Documentation: document ioctl interfaces better
Documentation/process/botching-up-ioctls.rst was orignally written as a blog post for DRM driver writers, so it it misses some points while going into a lot of detail on others. Try to provide a replacement that addresses typical issues across a wider range of subsystems, and follows the style of the core-api documentation better. Many improvements to the document are suggested by Ben Hutchings <ben.hutchings@codethink.co.uk>, Jonathan Corbet <corbet@lwn.net> and Geert Uytterhoeven <geert@linux-m68k.org>. Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This commit is contained in:
parent
9b81648cb5
commit
8ce156deca
@ -39,6 +39,7 @@ Core utilities
|
||||
../RCU/index
|
||||
gcc-plugins
|
||||
symbol-namespaces
|
||||
ioctl
|
||||
|
||||
|
||||
Interfaces for kernel debugging
|
||||
|
253
Documentation/core-api/ioctl.rst
Normal file
253
Documentation/core-api/ioctl.rst
Normal file
@ -0,0 +1,253 @@
|
||||
======================
|
||||
ioctl based interfaces
|
||||
======================
|
||||
|
||||
ioctl() is the most common way for applications to interface
|
||||
with device drivers. It is flexible and easily extended by adding new
|
||||
commands and can be passed through character devices, block devices as
|
||||
well as sockets and other special file descriptors.
|
||||
|
||||
However, it is also very easy to get ioctl command definitions wrong,
|
||||
and hard to fix them later without breaking existing applications,
|
||||
so this documentation tries to help developers get it right.
|
||||
|
||||
Command number definitions
|
||||
==========================
|
||||
|
||||
The command number, or request number, is the second argument passed to
|
||||
the ioctl system call. While this can be any 32-bit number that uniquely
|
||||
identifies an action for a particular driver, there are a number of
|
||||
conventions around defining them.
|
||||
|
||||
``include/uapi/asm-generic/ioctl.h`` provides four macros for defining
|
||||
ioctl commands that follow modern conventions: ``_IO``, ``_IOR``,
|
||||
``_IOW``, and ``_IOWR``. These should be used for all new commands,
|
||||
with the correct parameters:
|
||||
|
||||
_IO/_IOR/_IOW/_IOWR
|
||||
The macro name specifies how the argument will be used. It may be a
|
||||
pointer to data to be passed into the kernel (_IOW), out of the kernel
|
||||
(_IOR), or both (_IOWR). _IO can indicate either commands with no
|
||||
argument or those passing an integer value instead of a pointer.
|
||||
It is recommended to only use _IO for commands without arguments,
|
||||
and use pointers for passing data.
|
||||
|
||||
type
|
||||
An 8-bit number, often a character literal, specific to a subsystem
|
||||
or driver, and listed in :doc:`../userspace-api/ioctl/ioctl-number`
|
||||
|
||||
nr
|
||||
An 8-bit number identifying the specific command, unique for a give
|
||||
value of 'type'
|
||||
|
||||
data_type
|
||||
The name of the data type pointed to by the argument, the command number
|
||||
encodes the ``sizeof(data_type)`` value in a 13-bit or 14-bit integer,
|
||||
leading to a limit of 8191 bytes for the maximum size of the argument.
|
||||
Note: do not pass sizeof(data_type) type into _IOR/_IOW/IOWR, as that
|
||||
will lead to encoding sizeof(sizeof(data_type)), i.e. sizeof(size_t).
|
||||
_IO does not have a data_type parameter.
|
||||
|
||||
|
||||
Interface versions
|
||||
==================
|
||||
|
||||
Some subsystems use version numbers in data structures to overload
|
||||
commands with different interpretations of the argument.
|
||||
|
||||
This is generally a bad idea, since changes to existing commands tend
|
||||
to break existing applications.
|
||||
|
||||
A better approach is to add a new ioctl command with a new number. The
|
||||
old command still needs to be implemented in the kernel for compatibility,
|
||||
but this can be a wrapper around the new implementation.
|
||||
|
||||
Return code
|
||||
===========
|
||||
|
||||
ioctl commands can return negative error codes as documented in errno(3);
|
||||
these get turned into errno values in user space. On success, the return
|
||||
code should be zero. It is also possible but not recommended to return
|
||||
a positive 'long' value.
|
||||
|
||||
When the ioctl callback is called with an unknown command number, the
|
||||
handler returns either -ENOTTY or -ENOIOCTLCMD, which also results in
|
||||
-ENOTTY being returned from the system call. Some subsystems return
|
||||
-ENOSYS or -EINVAL here for historic reasons, but this is wrong.
|
||||
|
||||
Prior to Linux 5.5, compat_ioctl handlers were required to return
|
||||
-ENOIOCTLCMD in order to use the fallback conversion into native
|
||||
commands. As all subsystems are now responsible for handling compat
|
||||
mode themselves, this is no longer needed, but it may be important to
|
||||
consider when backporting bug fixes to older kernels.
|
||||
|
||||
Timestamps
|
||||
==========
|
||||
|
||||
Traditionally, timestamps and timeout values are passed as ``struct
|
||||
timespec`` or ``struct timeval``, but these are problematic because of
|
||||
incompatible definitions of these structures in user space after the
|
||||
move to 64-bit time_t.
|
||||
|
||||
The ``struct __kernel_timespec`` type can be used instead to be embedded
|
||||
in other data structures when separate second/nanosecond values are
|
||||
desired, or passed to user space directly. This is still not ideal though,
|
||||
as the structure matches neither the kernel's timespec64 nor the user
|
||||
space timespec exactly. The get_timespec64() and put_timespec64() helper
|
||||
functions can be used to ensure that the layout remains compatible with
|
||||
user space and the padding is treated correctly.
|
||||
|
||||
As it is cheap to convert seconds to nanoseconds, but the opposite
|
||||
requires an expensive 64-bit division, a simple __u64 nanosecond value
|
||||
can be simpler and more efficient.
|
||||
|
||||
Timeout values and timestamps should ideally use CLOCK_MONOTONIC time,
|
||||
as returned by ktime_get_ns() or ktime_get_ts64(). Unlike
|
||||
CLOCK_REALTIME, this makes the timestamps immune from jumping backwards
|
||||
or forwards due to leap second adjustments and clock_settime() calls.
|
||||
|
||||
ktime_get_real_ns() can be used for CLOCK_REALTIME timestamps that
|
||||
need to be persistent across a reboot or between multiple machines.
|
||||
|
||||
32-bit compat mode
|
||||
==================
|
||||
|
||||
In order to support 32-bit user space running on a 64-bit machine, each
|
||||
subsystem or driver that implements an ioctl callback handler must also
|
||||
implement the corresponding compat_ioctl handler.
|
||||
|
||||
As long as all the rules for data structures are followed, this is as
|
||||
easy as setting the .compat_ioctl pointer to a helper function such as
|
||||
compat_ptr_ioctl() or blkdev_compat_ptr_ioctl().
|
||||
|
||||
compat_ptr()
|
||||
------------
|
||||
|
||||
On the s390 architecture, 31-bit user space has ambiguous representations
|
||||
for data pointers, with the upper bit being ignored. When running such
|
||||
a process in compat mode, the compat_ptr() helper must be used to
|
||||
clear the upper bit of a compat_uptr_t and turn it into a valid 64-bit
|
||||
pointer. On other architectures, this macro only performs a cast to a
|
||||
``void __user *`` pointer.
|
||||
|
||||
In an compat_ioctl() callback, the last argument is an unsigned long,
|
||||
which can be interpreted as either a pointer or a scalar depending on
|
||||
the command. If it is a scalar, then compat_ptr() must not be used, to
|
||||
ensure that the 64-bit kernel behaves the same way as a 32-bit kernel
|
||||
for arguments with the upper bit set.
|
||||
|
||||
The compat_ptr_ioctl() helper can be used in place of a custom
|
||||
compat_ioctl file operation for drivers that only take arguments that
|
||||
are pointers to compatible data structures.
|
||||
|
||||
Structure layout
|
||||
----------------
|
||||
|
||||
Compatible data structures have the same layout on all architectures,
|
||||
avoiding all problematic members:
|
||||
|
||||
* ``long`` and ``unsigned long`` are the size of a register, so
|
||||
they can be either 32-bit or 64-bit wide and cannot be used in portable
|
||||
data structures. Fixed-length replacements are ``__s32``, ``__u32``,
|
||||
``__s64`` and ``__u64``.
|
||||
|
||||
* Pointers have the same problem, in addition to requiring the
|
||||
use of compat_ptr(). The best workaround is to use ``__u64``
|
||||
in place of pointers, which requires a cast to ``uintptr_t`` in user
|
||||
space, and the use of u64_to_user_ptr() in the kernel to convert
|
||||
it back into a user pointer.
|
||||
|
||||
* On the x86-32 (i386) architecture, the alignment of 64-bit variables
|
||||
is only 32-bit, but they are naturally aligned on most other
|
||||
architectures including x86-64. This means a structure like::
|
||||
|
||||
struct foo {
|
||||
__u32 a;
|
||||
__u64 b;
|
||||
__u32 c;
|
||||
};
|
||||
|
||||
has four bytes of padding between a and b on x86-64, plus another four
|
||||
bytes of padding at the end, but no padding on i386, and it needs a
|
||||
compat_ioctl conversion handler to translate between the two formats.
|
||||
|
||||
To avoid this problem, all structures should have their members
|
||||
naturally aligned, or explicit reserved fields added in place of the
|
||||
implicit padding. The ``pahole`` tool can be used for checking the
|
||||
alignment.
|
||||
|
||||
* On ARM OABI user space, structures are padded to multiples of 32-bit,
|
||||
making some structs incompatible with modern EABI kernels if they
|
||||
do not end on a 32-bit boundary.
|
||||
|
||||
* On the m68k architecture, struct members are not guaranteed to have an
|
||||
alignment greater than 16-bit, which is a problem when relying on
|
||||
implicit padding.
|
||||
|
||||
* Bitfields and enums generally work as one would expect them to,
|
||||
but some properties of them are implementation-defined, so it is better
|
||||
to avoid them completely in ioctl interfaces.
|
||||
|
||||
* ``char`` members can be either signed or unsigned, depending on
|
||||
the architecture, so the __u8 and __s8 types should be used for 8-bit
|
||||
integer values, though char arrays are clearer for fixed-length strings.
|
||||
|
||||
Information leaks
|
||||
=================
|
||||
|
||||
Uninitialized data must not be copied back to user space, as this can
|
||||
cause an information leak, which can be used to defeat kernel address
|
||||
space layout randomization (KASLR), helping in an attack.
|
||||
|
||||
For this reason (and for compat support) it is best to avoid any
|
||||
implicit padding in data structures. Where there is implicit padding
|
||||
in an existing structure, kernel drivers must be careful to fully
|
||||
initialize an instance of the structure before copying it to user
|
||||
space. This is usually done by calling memset() before assigning to
|
||||
individual members.
|
||||
|
||||
Subsystem abstractions
|
||||
======================
|
||||
|
||||
While some device drivers implement their own ioctl function, most
|
||||
subsystems implement the same command for multiple drivers. Ideally the
|
||||
subsystem has an .ioctl() handler that copies the arguments from and
|
||||
to user space, passing them into subsystem specific callback functions
|
||||
through normal kernel pointers.
|
||||
|
||||
This helps in various ways:
|
||||
|
||||
* Applications written for one driver are more likely to work for
|
||||
another one in the same subsystem if there are no subtle differences
|
||||
in the user space ABI.
|
||||
|
||||
* The complexity of user space access and data structure layout is done
|
||||
in one place, reducing the potential for implementation bugs.
|
||||
|
||||
* It is more likely to be reviewed by experienced developers
|
||||
that can spot problems in the interface when the ioctl is shared
|
||||
between multiple drivers than when it is only used in a single driver.
|
||||
|
||||
Alternatives to ioctl
|
||||
=====================
|
||||
|
||||
There are many cases in which ioctl is not the best solution for a
|
||||
problem. Alternatives include:
|
||||
|
||||
* System calls are a better choice for a system-wide feature that
|
||||
is not tied to a physical device or constrained by the file system
|
||||
permissions of a character device node
|
||||
|
||||
* netlink is the preferred way of configuring any network related
|
||||
objects through sockets.
|
||||
|
||||
* debugfs is used for ad-hoc interfaces for debugging functionality
|
||||
that does not need to be exposed as a stable interface to applications.
|
||||
|
||||
* sysfs is a good way to expose the state of an in-kernel object
|
||||
that is not tied to a file descriptor.
|
||||
|
||||
* configfs can be used for more complex configuration than sysfs
|
||||
|
||||
* A custom file system can provide extra flexibility with a simple
|
||||
user interface but adds a lot of complexity to the implementation.
|
Loading…
Reference in New Issue
Block a user