expression dev, vma, cpu_addr, dma_addr, size;
@@
-dma_mmap_writecombine(dev, vma, cpu_addr, dma_addr, size)
+dma_mmap_wc(dev, vma, cpu_addr, dma_addr, size)
We also keep the old names as compatibility helpers, and
guard against their definition to make backporting easier.
Generated-by: Coccinelle SmPL
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: airlied@linux.ie
Cc: akpm@linux-foundation.org
Cc: benh@kernel.crashing.org
Cc: bhelgaas@google.com
Cc: bp@suse.de
Cc: dan.j.williams@intel.com
Cc: daniel.vetter@ffwll.ch
Cc: dhowells@redhat.com
Cc: julia.lawall@lip6.fr
Cc: konrad.wilk@oracle.com
Cc: linux-fbdev@vger.kernel.org
Cc: linux-pci@vger.kernel.org
Cc: luto@amacapital.net
Cc: mst@redhat.com
Cc: tomi.valkeinen@ti.com
Cc: toshi.kani@hp.com
Cc: vinod.koul@intel.com
Cc: xen-devel@lists.xensource.com
Link: http://lkml.kernel.org/r/1453516462-4844-1-git-send-email-mcgrof@do-not-panic.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When eager FPU is disabled, KVM will still see the MPX bit in CPUID and
presumably the MPX vmentry and vmexit controls. However, it will not
be able to expose the MPX XSAVE features to the guest, because the guest's
accessible XSAVE features are always a subset of host_xcr0.
In this case, we should disable the MPX CPUID bit, the BNDCFGS MSR,
and the MPX vmentry and vmexit controls for nested virtualization.
It is then unnecessary to enable guest eager FPU if the guest has the
MPX CPUID bit set.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After fixing FPU option parsing, we now parse the 'no387' boot option
too early: no387 clears X86_FEATURE_FPU before it's even probed, so
the boot CPU promptly re-enables it.
I suspect it gets even more confused on SMP.
Fix the probing code to leave X86_FEATURE_FPU off if it's been
disabled by setup_clear_cpu_cap().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yu-cheng yu <yu-cheng.yu@intel.com>
Fixes: 4f81cbafcce2 ("x86/fpu: Fix early FPU command-line parsing")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- Various optimizations to the vgic save/restore code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW36xjAAoJECPQ0LrRPXpDGQkQAMDppzcTOixT3e8VPdHAX09a
Z5PO0gyTMVV7Jyz5Ul3pedPJA2GSK9mxOCwqvIFbdxLAR6ZB00juO5FrTHkSdI91
1XLPj4bKoMWcVvhL/g5A4Glp/pVMW1k/9Yq8zZAtYlsLRlqG5rLOutSadcqHcYaJ
cTD/pFf7b2oPtkTPyoFml75KgHBT/8uvAvFDOWA66Id2z6T11+PsBT/6XnGDiwKg
tpGTNzx3kPIKIzOAOHqVW6UBxFOeabebXLT8wUz3VwNn/UbG6gkumMNApMAyF2q1
zU0nAh8+7Ek6Dr4OFWE6BfW6sgg/l7i1lA8XoAmqG7ZTrSptCc59fvaZJxPruG+Q
dMsU6QgR77JJjbZTinf9a1jReZ/liZrx2gZXedVKdILrjmDSq0UnGcxjUOEDZOGy
2/dbrlJhv+LhpcJtuPpxPCfoqbW5L0ynzmuYuXRdRz3lTHiOWIRx5gugrhO+wH4D
4gvZhbw3XCiYfpYHYhl8A1EH5kanKgdXDocz9yIm7mZm89gngufF/HkeXS3ZU25T
yThyBGulGjqN4FCdgf1HolkTfFjnfSx4qJovJ58eHga+HNLXRkTecZZcbFy2OOHv
8Bx0PIlwj4RgSaRLWQUudAhdhKS2g22DKDDljxFwhkMPNghvqkYMJCRDKLu6GBXQ
4YsLKM+TaShHFjSpx+ao
=rpvb
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for 4.6
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- Various optimizations to the vgic save/restore code
Conflicts:
include/uapi/linux/kvm.h
So far, we're always writing all possible LRs, setting the empty
ones with a zero value. This is obvious doing a low of work for
nothing, and we're better off clearing those we've actually
dirtied on the exit path (it is very rare to inject more than one
interrupt at a time anyway).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to let the GICv3 code be more lazy in the way it
accesses the LRs, it is necessary to start with a clean slate.
Let's reset the LRs on each CPU when the vgic is probed (which
includes a round trip to EL2...).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
On exit, any empty LR will be signaled in ICH_ELRSR_EL2. Which
means that we do not have to save it, and we can just clear
its state in the in-memory copy.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Next on our list of useless accesses is the maintenance interrupt
status registers (ICH_MISR_EL2, ICH_EISR_EL2).
It is pointless to save them if we haven't asked for a maintenance
interrupt the first place, which can only happen for two reasons:
- Underflow: ICH_HCR_UIE will be set,
- EOI: ICH_LR_EOI will be set.
These conditions can be checked on the in-memory copies of the regs.
Should any of these two condition be valid, we must read GICH_MISR.
We can then check for ICH_MISR_EOI, and only when set read
ICH_EISR_EL2.
This means that in most case, we don't have to save them at all.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Just like on GICv2, we're a bit hammer-happy with GICv3, and access
them more often than we should.
Adopt a policy similar to what we do for GICv2, only save/restoring
the minimal set of registers. As we don't access the registers
linearly anymore (we may skip some), the convoluted accessors become
slightly simpler, and we can drop the ugly indexing macro that
tended to confuse the reviewers.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Include pci/hotplug/Kconfig directly from pci/Kconfig, so arches don't
have to source both pci/Kconfig and pci/hotplug/Kconfig.
Note that this effectively adds pci/hotplug/Kconfig to the following
arches, because they already sourced drivers/pci/Kconfig but they
previously did not source drivers/pci/hotplug/Kconfig:
alpha
arm
avr32
frv
m68k
microblaze
mn10300
sparc
unicore32
Inspired-by-patch-from: Bogicevic Sasa <brutallesale@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Include pci/pcie/Kconfig directly from pci/Kconfig, so arches don't
have to source both pci/Kconfig and pci/pcie/Kconfig.
Note that this effectively adds pci/pcie/Kconfig to the following
arches, because they already sourced drivers/pci/Kconfig but they
previously did not source drivers/pci/pcie/Kconfig:
alpha
avr32
blackfin
frv
m32r
m68k
microblaze
mn10300
parisc
sparc
unicore32
xtensa
[bhelgaas: changelog, source pci/pcie/Kconfig at top of pci/Kconfig, whitespace]
Signed-off-by: Sasa Bogicevic <brutallesale@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Modify the Microblaze PCI subsystem to work with the generic
drivers/pci/host/pcie-xilinx.c driver on Microblaze and Zynq.
[bhelgaas: changelog]
Signed-off-by: Bharat Kumar Gogada <bharatku@xilinx.com>
Signed-off-by: Ravi Kiran Gummaluri <rgummal@xilinx.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Michal Simek <michal.simek@xilinx.com>
IORESOURCE_ROM_SHADOW means there is a copy of a device's option ROM in
RAM. The existence of such a copy and its location are arch-specific.
Previously the IORESOURCE_ROM_SHADOW flag was set in arch code, but the
0xC0000-0xDFFFF location was hard-coded into the PCI core.
If we're using a shadow copy in RAM, disable the ROM BAR and release the
address space it was consuming. Move the location information from the PCI
core to the arch code that sets IORESOURCE_ROM_SHADOW. Save the location
of the RAM copy in the struct resource for PCI_ROM_RESOURCE.
After this change, pci_map_rom() will call pci_assign_resource() and
pci_enable_rom() for these IORESOURCE_ROM_SHADOW resources, which we did
not do before. This is safe because:
- pci_assign_resource() will do nothing because the resource is marked
IORESOURCE_PCI_FIXED, which means we can't move it, and
- pci_enable_rom() will not turn on the ROM BAR's enable bit because the
resource is marked IORESOURCE_ROM_SHADOW, which means it is in RAM
rather than in PCI memory space.
Storing the location in the struct resource means "lspci" will show the
shadow location, not the value from the ROM BAR.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
A shadow copy of an option ROM is placed by the BIOS as a fixed address.
Set IORESOURCE_PCI_FIXED to indicate that we can't move the shadow copy.
This prevents warnings like the following when we assign resources:
BAR 6: [??? 0x00000000 flags 0x2] has bogus alignment
This warning is emitted by pdev_sort_resources(), which already ignores
IORESOURCE_PCI_FIXED resources.
Link: http://lkml.kernel.org/r/CA+55aFyVMfTBB0oz_yx8+eQOEJnzGtCsYSj9QuhEpdZ9BHdq5A@mail.gmail.com
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
The Home Agent and PCU PCI devices in Broadwell-EP have a non-BAR register
where a BAR should be. We don't know what the side effects of sizing the
"BAR" would be, and we don't know what address space the "BAR" might appear
to describe.
Mark these devices as having non-compliant BARs so the PCI core doesn't
touch them.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Tested-by: Andi Kleen <ak@linux.intel.com>
CC: stable@vger.kernel.org
HAVE_ARCH_PCI_SET_DMA_MASK is unused, so remove the #define for it.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: GUAN Xuetao <gxt@mprc.pku.edu.cn>
Make use of the EXTABLE_FAULT exception table entries to write
a kernel copy routine that doesn't crash the system if it
encounters a machine check. Prime use case for this is to copy
from large arrays of non-volatile memory used as storage.
We have to use an unrolled copy loop for now because current
hardware implementations treat a machine check in "rep mov"
as fatal. When that is fixed we can simplify.
Return type is a "bool". True means that we copied OK, false means
that it didn't.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@gmail.com>
Link: http://lkml.kernel.org/r/a44e1055efc2d2a9473307b22c91caa437aa3f8b.1456439214.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Drop the quirk() function pointer in favor of a simple boolean which
says whether the quirk should be applied or not. Update comment while at
it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-tip-commits@vger.kernel.org
Link: http://lkml.kernel.org/r/20160308164041.GF16568@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The pgtable.c file is quite big, before it grows any larger split it
into pgtable.c, pgalloc.c and gmap.c. In addition move the gmap related
header definitions into the new gmap.h header and all of the pgste
helpers from pgtable.h to pgtable.c.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The pmdp_xxx function are smaller than their ptep_xxx counterparts
but to keep things symmetrical unline them as well.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The code in the various ptep_xxx functions has grown quite large,
consolidate them to four out-of-line functions:
ptep_xchg_direct to exchange a pte with another with immediate flushing
ptep_xchg_lazy to exchange a pte with another in a batched update
ptep_modify_prot_start to begin a protection flags update
ptep_modify_prot_commit to commit a protection flags update
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
It no longer has any users.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: david.vrabel@citrix.com
Cc: konrad.wilk@oracle.com
Cc: lguest@lists.ozlabs.org
Cc: xen-devel@lists.xensource.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86_64 has very clean espfix handling on paravirt: espfix64 is set
up in native_iret, so paravirt systems that override iret bypass
espfix64 automatically. This is robust and straightforward.
x86_32 is messier. espfix is set up before the IRET paravirt patch
point, so it can't be directly conditionalized on whether we use
native_iret. We also can't easily move it into native_iret without
regressing performance due to a bizarre consideration. Specifically,
on 64-bit kernels, the logic is:
if (regs->ss & 0x4)
setup_espfix;
On 32-bit kernels, the logic is:
if ((regs->ss & 0x4) && (regs->cs & 0x3) == 3 &&
(regs->flags & X86_EFLAGS_VM) == 0)
setup_espfix;
The performance of setup_espfix itself is essentially irrelevant, but
the comparison happens on every IRET so its performance matters. On
x86_64, there's no need for any registers except flags to implement
the comparison, so we fold the whole thing into native_iret. On
x86_32, we don't do that because we need a free register to
implement the comparison efficiently. We therefore do espfix setup
before restoring registers on x86_32.
This patch gets rid of the explicit paravirt_enabled check by
introducing X86_BUG_ESPFIX on 32-bit systems and using an ALTERNATIVE
to skip espfix on paravirt systems where iret != native_iret. This is
also messy, but it's at least in line with other things we do.
This improves espfix performance by removing a branch, but no one
cares. More importantly, it removes a paravirt_enabled user, which is
good because paravirt_enabled is ill-defined and is going away.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: david.vrabel@citrix.com
Cc: konrad.wilk@oracle.com
Cc: lguest@lists.ozlabs.org
Cc: xen-devel@lists.xensource.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can fit the 2k for the STFLE interpretation and the crypto
control block into one DMA page. As we now only have to allocate
one DMA page, we can clean up the code a bit.
As a nice side effect, this also fixes a problem with crycbd alignment in
case special allocation debug options are enabled, debugged by Sascha
Silbe.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Not setting the facility list designation disables STFLE interpretation,
this is what we want if the guest was told to not have it.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
When the VCPU cpu timer expires, we have to wake up just like when the ckc
triggers. For now, setting up a cpu timer in the guest and going into
enabled wait will never lead to a wakeup. This patch fixes this problem.
Just as for the ckc, we have to take care of waking up too early. We
have to recalculate the sleep time and go back to sleep.
Please note that the timer callback calls kvm_s390_get_cpu_timer() from
interrupt context. As the timer is canceled when leaving handle_wait(),
and we don't do any VCPU cpu timer writes/updates in that function, we can
be sure that we will never try to read the VCPU cpu timer from the same cpu
that is currentyl updating the timer (deadlock).
Reported-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Tested-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The cpu timer is a mean to measure task execution time. We want
to account everything for a VCPU for which it is responsible. Therefore,
if the VCPU wants to sleep, it shall be accounted for it.
We can easily get this done by not disabling cpu timer accounting when
scheduled out while sleeping because of enabled wait.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For now, only the owning VCPU thread (that has loaded the VCPU) can get a
consistent cpu timer value when calculating the delta. However, other
threads might also be interested in a more recent, consistent value. Of
special interest will be the timer callback of a VCPU that executes without
having the VCPU loaded and could run in parallel with the VCPU thread.
The cpu timer has a nice property: it is only updated by the owning VCPU
thread. And speaking about accounting, a consistent value can only be
calculated by looking at cputm_start and the cpu timer itself in
one shot, otherwise the result might be wrong.
As we only have one writing thread at a time (owning VCPU thread), we can
use a seqcount instead of a seqlock and retry if the VCPU refreshed its
cpu timer. This avoids any heavy locking and only introduces a counter
update/check plus a handful of smp_wmb().
The owning VCPU thread should never have to retry on reads, and also for
other threads this might be a very rare scenario.
Please note that we have to use the raw_* variants for locking the seqcount
as lockdep will produce false warnings otherwise. The rq->lock held during
vcpu_load/put is also acquired from hardirq context. Lockdep cannot know
that we avoid potential deadlocks by disabling preemption and thereby
disable concurrent write locking attempts (via vcpu_put/load).
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Architecturally we should only provide steal time if we are scheduled
away, and not if the host interprets a guest exit. We have to step
the guest CPU timer in these cases.
In the first shot, we will step the VCPU timer only during the kvm_run
ioctl. Therefore all time spent e.g. in interception handlers or on irq
delivery will be accounted for that VCPU.
We have to take care of a few special cases:
- Other VCPUs can test for pending irqs. We can only report a consistent
value for the VCPU thread itself when adding the delta.
- We have to take care of STP sync, therefore we have to extend
kvm_clock_sync() and disable preemption accordingly
- During any call to disable/enable/start/stop we could get premeempted
and therefore get start/stop calls. Therefore we have to make sure we
don't get into an inconsistent state.
Whenever a VCPU is scheduled out, sleeping, in user space or just about
to enter the SIE, the guest cpu timer isn't stepped.
Please note that all primitives are prepared to be called from both
environments (cpu timer accounting enabled or not), although not completely
used in this patch yet (e.g. kvm_s390_set_cpu_timer() will never be called
while cpu timer accounting is enabled).
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We want to manually step the cpu timer in certain scenarios in the future.
Let's abstract any access to the cpu timer, so we can hide the complexity
internally.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
By storing the cpu id, we have a way to verify if the current cpu is
owning a VCPU.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
DIAG 0x288 may occur now. Let's add its code to the diag table in
sie.h.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
ignore_nmis is used in two distinct places:
1. modified through {stop,restart}_nmi by alternative_instructions
2. read by do_nmi to determine if default_do_nmi should be called or not
thus the access pattern conforms to __read_mostly and do_nmi() is a fastpath.
Signed-off-by: Kostenzer Felix <fkostenzer@live.at>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With MACHINE_HAS_VX, we convert the floating point registers from the
vector registeres when storing the status. For other VCPUs, these are
stored to vcpu->run->s.regs.vrs, but we are using current->thread.fpu.vxrs,
which resolves to the currently loaded VCPU.
So kvm_s390_store_status_unloaded() currently writes the wrong floating
point registers (converted from the vector registers) when called from
another VCPU on a z13.
This is only the case for old user space not handling SIGP STORE STATUS and
SIGP STOP AND STORE STATUS, but relying on the kernel implementation. All
other calls come from the loaded VCPU via kvm_s390_store_status().
Fixes: 9abc2a08a7d6 (KVM: s390: fix memory overwrites when vx is disabled)
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: stable@vger.kernel.org # v4.4+
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>