Merge 039aeb9deb ("Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm") into android-mainline

Baby steps on the way to 5.8-rc1.

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I5962e12546d3d215c73c3d74b00ad6263d96f64e
This commit is contained in:
Greg Kroah-Hartman 2020-06-20 09:49:29 +02:00
commit 035f08016d
890 changed files with 30156 additions and 29144 deletions

View File

@ -80,6 +80,7 @@ ForEachMacros:
- 'ax25_uid_for_each'
- '__bio_for_each_bvec'
- 'bio_for_each_bvec'
- 'bio_for_each_bvec_all'
- 'bio_for_each_integrity_vec'
- '__bio_for_each_segment'
- 'bio_for_each_segment'

View File

@ -1190,6 +1190,11 @@
This is designed to be used in conjunction with
the boot argument: earlyprintk=vga
This parameter works in place of the kgdboc parameter
but can only be used if the backing tty is available
very early in the boot process. For early debugging
via a serial port see kgdboc_earlycon instead.
edd= [EDD]
Format: {"off" | "on" | "skip[mbr]"}
@ -2112,6 +2117,21 @@
kms, kbd format: kms,kbd
kms, kbd and serial format: kms,kbd,<ser_dev>[,baud]
kgdboc_earlycon= [KGDB,HW]
If the boot console provides the ability to read
characters and can work in polling mode, you can use
this parameter to tell kgdb to use it as a backend
until the normal console is registered. Intended to
be used together with the kgdboc parameter which
specifies the normal console to transition to.
The name of the early console should be specified
as the value of this parameter. Note that the name of
the early console might be different than the tty
name passed to kgdboc. It's OK to leave the value
blank and the first boot console that implements
read() will be picked.
kgdbwait [KGDB] Stop kernel execution and enter the
kernel debugger at the earliest opportunity.
@ -5093,6 +5113,12 @@
interruptions from clocksource watchdog are not
acceptable).
tsc_early_khz= [X86] Skip early TSC calibration and use the given
value instead. Useful when the early TSC frequency discovery
procedure is not reliable, such as on overclocked systems
with CPUID.16h support and partial CPUID.15h support.
Format: <unsigned int>
tsx= [X86] Control Transactional Synchronization
Extensions (TSX) feature in Intel processors that
support TSX control.

View File

@ -129,6 +129,7 @@ Usage of helpers:
::
bio_for_each_segment_all()
bio_for_each_bvec_all()
bio_first_bvec_all()
bio_first_page_all()
bio_last_bvec_all()
@ -143,4 +144,5 @@ Usage of helpers:
bio_vec' will contain a multi-page IO vector during the iteration::
bio_for_each_bvec()
bio_for_each_bvec_all()
rq_for_each_bvec()

View File

@ -274,6 +274,30 @@ don't like this are to hack gdb to send the :kbd:`SysRq-G` for you as well as
on the initial connect, or to use a debugger proxy that allows an
unmodified gdb to do the debugging.
Kernel parameter: ``kgdboc_earlycon``
-------------------------------------
If you specify the kernel parameter ``kgdboc_earlycon`` and your serial
driver registers a boot console that supports polling (doesn't need
interrupts and implements a nonblocking read() function) kgdb will attempt
to work using the boot console until it can transition to the regular
tty driver specified by the ``kgdboc`` parameter.
Normally there is only one boot console (especially that implements the
read() function) so just adding ``kgdboc_earlycon`` on its own is
sufficient to make this work. If you have more than one boot console you
can add the boot console's name to differentiate. Note that names that
are registered through the boot console layer and the tty layer are not
the same for the same port.
For instance, on one board to be explicit you might do::
kgdboc_earlycon=qcom_geni kgdboc=ttyMSM0
If the only boot console on the device was "qcom_geni", you could simplify::
kgdboc_earlycon kgdboc=ttyMSM0
Kernel parameter: ``kgdbwait``
------------------------------

View File

@ -0,0 +1,57 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/interrupt-controller/loongson,htvec.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: Loongson-3 HyperTransport Interrupt Vector Controller
maintainers:
- Jiaxun Yang <jiaxun.yang@flygoat.com>
description:
This interrupt controller is found in the Loongson-3 family of chips for
receiving vectorized interrupts from PCH's interrupt controller.
properties:
compatible:
const: loongson,htvec-1.0
reg:
maxItems: 1
interrupts:
minItems: 1
maxItems: 4
description: Four parent interrupts that receive chained interrupts.
interrupt-controller: true
'#interrupt-cells':
const: 1
required:
- compatible
- reg
- interrupts
- interrupt-controller
- '#interrupt-cells'
additionalProperties: false
examples:
- |
#include <dt-bindings/interrupt-controller/irq.h>
htvec: interrupt-controller@fb000080 {
compatible = "loongson,htvec-1.0";
reg = <0xfb000080 0x40>;
interrupt-controller;
#interrupt-cells = <1>;
interrupt-parent = <&liointc>;
interrupts = <24 IRQ_TYPE_LEVEL_HIGH>,
<25 IRQ_TYPE_LEVEL_HIGH>,
<26 IRQ_TYPE_LEVEL_HIGH>,
<27 IRQ_TYPE_LEVEL_HIGH>;
};
...

View File

@ -0,0 +1,62 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/interrupt-controller/loongson,pch-msi.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: Loongson PCH MSI Controller
maintainers:
- Jiaxun Yang <jiaxun.yang@flygoat.com>
description:
This interrupt controller is found in the Loongson LS7A family of PCH for
transforming interrupts from PCIe MSI into HyperTransport vectorized
interrupts.
properties:
compatible:
const: loongson,pch-msi-1.0
reg:
maxItems: 1
loongson,msi-base-vec:
description:
u32 value of the base of parent HyperTransport vector allocated
to PCH MSI.
allOf:
- $ref: "/schemas/types.yaml#/definitions/uint32"
- minimum: 0
maximum: 255
loongson,msi-num-vecs:
description:
u32 value of the number of parent HyperTransport vectors allocated
to PCH MSI.
allOf:
- $ref: "/schemas/types.yaml#/definitions/uint32"
- minimum: 1
maximum: 256
msi-controller: true
required:
- compatible
- reg
- msi-controller
- loongson,msi-base-vec
- loongson,msi-num-vecs
examples:
- |
#include <dt-bindings/interrupt-controller/irq.h>
msi: msi-controller@2ff00000 {
compatible = "loongson,pch-msi-1.0";
reg = <0x2ff00000 0x4>;
msi-controller;
loongson,msi-base-vec = <64>;
loongson,msi-num-vecs = <64>;
interrupt-parent = <&htvec>;
};
...

View File

@ -0,0 +1,56 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/interrupt-controller/loongson,pch-pic.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: Loongson PCH PIC Controller
maintainers:
- Jiaxun Yang <jiaxun.yang@flygoat.com>
description:
This interrupt controller is found in the Loongson LS7A family of PCH for
transforming interrupts from on-chip devices into HyperTransport vectorized
interrupts.
properties:
compatible:
const: loongson,pch-pic-1.0
reg:
maxItems: 1
loongson,pic-base-vec:
description:
u32 value of the base of parent HyperTransport vector allocated
to PCH PIC.
allOf:
- $ref: "/schemas/types.yaml#/definitions/uint32"
- minimum: 0
maximum: 192
interrupt-controller: true
'#interrupt-cells':
const: 2
required:
- compatible
- reg
- loongson,pic-base-vec
- interrupt-controller
- '#interrupt-cells'
examples:
- |
#include <dt-bindings/interrupt-controller/irq.h>
pic: interrupt-controller@10000000 {
compatible = "loongson,pch-pic-1.0";
reg = <0x10000000 0x400>;
interrupt-controller;
#interrupt-cells = <2>;
loongson,pic-base-vec = <64>;
interrupt-parent = <&htvec>;
};
...

View File

@ -0,0 +1,40 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/mips/loongson/rs780e-acpi.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: Loongson RS780E PCH ACPI Controller
maintainers:
- Jiaxun Yang <jiaxun.yang@flygoat.com>
description: |
This controller can be found in Loongson-3 systems with RS780E PCH.
properties:
compatible:
const: loongson,rs780e-acpi
reg:
maxItems: 1
required:
- compatible
- reg
examples:
- |
isa@0 {
compatible = "isa";
#address-cells = <2>;
#size-cells = <1>;
ranges = <1 0 0 0x1000>;
acpi@800 {
compatible = "loongson,rs780e-acpi";
reg = <1 0x800 0x100>;
};
};
...

View File

@ -0,0 +1,62 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/pci/loongson.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Loongson PCI Host Controller
maintainers:
- Jiaxun Yang <jiaxun.yang@flygoat.com>
description: |+
PCI host controller found on Loongson PCHs and SoCs.
allOf:
- $ref: /schemas/pci/pci-bus.yaml#
properties:
compatible:
oneOf:
- const: loongson,ls2k-pci
- const: loongson,ls7a-pci
- const: loongson,rs780e-pci
reg:
minItems: 1
maxItems: 2
items:
- description: CFG0 standard config space register
- description: CFG1 extended config space register
ranges:
minItems: 1
maxItems: 3
required:
- compatible
- reg
- ranges
examples:
- |
bus {
#address-cells = <2>;
#size-cells = <2>;
pcie@1a000000 {
compatible = "loongson,rs780e-pci";
device_type = "pci";
#address-cells = <3>;
#size-cells = <2>;
// CPU_PHYSICAL(2) SIZE(2)
reg = <0x0 0x1a000000 0x0 0x2000000>;
// BUS_ADDRESS(3) CPU_PHYSICAL(2) SIZE(2)
ranges = <0x01000000 0x0 0x00004000 0x0 0x00004000 0x0 0x00004000>,
<0x02000000 0x0 0x40000000 0x0 0x40000000 0x0 0x40000000>;
};
};
...

View File

@ -1,32 +0,0 @@
* Designware APB timer
Required properties:
- compatible: One of:
"snps,dw-apb-timer"
"snps,dw-apb-timer-sp" <DEPRECATED>
"snps,dw-apb-timer-osc" <DEPRECATED>
- reg: physical base address of the controller and length of memory mapped
region.
- interrupts: IRQ line for the timer.
- either clocks+clock-names or clock-frequency properties
Optional properties:
- clocks : list of clock specifiers, corresponding to entries in
the clock-names property;
- clock-names : should contain "timer" and "pclk" entries, matching entries
in the clocks property.
- clock-frequency: The frequency in HZ of the timer.
- clock-freq: For backwards compatibility with picoxcell
If using the clock specifiers, the pclk clock is optional, as not all
systems may use one.
Example:
timer@ffe00000 {
compatible = "snps,dw-apb-timer";
interrupts = <0 170 4>;
reg = <0xffe00000 0x1000>;
clocks = <&timer_clk>, <&timer_pclk>;
clock-names = "timer", "pclk";
};

View File

@ -0,0 +1,46 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/timer/renesas,em-sti.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Renesas EMMA Mobile System Timer
maintainers:
- Magnus Damm <magnus.damm@gmail.com>
properties:
compatible:
const: renesas,em-sti
reg:
maxItems: 1
interrupts:
maxItems: 1
clocks:
maxItems: 1
clock-names:
const: sclk
required:
- compatible
- reg
- interrupts
- clocks
- clock-names
additionalProperties: false
examples:
- |
#include <dt-bindings/interrupt-controller/arm-gic.h>
timer@e0180000 {
compatible = "renesas,em-sti";
reg = <0xe0180000 0x54>;
interrupts = <GIC_SPI 125 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&sti_sclk>;
clock-names = "sclk";
};

View File

@ -0,0 +1,88 @@
# SPDX-License-Identifier: GPL-2.0-only
%YAML 1.2
---
$id: http://devicetree.org/schemas/timer/snps,dw-apb-timer.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Synopsys DesignWare APB Timer
maintainers:
- Daniel Lezcano <daniel.lezcano@linaro.org>
properties:
compatible:
oneOf:
- const: snps,dw-apb-timer
- enum:
- snps,dw-apb-timer-sp
- snps,dw-apb-timer-osc
deprecated: true
reg:
maxItems: 1
interrupts:
maxItems: 1
clocks:
minItems: 1
items:
- description: Timer ticks reference clock source
- description: APB interface clock source
clock-names:
minItems: 1
items:
- const: timer
- const: pclk
clock-frequency: true
clock-freq:
$ref: "/schemas/types.yaml#/definitions/uint32"
description: |
Has the same meaning as the 'clock-frequency' property - timer clock
frequency in HZ, but is defined only for the backwards compatibility
with the picoxcell platform.
unevaluatedProperties: false
required:
- compatible
- reg
- interrupts
oneOf:
- required:
- clocks
- clock-names
- required:
- clock-frequency
- required:
- clock-freq
examples:
- |
timer@ffe00000 {
compatible = "snps,dw-apb-timer";
interrupts = <0 170 4>;
reg = <0xffe00000 0x1000>;
clocks = <&timer_clk>, <&timer_pclk>;
clock-names = "timer", "pclk";
};
- |
timer@ffe00000 {
compatible = "snps,dw-apb-timer";
interrupts = <0 170 4>;
reg = <0xffe00000 0x1000>;
clocks = <&timer_clk>;
clock-names = "timer";
};
- |
timer@ffe00000 {
compatible = "snps,dw-apb-timer";
interrupts = <0 170 4>;
reg = <0xffe00000 0x1000>;
clock-frequency = <25000000>;
};
...

View File

@ -20,8 +20,144 @@ Usage
If you have a block device which supports DAX, you can make a filesystem
on it as usual. The DAX code currently only supports files with a block
size equal to your kernel's PAGE_SIZE, so you may need to specify a block
size when creating the filesystem. When mounting it, use the "-o dax"
option on the command line or add 'dax' to the options in /etc/fstab.
size when creating the filesystem.
Currently 3 filesystems support DAX: ext2, ext4 and xfs. Enabling DAX on them
is different.
Enabling DAX on ext4 and ext2
-----------------------------
When mounting the filesystem, use the "-o dax" option on the command line or
add 'dax' to the options in /etc/fstab. This works to enable DAX on all files
within the filesystem. It is equivalent to the '-o dax=always' behavior below.
Enabling DAX on xfs
-------------------
Summary
-------
1. There exists an in-kernel file access mode flag S_DAX that corresponds to
the statx flag STATX_ATTR_DAX. See the manpage for statx(2) for details
about this access mode.
2. There exists a persistent flag FS_XFLAG_DAX that can be applied to regular
files and directories. This advisory flag can be set or cleared at any
time, but doing so does not immediately affect the S_DAX state.
3. If the persistent FS_XFLAG_DAX flag is set on a directory, this flag will
be inherited by all regular files and subdirectories that are subsequently
created in this directory. Files and subdirectories that exist at the time
this flag is set or cleared on the parent directory are not modified by
this modification of the parent directory.
4. There exist dax mount options which can override FS_XFLAG_DAX in the
setting of the S_DAX flag. Given underlying storage which supports DAX the
following hold:
"-o dax=inode" means "follow FS_XFLAG_DAX" and is the default.
"-o dax=never" means "never set S_DAX, ignore FS_XFLAG_DAX."
"-o dax=always" means "always set S_DAX ignore FS_XFLAG_DAX."
"-o dax" is a legacy option which is an alias for "dax=always".
This may be removed in the future so "-o dax=always" is
the preferred method for specifying this behavior.
NOTE: Modifications to and the inheritance behavior of FS_XFLAG_DAX remain
the same even when the filesystem is mounted with a dax option. However,
in-core inode state (S_DAX) will be overridden until the filesystem is
remounted with dax=inode and the inode is evicted from kernel memory.
5. The S_DAX policy can be changed via:
a) Setting the parent directory FS_XFLAG_DAX as needed before files are
created
b) Setting the appropriate dax="foo" mount option
c) Changing the FS_XFLAG_DAX flag on existing regular files and
directories. This has runtime constraints and limitations that are
described in 6) below.
6. When changing the S_DAX policy via toggling the persistent FS_XFLAG_DAX flag,
the change in behaviour for existing regular files may not occur
immediately. If the change must take effect immediately, the administrator
needs to:
a) stop the application so there are no active references to the data set
the policy change will affect
b) evict the data set from kernel caches so it will be re-instantiated when
the application is restarted. This can be achieved by:
i. drop-caches
ii. a filesystem unmount and mount cycle
iii. a system reboot
Details
-------
There are 2 per-file dax flags. One is a persistent inode setting (FS_XFLAG_DAX)
and the other is a volatile flag indicating the active state of the feature
(S_DAX).
FS_XFLAG_DAX is preserved within the filesystem. This persistent config
setting can be set, cleared and/or queried using the FS_IOC_FS[GS]ETXATTR ioctl
(see ioctl_xfs_fsgetxattr(2)) or an utility such as 'xfs_io'.
New files and directories automatically inherit FS_XFLAG_DAX from
their parent directory _when_ _created_. Therefore, setting FS_XFLAG_DAX at
directory creation time can be used to set a default behavior for an entire
sub-tree.
To clarify inheritance, here are 3 examples:
Example A:
mkdir -p a/b/c
xfs_io -c 'chattr +x' a
mkdir a/b/c/d
mkdir a/e
dax: a,e
no dax: b,c,d
Example B:
mkdir a
xfs_io -c 'chattr +x' a
mkdir -p a/b/c/d
dax: a,b,c,d
no dax:
Example C:
mkdir -p a/b/c
xfs_io -c 'chattr +x' c
mkdir a/b/c/d
dax: c,d
no dax: a,b
The current enabled state (S_DAX) is set when a file inode is instantiated in
memory by the kernel. It is set based on the underlying media support, the
value of FS_XFLAG_DAX and the filesystem's dax mount option.
statx can be used to query S_DAX. NOTE that only regular files will ever have
S_DAX set and therefore statx will never indicate that S_DAX is set on
directories.
Setting the FS_XFLAG_DAX flag (specifically or through inheritance) occurs even
if the underlying media does not support dax and/or the filesystem is
overridden with a mount option.
Implementation Tips for Block Driver Writers
@ -94,7 +230,7 @@ sysadmins have an option to restore the lost data from a prior backup/inbuilt
redundancy in the following ways:
1. Delete the affected file, and restore from a backup (sysadmin route):
This will free the file system blocks that were being used by the file,
This will free the filesystem blocks that were being used by the file,
and the next time they're allocated, they will be zeroed first, which
happens through the driver, and will clear bad sectors.

View File

@ -340,11 +340,11 @@ buffer.
The structure of the verifiers and the identifiers checks is very similar to the
buffer code described above. The only difference is where they are called. For
example, inode read verification is done in xfs_iread() when the inode is first
read out of the buffer and the struct xfs_inode is instantiated. The inode is
already extensively verified during writeback in xfs_iflush_int, so the only
addition here is to add the LSN and CRC to the inode as it is copied back into
the buffer.
example, inode read verification is done in xfs_inode_from_disk() when the inode
is first read out of the buffer and the struct xfs_inode is instantiated. The
inode is already extensively verified during writeback in xfs_iflush_int, so the
only addition here is to add the LSN and CRC to the inode as it is copied back
into the buffer.
XXX: inode unlinked list modification doesn't recalculate the inode CRC! None of
the unlinked list modifications check or update CRCs, neither during unlink nor

View File

@ -4336,9 +4336,13 @@ Errors:
#define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001
#define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002
#define KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE 0x00000001
struct kvm_vmx_nested_state_hdr {
__u32 flags;
__u64 vmxon_pa;
__u64 vmcs12_pa;
__u64 preemption_timer_deadline;
struct {
__u16 flags;
@ -5068,10 +5072,13 @@ EOI was received.
struct kvm_hyperv_exit {
#define KVM_EXIT_HYPERV_SYNIC 1
#define KVM_EXIT_HYPERV_HCALL 2
#define KVM_EXIT_HYPERV_SYNDBG 3
__u32 type;
__u32 pad1;
union {
struct {
__u32 msr;
__u32 pad2;
__u64 control;
__u64 evt_page;
__u64 msg_page;
@ -5081,6 +5088,15 @@ EOI was received.
__u64 result;
__u64 params[2];
} hcall;
struct {
__u32 msr;
__u32 pad2;
__u64 control;
__u64 status;
__u64 send_page;
__u64 recv_page;
__u64 pending_page;
} syndbg;
} u;
};
/* KVM_EXIT_HYPERV */
@ -5097,6 +5113,12 @@ Hyper-V SynIC state change. Notification is used to remap SynIC
event/message pages and to enable/disable SynIC messages/events processing
in userspace.
- KVM_EXIT_HYPERV_SYNDBG -- synchronously notify user-space about
Hyper-V Synthetic debugger state change. Notification is used to either update
the pending_page location or to send a control command (send the buffer located
in send_page or recv a buffer to recv_page).
::
/* KVM_EXIT_ARM_NISV */
@ -5779,7 +5801,7 @@ will be initialized to 1 when created. This also improves performance because
dirty logging can be enabled gradually in small chunks on the first call
to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIALLY_SET depends on
KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is also only available on
x86 for now).
x86 and arm64 for now).
KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previously available under the name
KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the implementation had bugs that make
@ -5804,6 +5826,23 @@ If present, this capability can be enabled for a VM, meaning that KVM
will allow the transition to secure guest mode. Otherwise KVM will
veto the transition.
7.20 KVM_CAP_HALT_POLL
----------------------
:Architectures: all
:Target: VM
:Parameters: args[0] is the maximum poll time in nanoseconds
:Returns: 0 on success; -1 on error
This capability overrides the kvm module parameter halt_poll_ns for the
target VM.
VCPU polling allows a VCPU to poll for wakeup events instead of immediately
scheduling during guest halts. The maximum time a VCPU can spend polling is
controlled by the kvm module parameter halt_poll_ns. This capability allows
the maximum halt time to specified on a per-VM basis, effectively overriding
the module parameter for the target VM.
8. Other capabilities.
======================

View File

@ -50,8 +50,8 @@ KVM_FEATURE_NOP_IO_DELAY 1 not necessary to perform delays
KVM_FEATURE_MMU_OP 2 deprecated
KVM_FEATURE_CLOCKSOURCE2 3 kvmclock available at msrs
0x4b564d00 and 0x4b564d01
KVM_FEATURE_ASYNC_PF 4 async pf can be enabled by
writing to msr 0x4b564d02
@ -86,6 +86,12 @@ KVM_FEATURE_PV_SCHED_YIELD 13 guest checks this feature bit
before using paravirtualized
sched yield.
KVM_FEATURE_ASYNC_PF_INT 14 guest checks this feature bit
before using the second async
pf control msr 0x4b564d06 and
async pf acknowledgment msr
0x4b564d07.
KVM_FEATURE_CLOCSOURCE_STABLE_BIT 24 host will warn if no guest-side
per-cpu warps are expeced in
kvmclock

View File

@ -190,41 +190,72 @@ MSR_KVM_ASYNC_PF_EN:
0x4b564d02
data:
Bits 63-6 hold 64-byte aligned physical address of a
64 byte memory area which must be in guest RAM and must be
zeroed. Bits 5-3 are reserved and should be zero. Bit 0 is 1
when asynchronous page faults are enabled on the vcpu 0 when
disabled. Bit 1 is 1 if asynchronous page faults can be injected
when vcpu is in cpl == 0. Bit 2 is 1 if asynchronous page faults
are delivered to L1 as #PF vmexits. Bit 2 can be set only if
KVM_FEATURE_ASYNC_PF_VMEXIT is present in CPUID.
Asynchronous page fault (APF) control MSR.
First 4 byte of 64 byte memory location will be written to by
the hypervisor at the time of asynchronous page fault (APF)
injection to indicate type of asynchronous page fault. Value
of 1 means that the page referred to by the page fault is not
present. Value 2 means that the page is now available. Disabling
interrupt inhibits APFs. Guest must not enable interrupt
before the reason is read, or it may be overwritten by another
APF. Since APF uses the same exception vector as regular page
fault guest must reset the reason to 0 before it does
something that can generate normal page fault. If during page
fault APF reason is 0 it means that this is regular page
fault.
Bits 63-6 hold 64-byte aligned physical address of a 64 byte memory area
which must be in guest RAM and must be zeroed. This memory is expected
to hold a copy of the following structure::
During delivery of type 1 APF cr2 contains a token that will
be used to notify a guest when missing page becomes
available. When page becomes available type 2 APF is sent with
cr2 set to the token associated with the page. There is special
kind of token 0xffffffff which tells vcpu that it should wake
up all processes waiting for APFs and no individual type 2 APFs
will be sent.
struct kvm_vcpu_pv_apf_data {
/* Used for 'page not present' events delivered via #PF */
__u32 flags;
/* Used for 'page ready' events delivered via interrupt notification */
__u32 token;
__u8 pad[56];
__u32 enabled;
};
Bits 5-4 of the MSR are reserved and should be zero. Bit 0 is set to 1
when asynchronous page faults are enabled on the vcpu, 0 when disabled.
Bit 1 is 1 if asynchronous page faults can be injected when vcpu is in
cpl == 0. Bit 2 is 1 if asynchronous page faults are delivered to L1 as
#PF vmexits. Bit 2 can be set only if KVM_FEATURE_ASYNC_PF_VMEXIT is
present in CPUID. Bit 3 enables interrupt based delivery of 'page ready'
events. Bit 3 can only be set if KVM_FEATURE_ASYNC_PF_INT is present in
CPUID.
'Page not present' events are currently always delivered as synthetic
#PF exception. During delivery of these events APF CR2 register contains
a token that will be used to notify the guest when missing page becomes
available. Also, to make it possible to distinguish between real #PF and
APF, first 4 bytes of 64 byte memory location ('flags') will be written
to by the hypervisor at the time of injection. Only first bit of 'flags'
is currently supported, when set, it indicates that the guest is dealing
with asynchronous 'page not present' event. If during a page fault APF
'flags' is '0' it means that this is regular page fault. Guest is
supposed to clear 'flags' when it is done handling #PF exception so the
next event can be delivered.
Note, since APF 'page not present' events use the same exception vector
as regular page fault, guest must reset 'flags' to '0' before it does
something that can generate normal page fault.
Bytes 5-7 of 64 byte memory location ('token') will be written to by the
hypervisor at the time of APF 'page ready' event injection. The content
of these bytes is a token which was previously delivered as 'page not
present' event. The event indicates the page in now available. Guest is
supposed to write '0' to 'token' when it is done handling 'page ready'
event and to write 1' to MSR_KVM_ASYNC_PF_ACK after clearing the location;
writing to the MSR forces KVM to re-scan its queue and deliver the next
pending notification.
Note, MSR_KVM_ASYNC_PF_INT MSR specifying the interrupt vector for 'page
ready' APF delivery needs to be written to before enabling APF mechanism
in MSR_KVM_ASYNC_PF_EN or interrupt #0 can get injected. The MSR is
available if KVM_FEATURE_ASYNC_PF_INT is present in CPUID.
Note, previously, 'page ready' events were delivered via the same #PF
exception as 'page not present' events but this is now deprecated. If
bit 3 (interrupt based delivery) is not set APF events are not delivered.
If APF is disabled while there are outstanding APFs, they will
not be delivered.
Currently type 2 APF will be always delivered on the same vcpu as
type 1 was, but guest should not rely on that.
Currently 'page ready' APF events will be always delivered on the
same vcpu as 'page not present' event was, but guest should not rely on
that.
MSR_KVM_STEAL_TIME:
0x4b564d03
@ -319,3 +350,29 @@ data:
KVM guests can request the host not to poll on HLT, for example if
they are performing polling themselves.
MSR_KVM_ASYNC_PF_INT:
0x4b564d06
data:
Second asynchronous page fault (APF) control MSR.
Bits 0-7: APIC vector for delivery of 'page ready' APF events.
Bits 8-63: Reserved
Interrupt vector for asynchnonous 'page ready' notifications delivery.
The vector has to be set up before asynchronous page fault mechanism
is enabled in MSR_KVM_ASYNC_PF_EN. The MSR is only available if
KVM_FEATURE_ASYNC_PF_INT is present in CPUID.
MSR_KVM_ASYNC_PF_ACK:
0x4b564d07
data:
Asynchronous page fault (APF) acknowledgment.
When the guest is done processing 'page ready' APF event and 'token'
field in 'struct kvm_vcpu_pv_apf_data' is cleared it is supposed to
write '1' to bit 0 of the MSR, this causes the host to re-scan its queue
and check if there are more notifications pending. The MSR is available
if KVM_FEATURE_ASYNC_PF_INT is present in CPUID.

View File

@ -116,10 +116,7 @@ struct shadow_vmcs is ever changed.
natural_width cr4_guest_host_mask;
natural_width cr0_read_shadow;
natural_width cr4_read_shadow;
natural_width cr3_target_value0;
natural_width cr3_target_value1;
natural_width cr3_target_value2;
natural_width cr3_target_value3;
natural_width dead_space[4]; /* Last remnants of cr3_target_value[0-3]. */
natural_width exit_qualification;
natural_width guest_linear_address;
natural_width guest_cr0;

View File

@ -7924,6 +7924,7 @@ F: drivers/pci/controller/pci-hyperv.c
F: drivers/scsi/storvsc_drv.c
F: drivers/uio/uio_hv_generic.c
F: drivers/video/fbdev/hyperv_fb.c
F: include/asm-generic/hyperv-tlfs.h
F: include/asm-generic/mshyperv.h
F: include/clocksource/hyperv_timer.h
F: include/linux/hyperv.h
@ -9367,7 +9368,6 @@ F: arch/arm64/include/asm/kvm*
F: arch/arm64/include/uapi/asm/kvm*
F: arch/arm64/kvm/
F: include/kvm/arm_*
F: virt/kvm/arm/
KERNEL VIRTUAL MACHINE FOR MIPS (KVM/mips)
L: linux-mips@vger.kernel.org
@ -12847,7 +12847,7 @@ M: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
M: Helge Deller <deller@gmx.de>
L: linux-parisc@vger.kernel.org
S: Maintained
W: http://www.parisc-linux.org/
W: https://parisc.wiki.kernel.org
Q: http://patchwork.kernel.org/project/linux-parisc/list/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/jejb/parisc-2.6.git
T: git git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux.git
@ -14717,6 +14717,7 @@ S: Supported
W: http://www.ibm.com/developerworks/linux/linux390/
F: block/partitions/ibm.c
F: drivers/s390/block/dasd*
F: include/linux/dasd_mod.h
S390 IOMMU (PCI)
M: Gerald Schaefer <gerald.schaefer@de.ibm.com>

View File

@ -11,8 +11,8 @@
#define __ASM_ALPHA_FLOPPY_H
#define fd_inb(port) inb_p(port)
#define fd_outb(value,port) outb_p(value,port)
#define fd_inb(base, reg) inb_p((base) + (reg))
#define fd_outb(value, base, reg) outb_p(value, (base) + (reg))
#define fd_enable_dma() enable_dma(FLOPPY_DMA)
#define fd_disable_dma() disable_dma(FLOPPY_DMA)

View File

@ -105,6 +105,7 @@ pwm7: dmtimer-pwm {
ti,timers = <&timer7>;
pinctrl-names = "default";
pinctrl-0 = <&dmtimer7_pins>;
ti,clock-source = <0x01>;
};
vmmcsd_fixed: regulator-3v3 {

View File

@ -156,6 +156,7 @@ pwm11: dmtimer-pwm@11 {
pinctrl-0 = <&pwm_pins>;
ti,timers = <&timer11>;
#pwm-cells = <3>;
ti,clock-source = <0x01>;
};
/* HS USB Host PHY on PORT 1 */

View File

@ -65,6 +65,7 @@ pwm10: dmtimer-pwm {
pinctrl-0 = <&pwm_pins>;
ti,timers = <&timer10>;
#pwm-cells = <3>;
ti,clock-source = <0x01>;
};
};

View File

@ -150,6 +150,7 @@ pwm11: dmtimer-pwm {
compatible = "ti,omap-dmtimer-pwm";
ti,timers = <&timer11>;
#pwm-cells = <3>;
ti,clock-source = <0x01>;
};
hsusb2_phy: hsusb2_phy {

View File

@ -9,20 +9,20 @@
#ifndef __ASM_ARM_FLOPPY_H
#define __ASM_ARM_FLOPPY_H
#define fd_outb(val,port) \
#define fd_outb(val, base, reg) \
do { \
int new_val = (val); \
if (((port) & 7) == FD_DOR) { \
if ((reg) == FD_DOR) { \
if (new_val & 0xf0) \
new_val = (new_val & 0x0c) | \
floppy_selects[new_val & 3]; \
else \
new_val &= 0x0c; \
} \
outb(new_val, (port)); \
outb(new_val, (base) + (reg)); \
} while(0)
#define fd_inb(port) inb((port))
#define fd_inb(base, reg) inb((base) + (reg))
#define fd_request_irq() request_irq(IRQ_FLOPPYDISK,floppy_interrupt,\
0,"floppy",NULL)
#define fd_free_irq() free_irq(IRQ_FLOPPYDISK,NULL)

View File

@ -64,12 +64,14 @@ extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
extern void __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu);
extern void __kvm_timer_set_cntvoff(u32 cntvoff_low, u32 cntvoff_high);
extern void __kvm_timer_set_cntvoff(u64 cntvoff);
extern int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu);
extern int __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu);
extern void __kvm_enable_ssbs(void);
extern u64 __vgic_v3_get_ich_vtr_el2(void);
extern u64 __vgic_v3_read_vmcr(void);
extern void __vgic_v3_write_vmcr(u32 vmcr);

View File

@ -46,6 +46,9 @@
#define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
#define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
KVM_DIRTY_LOG_INITIALLY_SET)
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
extern unsigned int kvm_sve_max_vl;
@ -112,12 +115,8 @@ struct kvm_vcpu_fault_info {
u64 disr_el1; /* Deferred [SError] Status Register */
};
/*
* 0 is reserved as an invalid value.
* Order should be kept in sync with the save/restore code.
*/
enum vcpu_sysreg {
__INVALID_SYSREG__,
__INVALID_SYSREG__, /* 0 is reserved as an invalid value */
MPIDR_EL1, /* MultiProcessor Affinity Register */
CSSELR_EL1, /* Cache Size Selection Register */
SCTLR_EL1, /* System Control Register */
@ -415,6 +414,8 @@ struct kvm_vm_stat {
struct kvm_vcpu_stat {
u64 halt_successful_poll;
u64 halt_attempted_poll;
u64 halt_poll_success_ns;
u64 halt_poll_fail_ns;
u64 halt_poll_invalid;
u64 halt_wakeup;
u64 hvc_exit_stat;
@ -530,39 +531,6 @@ static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr();
}
void __kvm_enable_ssbs(void);
static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
unsigned long hyp_stack_ptr,
unsigned long vector_ptr)
{
/*
* Calculate the raw per-cpu offset without a translation from the
* kernel's mapping to the linear mapping, and store it in tpidr_el2
* so that we can use adr_l to access per-cpu variables in EL2.
*/
u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_data) -
(u64)kvm_ksym_ref(kvm_host_data));
/*
* Call initialization code, and switch to the full blown HYP code.
* If the cpucaps haven't been finalized yet, something has gone very
* wrong, and hyp will crash and burn when it uses any
* cpus_have_const_cap() wrapper.
*/
BUG_ON(!system_capabilities_finalized());
__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
/*
* Disabling SSBD on a non-VHE system requires us to enable SSBS
* at EL2.
*/
if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) &&
arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
kvm_call_hyp(__kvm_enable_ssbs);
}
}
static inline bool kvm_arch_requires_vhe(void)
{
/*
@ -594,8 +562,6 @@ int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
static inline void __cpu_init_stage2(void) {}
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);

View File

@ -55,12 +55,12 @@
int __vgic_v2_perform_cpuif_access(struct kvm_vcpu *vcpu);
void __vgic_v3_save_state(struct kvm_vcpu *vcpu);
void __vgic_v3_restore_state(struct kvm_vcpu *vcpu);
void __vgic_v3_activate_traps(struct kvm_vcpu *vcpu);
void __vgic_v3_deactivate_traps(struct kvm_vcpu *vcpu);
void __vgic_v3_save_aprs(struct kvm_vcpu *vcpu);
void __vgic_v3_restore_aprs(struct kvm_vcpu *vcpu);
void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if);
int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu);
void __timer_enable_traps(struct kvm_vcpu *vcpu);

View File

@ -363,8 +363,6 @@ static inline void __kvm_flush_dcache_pud(pud_t pud)
}
}
#define kvm_virt_to_phys(x) __pa_symbol(x)
void kvm_set_way_flush(struct kvm_vcpu *vcpu);
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
@ -473,7 +471,7 @@ static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
extern void *__kvm_bp_vect_base;
extern int __kvm_harden_el2_vector_slot;
/* This is only called on a VHE system */
/* This is called on both VHE and !VHE systems */
static inline void *kvm_get_hyp_vector(void)
{
struct bp_hardening_data *data = arm64_get_bp_hardening_data();

View File

@ -35,7 +35,7 @@
#define GIC_PRIO_PSR_I_SET (1 << 4)
/* Additional SPSR bits not exposed in the UABI */
#define PSR_MODE_THREAD_BIT (1 << 0)
#define PSR_IL_BIT (1 << 20)
/* AArch32-specific ptrace requests */

View File

@ -85,7 +85,7 @@ static inline bool is_kernel_in_hyp_mode(void)
static __always_inline bool has_vhe(void)
{
if (cpus_have_const_cap(ARM64_HAS_VIRT_HOST_EXTN))
if (cpus_have_final_cap(ARM64_HAS_VIRT_HOST_EXTN))
return true;
return false;

View File

@ -97,7 +97,7 @@ int main(void)
DEFINE(CPU_BOOT_STACK, offsetof(struct secondary_data, stack));
DEFINE(CPU_BOOT_TASK, offsetof(struct secondary_data, task));
BLANK();
#ifdef CONFIG_KVM_ARM_HOST
#ifdef CONFIG_KVM
DEFINE(VCPU_CONTEXT, offsetof(struct kvm_vcpu, arch.ctxt));
DEFINE(VCPU_FAULT_DISR, offsetof(struct kvm_vcpu, arch.fault.disr_el1));
DEFINE(VCPU_WORKAROUND_FLAGS, offsetof(struct kvm_vcpu, arch.workaround_flags));

View File

@ -234,7 +234,7 @@ static int detect_harden_bp_fw(void)
smccc_end = NULL;
break;
#if IS_ENABLED(CONFIG_KVM_ARM_HOST)
#if IS_ENABLED(CONFIG_KVM)
case SMCCC_CONDUIT_SMC:
cb = call_smc_arch_workaround_1;
smccc_start = __smccc_workaround_1_smc;

View File

@ -422,7 +422,7 @@ static void __init hyp_mode_check(void)
"CPU: CPUs started in inconsistent modes");
else
pr_info("CPU: All CPU(s) started at EL1\n");
if (IS_ENABLED(CONFIG_KVM_ARM_HOST))
if (IS_ENABLED(CONFIG_KVM))
kvm_compute_layout();
}

View File

@ -3,7 +3,6 @@
# KVM configuration
#
source "virt/kvm/Kconfig"
source "virt/lib/Kconfig"
menuconfig VIRTUALIZATION
@ -18,7 +17,7 @@ menuconfig VIRTUALIZATION
if VIRTUALIZATION
config KVM
menuconfig KVM
bool "Kernel-based Virtual Machine (KVM) support"
depends on OF
# for TASKSTATS/TASK_DELAY_ACCT:
@ -28,13 +27,11 @@ config KVM
select HAVE_KVM_CPU_RELAX_INTERCEPT
select HAVE_KVM_ARCH_TLB_FLUSH_ALL
select KVM_MMIO
select KVM_ARM_HOST
select KVM_GENERIC_DIRTYLOG_READ_PROTECT
select SRCU
select KVM_VFIO
select HAVE_KVM_EVENTFD
select HAVE_KVM_IRQFD
select KVM_ARM_PMU if HW_PERF_EVENTS
select HAVE_KVM_MSI
select HAVE_KVM_IRQCHIP
select HAVE_KVM_IRQ_ROUTING
@ -45,23 +42,24 @@ config KVM
select TASK_DELAY_ACCT
---help---
Support hosting virtualized guest machines.
We don't support KVM with 16K page tables yet, due to the multiple
levels of fake page tables.
If unsure, say N.
config KVM_ARM_HOST
bool
---help---
Provides host support for ARM processors.
if KVM
source "virt/kvm/Kconfig"
config KVM_ARM_PMU
bool
bool "Virtual Performance Monitoring Unit (PMU) support"
depends on HW_PERF_EVENTS
default y
---help---
Adds support for a virtual Performance Monitoring Unit (PMU) in
virtual machines.
config KVM_INDIRECT_VECTORS
def_bool KVM && (HARDEN_BRANCH_PREDICTOR || HARDEN_EL2_VECTORS)
def_bool HARDEN_BRANCH_PREDICTOR || HARDEN_EL2_VECTORS
endif # KVM
endif # VIRTUALIZATION

View File

@ -3,38 +3,26 @@
# Makefile for Kernel-based Virtual Machine module
#
ccflags-y += -I $(srctree)/$(src) -I $(srctree)/virt/kvm/arm/vgic
ccflags-y += -I $(srctree)/$(src)
CFLAGS_REMOVE_debug.o += $(CC_FLAGS_CFI)
KVM=../../../virt/kvm
obj-$(CONFIG_KVM_ARM_HOST) += kvm.o
obj-$(CONFIG_KVM_ARM_HOST) += hyp/
obj-$(CONFIG_KVM) += kvm.o
obj-$(CONFIG_KVM) += hyp/
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o $(KVM)/vfio.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/arm.o $(KVM)/arm/mmu.o $(KVM)/arm/mmio.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/psci.o $(KVM)/arm/perf.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hypercalls.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/pvtime.o
kvm-y := $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o \
$(KVM)/vfio.o $(KVM)/irqchip.o \
arm.o mmu.o mmio.o psci.o perf.o hypercalls.o pvtime.o \
inject_fault.o regmap.o va_layout.o hyp.o hyp-init.o handle_exit.o \
guest.o debug.o reset.o sys_regs.o sys_regs_generic_v8.o \
vgic-sys-reg-v3.o fpsimd.o pmu.o \
aarch32.o arch_timer.o \
vgic/vgic.o vgic/vgic-init.o \
vgic/vgic-irqfd.o vgic/vgic-v2.o \
vgic/vgic-v3.o vgic/vgic-v4.o \
vgic/vgic-mmio.o vgic/vgic-mmio-v2.o \
vgic/vgic-mmio-v3.o vgic/vgic-kvm-device.o \
vgic/vgic-its.o vgic/vgic-debug.o
kvm-$(CONFIG_KVM_ARM_HOST) += inject_fault.o regmap.o va_layout.o
kvm-$(CONFIG_KVM_ARM_HOST) += hyp.o hyp-init.o handle_exit.o
kvm-$(CONFIG_KVM_ARM_HOST) += guest.o debug.o reset.o sys_regs.o sys_regs_generic_v8.o
kvm-$(CONFIG_KVM_ARM_HOST) += vgic-sys-reg-v3.o fpsimd.o pmu.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/aarch32.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-init.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-irqfd.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-v2.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-v3.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-v4.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio-v2.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio-v3.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-kvm-device.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-its.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-debug.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/irqchip.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/arch_timer.o
kvm-$(CONFIG_KVM_ARM_PMU) += $(KVM)/arm/pmu.o
kvm-$(CONFIG_KVM_ARM_PMU) += pmu-emul.o

View File

@ -451,17 +451,7 @@ static void timer_restore_state(struct arch_timer_context *ctx)
static void set_cntvoff(u64 cntvoff)
{
u32 low = lower_32_bits(cntvoff);
u32 high = upper_32_bits(cntvoff);
/*
* Since kvm_call_hyp doesn't fully support the ARM PCS especially on
* 32-bit systems, but rather passes register by register shifted one
* place (we put the function address in r0/x0), we cannot simply pass
* a 64-bit value as an argument, but have to split the value in two
* 32-bit halves.
*/
kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
}
static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
@ -571,6 +561,7 @@ void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
struct timer_map map;
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
if (unlikely(!timer->enabled))
return;
@ -593,7 +584,7 @@ void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
if (map.emul_ptimer)
soft_timer_cancel(&map.emul_ptimer->hrtimer);
if (swait_active(kvm_arch_vcpu_wq(vcpu)))
if (rcuwait_active(wait))
kvm_timer_blocking(vcpu);
/*

View File

@ -22,7 +22,7 @@
#include <trace/events/kvm.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "trace_arm.h"
#include <linux/uaccess.h>
#include <asm/ptrace.h>
@ -95,6 +95,11 @@ int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
return r;
}
static int kvm_arm_default_max_vcpus(void)
{
return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}
/**
* kvm_arch_init_vm - initializes a VM data structure
* @kvm: pointer to the KVM struct
@ -128,8 +133,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
kvm->arch.vmid.vmid_gen = 0;
/* The maximum number of VCPUs is limited by the host's GIC model */
kvm->arch.max_vcpus = vgic_present ?
kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
return ret;
out_free_stage2_pgd:
@ -204,10 +208,11 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
r = num_online_cpus();
break;
case KVM_CAP_MAX_VCPUS:
r = KVM_MAX_VCPUS;
break;
case KVM_CAP_MAX_VCPU_ID:
r = KVM_MAX_VCPU_ID;
if (kvm)
r = kvm->arch.max_vcpus;
else
r = kvm_arm_default_max_vcpus();
break;
case KVM_CAP_MSI_DEVID:
if (!kvm)
@ -455,9 +460,9 @@ void force_vm_exit(const cpumask_t *mask)
*
* The hardware supports a limited set of values with the value zero reserved
* for the host, so we check if an assigned value belongs to a previous
* generation, which which requires us to assign a new value. If we're the
* first to use a VMID for the new generation, we must flush necessary caches
* and TLBs on all CPUs.
* generation, which requires us to assign a new value. If we're the first to
* use a VMID for the new generation, we must flush necessary caches and TLBs
* on all CPUs.
*/
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
{
@ -579,16 +584,17 @@ void kvm_arm_resume_guest(struct kvm *kvm)
kvm_for_each_vcpu(i, vcpu, kvm) {
vcpu->arch.pause = false;
swake_up_one(kvm_arch_vcpu_wq(vcpu));
rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
}
}
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
{
struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
(!vcpu->arch.pause)));
rcuwait_wait_event(wait,
(!vcpu->arch.power_off) &&(!vcpu->arch.pause),
TASK_INTERRUPTIBLE);
if (vcpu->arch.power_off || vcpu->arch.pause) {
/* Awaken to handle a signal, request we sleep again later. */
@ -639,7 +645,6 @@ static void check_vcpu_requests(struct kvm_vcpu *vcpu)
/**
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
* @vcpu: The VCPU pointer
* @run: The kvm_run structure pointer used for userspace state exchange
*
* This function is called through the VCPU_RUN ioctl called from user space. It
* will execute VM code in a loop until the time slice for the process is used
@ -647,8 +652,9 @@ static void check_vcpu_requests(struct kvm_vcpu *vcpu)
* return with return value 0 and with the kvm_run structure filled in with the
* required data for the requested emulation.
*/
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
int ret;
if (unlikely(!kvm_vcpu_initialized(vcpu)))
@ -659,7 +665,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
return ret;
if (run->exit_reason == KVM_EXIT_MMIO) {
ret = kvm_handle_mmio_return(vcpu, vcpu->run);
ret = kvm_handle_mmio_return(vcpu, run);
if (ret)
return ret;
}
@ -983,8 +989,11 @@ static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
/*
* Ensure a rebooted VM will fault in RAM pages and detect if the
* guest MMU is turned off and flush the caches as needed.
*
* S2FWB enforces all memory accesses to RAM being cacheable, we
* ensure that the cache is always coherent.
*/
if (vcpu->arch.has_run_once)
if (vcpu->arch.has_run_once && !cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
stage2_unmap_vm(vcpu->kvm);
vcpu_reset_hcr(vcpu);
@ -1265,19 +1274,41 @@ static void cpu_init_hyp_mode(void)
{
phys_addr_t pgd_ptr;
unsigned long hyp_stack_ptr;
unsigned long stack_page;
unsigned long vector_ptr;
unsigned long tpidr_el2;
/* Switch from the HYP stub to our own HYP init vector */
__hyp_set_vectors(kvm_get_idmap_vector());
/*
* Calculate the raw per-cpu offset without a translation from the
* kernel's mapping to the linear mapping, and store it in tpidr_el2
* so that we can use adr_l to access per-cpu variables in EL2.
*/
tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
(unsigned long)kvm_ksym_ref(kvm_host_data));
pgd_ptr = kvm_mmu_get_httbr();
stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
hyp_stack_ptr = stack_page + PAGE_SIZE;
hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
vector_ptr = (unsigned long)kvm_get_hyp_vector();
__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
__cpu_init_stage2();
/*
* Call initialization code, and switch to the full blown HYP code.
* If the cpucaps haven't been finalized yet, something has gone very
* wrong, and hyp will crash and burn when it uses any
* cpus_have_const_cap() wrapper.
*/
BUG_ON(!system_capabilities_finalized());
__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
/*
* Disabling SSBD on a non-VHE system requires us to enable SSBS
* at EL2.
*/
if (this_cpu_has_cap(ARM64_SSBS) &&
arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
kvm_call_hyp(__kvm_enable_ssbs);
}
}
static void cpu_hyp_reset(void)

View File

@ -29,20 +29,19 @@
#include "trace.h"
#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
struct kvm_stats_debugfs_item debugfs_entries[] = {
VCPU_STAT(halt_successful_poll),
VCPU_STAT(halt_attempted_poll),
VCPU_STAT(halt_poll_invalid),
VCPU_STAT(halt_wakeup),
VCPU_STAT(hvc_exit_stat),
VCPU_STAT(wfe_exit_stat),
VCPU_STAT(wfi_exit_stat),
VCPU_STAT(mmio_exit_user),
VCPU_STAT(mmio_exit_kernel),
VCPU_STAT(exits),
VCPU_STAT("halt_successful_poll", halt_successful_poll),
VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
VCPU_STAT("halt_wakeup", halt_wakeup),
VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
VCPU_STAT("mmio_exit_user", mmio_exit_user),
VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
VCPU_STAT("exits", exits),
VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
{ NULL }
};
@ -267,7 +266,7 @@ static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
/*
* Vector lengths supported by the host can't currently be
* hidden from the guest individually: instead we can only set a
* maxmium via ZCR_EL2.LEN. So, make sure the available vector
* maximum via ZCR_EL2.LEN. So, make sure the available vector
* lengths match the set requested exactly up to the requested
* maximum:
*/
@ -337,7 +336,7 @@ static int sve_reg_to_region(struct sve_state_reg_region *region,
unsigned int reg_num;
unsigned int reqoffset, reqlen; /* User-requested offset and length */
unsigned int maxlen; /* Maxmimum permitted length */
unsigned int maxlen; /* Maximum permitted length */
size_t sve_state_size;

View File

@ -23,7 +23,7 @@
#include <kvm/arm_hypercalls.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "trace_handle_exit.h"
typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);

View File

@ -6,20 +6,10 @@
ccflags-y += -fno-stack-protector -DDISABLE_BRANCH_PROFILING \
$(DISABLE_STACKLEAK_PLUGIN)
KVM=../../../../virt/kvm
obj-$(CONFIG_KVM) += hyp.o
obj-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hyp/vgic-v3-sr.o
obj-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hyp/timer-sr.o
obj-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/hyp/aarch32.o
obj-$(CONFIG_KVM_ARM_HOST) += vgic-v2-cpuif-proxy.o
obj-$(CONFIG_KVM_ARM_HOST) += sysreg-sr.o
obj-$(CONFIG_KVM_ARM_HOST) += debug-sr.o
obj-$(CONFIG_KVM_ARM_HOST) += entry.o
obj-$(CONFIG_KVM_ARM_HOST) += switch.o
obj-$(CONFIG_KVM_ARM_HOST) += fpsimd.o
obj-$(CONFIG_KVM_ARM_HOST) += tlb.o
obj-$(CONFIG_KVM_ARM_HOST) += hyp-entry.o
hyp-y := vgic-v3-sr.o timer-sr.o aarch32.o vgic-v2-cpuif-proxy.o sysreg-sr.o \
debug-sr.o entry.o switch.o fpsimd.o tlb.o hyp-entry.o
# KVM code is run at a different exception code with a different map, so
# compiler instrumentation that inserts callbacks or checks into the code may

View File

@ -270,8 +270,8 @@ static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
__vgic_v3_save_state(vcpu);
__vgic_v3_deactivate_traps(vcpu);
__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
}
}
@ -279,8 +279,8 @@ static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
__vgic_v3_activate_traps(vcpu);
__vgic_v3_restore_state(vcpu);
__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
}
}

View File

@ -10,9 +10,8 @@
#include <asm/kvm_hyp.h>
void __hyp_text __kvm_timer_set_cntvoff(u32 cntvoff_low, u32 cntvoff_high)
void __hyp_text __kvm_timer_set_cntvoff(u64 cntvoff)
{
u64 cntvoff = (u64)cntvoff_high << 32 | cntvoff_low;
write_sysreg(cntvoff, cntvoff_el2);
}

View File

@ -194,10 +194,9 @@ static u32 __hyp_text __vgic_v3_read_ap1rn(int n)
return val;
}
void __hyp_text __vgic_v3_save_state(struct kvm_vcpu *vcpu)
void __hyp_text __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
u64 used_lrs = cpu_if->used_lrs;
/*
* Make sure stores to the GIC via the memory mapped interface
@ -230,10 +229,9 @@ void __hyp_text __vgic_v3_save_state(struct kvm_vcpu *vcpu)
}
}
void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu)
void __hyp_text __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
u64 used_lrs = cpu_if->used_lrs;
int i;
if (used_lrs || cpu_if->its_vpe.its_vm) {
@ -257,10 +255,8 @@ void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu)
}
}
void __hyp_text __vgic_v3_activate_traps(struct kvm_vcpu *vcpu)
void __hyp_text __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
* Group0 interrupt (as generated in GICv2 mode) to be
@ -306,9 +302,8 @@ void __hyp_text __vgic_v3_activate_traps(struct kvm_vcpu *vcpu)
write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
}
void __hyp_text __vgic_v3_deactivate_traps(struct kvm_vcpu *vcpu)
void __hyp_text __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u64 val;
if (!cpu_if->vgic_sre) {
@ -333,15 +328,11 @@ void __hyp_text __vgic_v3_deactivate_traps(struct kvm_vcpu *vcpu)
write_gicreg(0, ICH_HCR_EL2);
}
void __hyp_text __vgic_v3_save_aprs(struct kvm_vcpu *vcpu)
void __hyp_text __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
{
struct vgic_v3_cpu_if *cpu_if;
u64 val;
u32 nr_pre_bits;
vcpu = kern_hyp_va(vcpu);
cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
val = read_gicreg(ICH_VTR_EL2);
nr_pre_bits = vtr_to_nr_pre_bits(val);
@ -370,15 +361,11 @@ void __hyp_text __vgic_v3_save_aprs(struct kvm_vcpu *vcpu)
}
}
void __hyp_text __vgic_v3_restore_aprs(struct kvm_vcpu *vcpu)
void __hyp_text __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
{
struct vgic_v3_cpu_if *cpu_if;
u64 val;
u32 nr_pre_bits;
vcpu = kern_hyp_va(vcpu);
cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
val = read_gicreg(ICH_VTR_EL2);
nr_pre_bits = vtr_to_nr_pre_bits(val);
@ -431,8 +418,6 @@ void __hyp_text __vgic_v3_write_vmcr(u32 vmcr)
write_gicreg(vmcr, ICH_VMCR_EL2);
}
#ifdef CONFIG_ARM64
static int __hyp_text __vgic_v3_bpr_min(void)
{
/* See Pseudocode for VPriorityGroup */
@ -453,7 +438,7 @@ static int __hyp_text __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu,
u32 vmcr,
u64 *lr_val)
{
unsigned int used_lrs = vcpu->arch.vgic_cpu.used_lrs;
unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
u8 priority = GICv3_IDLE_PRIORITY;
int i, lr = -1;
@ -492,7 +477,7 @@ static int __hyp_text __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu,
static int __hyp_text __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu,
int intid, u64 *lr_val)
{
unsigned int used_lrs = vcpu->arch.vgic_cpu.used_lrs;
unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
int i;
for (i = 0; i < used_lrs; i++) {
@ -579,7 +564,7 @@ static u8 __hyp_text __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
/*
* The priority value is independent of any of the BPR values, so we
* normalize it using the minumal BPR value. This guarantees that no
* normalize it using the minimal BPR value. This guarantees that no
* matter what the guest does with its BPR, we can always set/get the
* same value of a priority.
*/
@ -1126,5 +1111,3 @@ int __hyp_text __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
return 1;
}
#endif

View File

@ -26,28 +26,12 @@ enum exception_type {
except_type_serror = 0x180,
};
static u64 get_except_vector(struct kvm_vcpu *vcpu, enum exception_type type)
{
u64 exc_offset;
switch (*vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT)) {
case PSR_MODE_EL1t:
exc_offset = CURRENT_EL_SP_EL0_VECTOR;
break;
case PSR_MODE_EL1h:
exc_offset = CURRENT_EL_SP_ELx_VECTOR;
break;
case PSR_MODE_EL0t:
exc_offset = LOWER_EL_AArch64_VECTOR;
break;
default:
exc_offset = LOWER_EL_AArch32_VECTOR;
}
return vcpu_read_sys_reg(vcpu, VBAR_EL1) + exc_offset + type;
}
/*
* This performs the exception entry at a given EL (@target_mode), stashing PC
* and PSTATE into ELR and SPSR respectively, and compute the new PC/PSTATE.
* The EL passed to this function *must* be a non-secure, privileged mode with
* bit 0 being set (PSTATE.SP == 1).
*
* When an exception is taken, most PSTATE fields are left unchanged in the
* handler. However, some are explicitly overridden (e.g. M[4:0]). Luckily all
* of the inherited bits have the same position in the AArch64/AArch32 SPSR_ELx
@ -59,10 +43,35 @@ static u64 get_except_vector(struct kvm_vcpu *vcpu, enum exception_type type)
* Here we manipulate the fields in order of the AArch64 SPSR_ELx layout, from
* MSB to LSB.
*/
static unsigned long get_except64_pstate(struct kvm_vcpu *vcpu)
static void enter_exception64(struct kvm_vcpu *vcpu, unsigned long target_mode,
enum exception_type type)
{
unsigned long sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
unsigned long old, new;
unsigned long sctlr, vbar, old, new, mode;
u64 exc_offset;
mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
if (mode == target_mode)
exc_offset = CURRENT_EL_SP_ELx_VECTOR;
else if ((mode | PSR_MODE_THREAD_BIT) == target_mode)
exc_offset = CURRENT_EL_SP_EL0_VECTOR;
else if (!(mode & PSR_MODE32_BIT))
exc_offset = LOWER_EL_AArch64_VECTOR;
else
exc_offset = LOWER_EL_AArch32_VECTOR;
switch (target_mode) {
case PSR_MODE_EL1h:
vbar = vcpu_read_sys_reg(vcpu, VBAR_EL1);
sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
vcpu_write_elr_el1(vcpu, *vcpu_pc(vcpu));
break;
default:
/* Don't do that */
BUG();
}
*vcpu_pc(vcpu) = vbar + exc_offset + type;
old = *vcpu_cpsr(vcpu);
new = 0;
@ -105,9 +114,10 @@ static unsigned long get_except64_pstate(struct kvm_vcpu *vcpu)
new |= PSR_I_BIT;
new |= PSR_F_BIT;
new |= PSR_MODE_EL1h;
new |= target_mode;
return new;
*vcpu_cpsr(vcpu) = new;
vcpu_write_spsr(vcpu, old);
}
static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr)
@ -116,11 +126,7 @@ static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr
bool is_aarch32 = vcpu_mode_is_32bit(vcpu);
u32 esr = 0;
vcpu_write_elr_el1(vcpu, *vcpu_pc(vcpu));
*vcpu_pc(vcpu) = get_except_vector(vcpu, except_type_sync);
*vcpu_cpsr(vcpu) = get_except64_pstate(vcpu);
vcpu_write_spsr(vcpu, cpsr);
enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync);
vcpu_write_sys_reg(vcpu, addr, FAR_EL1);
@ -148,14 +154,9 @@ static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr
static void inject_undef64(struct kvm_vcpu *vcpu)
{
unsigned long cpsr = *vcpu_cpsr(vcpu);
u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
vcpu_write_elr_el1(vcpu, *vcpu_pc(vcpu));
*vcpu_pc(vcpu) = get_except_vector(vcpu, except_type_sync);
*vcpu_cpsr(vcpu) = get_except64_pstate(vcpu);
vcpu_write_spsr(vcpu, cpsr);
enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync);
/*
* Build an unknown exception, depending on the instruction

View File

@ -131,7 +131,7 @@ int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
/*
* No valid syndrome? Ask userspace for help if it has
* voluntered to do so, and bail out otherwise.
* volunteered to do so, and bail out otherwise.
*/
if (!kvm_vcpu_dabt_isvalid(vcpu)) {
if (vcpu->kvm->arch.return_nisv_io_abort_to_user) {

View File

@ -422,6 +422,9 @@ static void stage2_flush_memslot(struct kvm *kvm,
next = stage2_pgd_addr_end(kvm, addr, end);
if (!stage2_pgd_none(kvm, *pgd))
stage2_flush_puds(kvm, pgd, addr, next);
if (next != end)
cond_resched_lock(&kvm->mmu_lock);
} while (pgd++, addr = next, addr != end);
}
@ -784,7 +787,7 @@ static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
mutex_lock(&kvm_hyp_pgd_mutex);
/*
* This assumes that we we have enough space below the idmap
* This assumes that we have enough space below the idmap
* page to allocate our VAs. If not, the check below will
* kick. A potential alternative would be to detect that
* overflow and switch to an allocation above the idmap.
@ -964,7 +967,7 @@ static void stage2_unmap_memslot(struct kvm *kvm,
* stage2_unmap_vm - Unmap Stage-2 RAM mappings
* @kvm: The struct kvm pointer
*
* Go through the memregions and unmap any reguler RAM
* Go through the memregions and unmap any regular RAM
* backing memory already mapped to the VM.
*/
void stage2_unmap_vm(struct kvm *kvm)
@ -1372,47 +1375,6 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
return ret;
}
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
{
kvm_pfn_t pfn = *pfnp;
gfn_t gfn = *ipap >> PAGE_SHIFT;
if (kvm_is_transparent_hugepage(pfn)) {
unsigned long mask;
/*
* The address we faulted on is backed by a transparent huge
* page. However, because we map the compound huge page and
* not the individual tail page, we need to transfer the
* refcount to the head page. We have to be careful that the
* THP doesn't start to split while we are adjusting the
* refcounts.
*
* We are sure this doesn't happen, because mmu_notifier_retry
* was successful and we are holding the mmu_lock, so if this
* THP is trying to split, it will be blocked in the mmu
* notifier before touching any of the pages, specifically
* before being able to call __split_huge_page_refcount().
*
* We can therefore safely transfer the refcount from PG_tail
* to PG_head and switch the pfn from a tail page to the head
* page accordingly.
*/
mask = PTRS_PER_PMD - 1;
VM_BUG_ON((gfn & mask) != (pfn & mask));
if (pfn & mask) {
*ipap &= PMD_MASK;
kvm_release_pfn_clean(pfn);
pfn &= ~mask;
kvm_get_pfn(pfn);
*pfnp = pfn;
}
return true;
}
return false;
}
/**
* stage2_wp_ptes - write protect PMD range
* @pmd: pointer to pmd entry
@ -1607,6 +1569,10 @@ static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
hva_t uaddr_start, uaddr_end;
size_t size;
/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
if (map_size == PAGE_SIZE)
return true;
size = memslot->npages * PAGE_SIZE;
gpa_start = memslot->base_gfn << PAGE_SHIFT;
@ -1626,7 +1592,7 @@ static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
* |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
* +-----+--------------------+--------------------+---+
*
* memslot->base_gfn << PAGE_SIZE:
* memslot->base_gfn << PAGE_SHIFT:
* +---+--------------------+--------------------+-----+
* |abc|def Stage-2 block | Stage-2 block |tvxyz|
* +---+--------------------+--------------------+-----+
@ -1656,6 +1622,59 @@ static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
(hva & ~(map_size - 1)) + map_size <= uaddr_end;
}
/*
* Check if the given hva is backed by a transparent huge page (THP) and
* whether it can be mapped using block mapping in stage2. If so, adjust
* the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
* supported. This will need to be updated to support other THP sizes.
*
* Returns the size of the mapping.
*/
static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
unsigned long hva, kvm_pfn_t *pfnp,
phys_addr_t *ipap)
{
kvm_pfn_t pfn = *pfnp;
/*
* Make sure the adjustment is done only for THP pages. Also make
* sure that the HVA and IPA are sufficiently aligned and that the
* block map is contained within the memslot.
*/
if (kvm_is_transparent_hugepage(pfn) &&
fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
/*
* The address we faulted on is backed by a transparent huge
* page. However, because we map the compound huge page and
* not the individual tail page, we need to transfer the
* refcount to the head page. We have to be careful that the
* THP doesn't start to split while we are adjusting the
* refcounts.
*
* We are sure this doesn't happen, because mmu_notifier_retry
* was successful and we are holding the mmu_lock, so if this
* THP is trying to split, it will be blocked in the mmu
* notifier before touching any of the pages, specifically
* before being able to call __split_huge_page_refcount().
*
* We can therefore safely transfer the refcount from PG_tail
* to PG_head and switch the pfn from a tail page to the head
* page accordingly.
*/
*ipap &= PMD_MASK;
kvm_release_pfn_clean(pfn);
pfn &= ~(PTRS_PER_PMD - 1);
kvm_get_pfn(pfn);
*pfnp = pfn;
return PMD_SIZE;
}
/* Use page mapping if we cannot use block mapping. */
return PAGE_SIZE;
}
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
struct kvm_memory_slot *memslot, unsigned long hva,
unsigned long fault_status)
@ -1769,20 +1788,13 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
if (mmu_notifier_retry(kvm, mmu_seq))
goto out_unlock;
if (vma_pagesize == PAGE_SIZE && !force_pte) {
/*
* Only PMD_SIZE transparent hugepages(THP) are
* currently supported. This code will need to be
* updated to support other THP sizes.
*
* Make sure the host VA and the guest IPA are sufficiently
* aligned and that the block is contained within the memslot.
*/
if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
transparent_hugepage_adjust(&pfn, &fault_ipa))
vma_pagesize = PMD_SIZE;
}
/*
* If we are not forced to use page mapping, check if we are
* backed by a THP and thus use block mapping if possible.
*/
if (vma_pagesize == PAGE_SIZE && !force_pte)
vma_pagesize = transparent_hugepage_adjust(memslot, hva,
&pfn, &fault_ipa);
if (writable)
kvm_set_pfn_dirty(pfn);
@ -2185,11 +2197,11 @@ int kvm_mmu_init(void)
{
int err;
hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
/*
* We rely on the linker script to ensure at build time that the HYP
@ -2262,11 +2274,19 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
{
/*
* At this point memslot has been committed and there is an
* allocated dirty_bitmap[], dirty pages will be be tracked while the
* allocated dirty_bitmap[], dirty pages will be tracked while the
* memory slot is write protected.
*/
if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
kvm_mmu_wp_memory_region(kvm, mem->slot);
if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
/*
* If we're with initial-all-set, we don't need to write
* protect any pages because they're all reported as dirty.
* Huge pages and normal pages will be write protect gradually.
*/
if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
kvm_mmu_wp_memory_region(kvm, mem->slot);
}
}
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,

View File

@ -94,7 +94,7 @@ static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
/*
* NOTE: We always update r0 (or x0) because for PSCI v0.1
* the general puspose registers are undefined upon CPU_ON.
* the general purpose registers are undefined upon CPU_ON.
*/
reset_state->r0 = smccc_get_arg3(source_vcpu);
@ -265,10 +265,10 @@ static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
case PSCI_0_2_FN_SYSTEM_OFF:
kvm_psci_system_off(vcpu);
/*
* We should'nt be going back to guest VCPU after
* We shouldn't be going back to guest VCPU after
* receiving SYSTEM_OFF request.
*
* If user space accidently/deliberately resumes
* If user space accidentally/deliberately resumes
* guest VCPU after SYSTEM_OFF request then guest
* VCPU should see internal failure from PSCI return
* value. To achieve this, we preload r0 (or x0) with

View File

@ -36,15 +36,11 @@ static u32 kvm_ipa_limit;
/*
* ARMv8 Reset Values
*/
static const struct kvm_regs default_regs_reset = {
.regs.pstate = (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT |
PSR_F_BIT | PSR_D_BIT),
};
#define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
PSR_F_BIT | PSR_D_BIT)
static const struct kvm_regs default_regs_reset32 = {
.regs.pstate = (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT |
PSR_AA32_I_BIT | PSR_AA32_F_BIT),
};
#define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
PSR_AA32_I_BIT | PSR_AA32_F_BIT)
/**
* kvm_arch_vm_ioctl_check_extension
@ -155,7 +151,7 @@ static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
vl = vcpu->arch.sve_max_vl;
/*
* Resposibility for these properties is shared between
* Responsibility for these properties is shared between
* kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
* set_sve_vls(). Double-check here just to be sure:
*/
@ -241,7 +237,7 @@ static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
* ioctl or as part of handling a request issued by another VCPU in the PSCI
* handling code. In the first case, the VCPU will not be loaded, and in the
* second case the VCPU will be loaded. Because this function operates purely
* on the memory-backed valus of system registers, we want to do a full put if
* on the memory-backed values of system registers, we want to do a full put if
* we were loaded (handling a request) and load the values back at the end of
* the function. Otherwise we leave the state alone. In both cases, we
* disable preemption around the vcpu reset as we would otherwise race with
@ -249,9 +245,9 @@ static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
*/
int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
{
const struct kvm_regs *cpu_reset;
int ret = -EINVAL;
bool loaded;
u32 pstate;
/* Reset PMU outside of the non-preemptible section */
kvm_pmu_vcpu_reset(vcpu);
@ -282,16 +278,17 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
goto out;
cpu_reset = &default_regs_reset32;
pstate = VCPU_RESET_PSTATE_SVC;
} else {
cpu_reset = &default_regs_reset;
pstate = VCPU_RESET_PSTATE_EL1;
}
break;
}
/* Reset core registers */
memcpy(vcpu_gp_regs(vcpu), cpu_reset, sizeof(*cpu_reset));
memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
vcpu_gp_regs(vcpu)->regs.pstate = pstate;
/* Reset system registers */
kvm_reset_sys_regs(vcpu);
@ -388,7 +385,7 @@ int kvm_set_ipa_limit(void)
*
* So clamp the ipa limit further down to limit the number of levels.
* Since we can concatenate upto 16 tables at entry level, we could
* go upto 4bits above the maximum VA addressible with the current
* go upto 4bits above the maximum VA addressable with the current
* number of levels.
*/
va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;

View File

@ -34,7 +34,7 @@
#include "trace.h"
/*
* All of this file is extremly similar to the ARM coproc.c, but the
* All of this file is extremely similar to the ARM coproc.c, but the
* types are different. My gut feeling is that it should be pretty
* easy to merge, but that would be an ABI breakage -- again. VFP
* would also need to be abstracted.
@ -64,11 +64,8 @@ static bool write_to_read_only(struct kvm_vcpu *vcpu,
return false;
}
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
{
if (!vcpu->arch.sysregs_loaded_on_cpu)
goto immediate_read;
/*
* System registers listed in the switch are not saved on every
* exit from the guest but are only saved on vcpu_put.
@ -79,75 +76,92 @@ u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
* thread when emulating cross-VCPU communication.
*/
switch (reg) {
case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
case SCTLR_EL1: return read_sysreg_s(SYS_SCTLR_EL12);
case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
case CPACR_EL1: return read_sysreg_s(SYS_CPACR_EL12);
case TTBR0_EL1: return read_sysreg_s(SYS_TTBR0_EL12);
case TTBR1_EL1: return read_sysreg_s(SYS_TTBR1_EL12);
case TCR_EL1: return read_sysreg_s(SYS_TCR_EL12);
case ESR_EL1: return read_sysreg_s(SYS_ESR_EL12);
case AFSR0_EL1: return read_sysreg_s(SYS_AFSR0_EL12);
case AFSR1_EL1: return read_sysreg_s(SYS_AFSR1_EL12);
case FAR_EL1: return read_sysreg_s(SYS_FAR_EL12);
case MAIR_EL1: return read_sysreg_s(SYS_MAIR_EL12);
case VBAR_EL1: return read_sysreg_s(SYS_VBAR_EL12);
case CONTEXTIDR_EL1: return read_sysreg_s(SYS_CONTEXTIDR_EL12);
case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
case AMAIR_EL1: return read_sysreg_s(SYS_AMAIR_EL12);
case CNTKCTL_EL1: return read_sysreg_s(SYS_CNTKCTL_EL12);
case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break;
case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
case ACTLR_EL1: *val = read_sysreg_s(SYS_ACTLR_EL1); break;
case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
case PAR_EL1: *val = read_sysreg_s(SYS_PAR_EL1); break;
case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
default: return false;
}
immediate_read:
return __vcpu_sys_reg(vcpu, reg);
return true;
}
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
{
if (!vcpu->arch.sysregs_loaded_on_cpu)
goto immediate_write;
/*
* System registers listed in the switch are not restored on every
* entry to the guest but are only restored on vcpu_load.
*
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
* should never be listed below, because the the MPIDR should only be
* set once, before running the VCPU, and never changed later.
* should never be listed below, because the MPIDR should only be set
* once, before running the VCPU, and never changed later.
*/
switch (reg) {
case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); return;
case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); return;
case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); return;
case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); return;
case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); return;
case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); return;
case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); return;
case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); return;
case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); return;
case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); return;
case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); return;
case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); return;
case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); return;
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break;
case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); break;
case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
default: return false;
}
immediate_write:
return true;
}
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
{
u64 val = 0x8badf00d8badf00d;
if (vcpu->arch.sysregs_loaded_on_cpu &&
__vcpu_read_sys_reg_from_cpu(reg, &val))
return val;
return __vcpu_sys_reg(vcpu, reg);
}
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
{
if (vcpu->arch.sysregs_loaded_on_cpu &&
__vcpu_write_sys_reg_to_cpu(val, reg))
return;
__vcpu_sys_reg(vcpu, reg) = val;
}
@ -1532,7 +1546,7 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
@ -1571,8 +1585,8 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
@ -2073,12 +2087,37 @@ static const struct sys_reg_desc cp15_64_regs[] = {
{ SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
};
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
bool is_32)
{
unsigned int i;
for (i = 0; i < n; i++) {
if (!is_32 && table[i].reg && !table[i].reset) {
kvm_err("sys_reg table %p entry %d has lacks reset\n",
table, i);
return 1;
}
if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
return 1;
}
}
return 0;
}
/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
void kvm_register_target_sys_reg_table(unsigned int target,
struct kvm_sys_reg_target_table *table)
{
if (check_sysreg_table(table->table64.table, table->table64.num, false) ||
check_sysreg_table(table->table32.table, table->table32.num, true))
return;
target_tables[target] = table;
}
@ -2364,19 +2403,13 @@ static int emulate_sys_reg(struct kvm_vcpu *vcpu,
}
static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *table, size_t num,
unsigned long *bmap)
const struct sys_reg_desc *table, size_t num)
{
unsigned long i;
for (i = 0; i < num; i++)
if (table[i].reset) {
int reg = table[i].reg;
if (table[i].reset)
table[i].reset(vcpu, &table[i]);
if (reg > 0 && reg < NR_SYS_REGS)
set_bit(reg, bmap);
}
}
/**
@ -2832,32 +2865,18 @@ int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
return write_demux_regids(uindices);
}
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
unsigned int i;
for (i = 1; i < n; i++) {
if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
return 1;
}
}
return 0;
}
void kvm_sys_reg_table_init(void)
{
unsigned int i;
struct sys_reg_desc clidr;
/* Make sure tables are unique and in order. */
BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
/* We abuse the reset function to overwrite the table itself. */
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
@ -2893,17 +2912,10 @@ void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
size_t num;
const struct sys_reg_desc *table;
DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
/* Generic chip reset first (so target could override). */
reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
table = get_target_table(vcpu->arch.target, true, &num);
reset_sys_reg_descs(vcpu, table, num, bmap);
for (num = 1; num < NR_SYS_REGS; num++) {
if (WARN(!test_bit(num, bmap),
"Didn't reset __vcpu_sys_reg(%zi)\n", num))
break;
}
reset_sys_reg_descs(vcpu, table, num);
}

View File

@ -1,216 +1,8 @@
/* SPDX-License-Identifier: GPL-2.0 */
#if !defined(_TRACE_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
#ifndef _TRACE_ARM64_KVM_H
#define _TRACE_ARM64_KVM_H
#include <linux/tracepoint.h>
#include "sys_regs.h"
#include "trace_arm.h"
#include "trace_handle_exit.h"
#undef TRACE_SYSTEM
#define TRACE_SYSTEM kvm
TRACE_EVENT(kvm_wfx_arm64,
TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
TP_ARGS(vcpu_pc, is_wfe),
TP_STRUCT__entry(
__field(unsigned long, vcpu_pc)
__field(bool, is_wfe)
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->is_wfe = is_wfe;
),
TP_printk("guest executed wf%c at: 0x%08lx",
__entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
);
TRACE_EVENT(kvm_hvc_arm64,
TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
TP_ARGS(vcpu_pc, r0, imm),
TP_STRUCT__entry(
__field(unsigned long, vcpu_pc)
__field(unsigned long, r0)
__field(unsigned long, imm)
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->r0 = r0;
__entry->imm = imm;
),
TP_printk("HVC at 0x%08lx (r0: 0x%08lx, imm: 0x%lx)",
__entry->vcpu_pc, __entry->r0, __entry->imm)
);
TRACE_EVENT(kvm_arm_setup_debug,
TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
TP_ARGS(vcpu, guest_debug),
TP_STRUCT__entry(
__field(struct kvm_vcpu *, vcpu)
__field(__u32, guest_debug)
),
TP_fast_assign(
__entry->vcpu = vcpu;
__entry->guest_debug = guest_debug;
),
TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
);
TRACE_EVENT(kvm_arm_clear_debug,
TP_PROTO(__u32 guest_debug),
TP_ARGS(guest_debug),
TP_STRUCT__entry(
__field(__u32, guest_debug)
),
TP_fast_assign(
__entry->guest_debug = guest_debug;
),
TP_printk("flags: 0x%08x", __entry->guest_debug)
);
TRACE_EVENT(kvm_arm_set_dreg32,
TP_PROTO(const char *name, __u32 value),
TP_ARGS(name, value),
TP_STRUCT__entry(
__field(const char *, name)
__field(__u32, value)
),
TP_fast_assign(
__entry->name = name;
__entry->value = value;
),
TP_printk("%s: 0x%08x", __entry->name, __entry->value)
);
TRACE_DEFINE_SIZEOF(__u64);
TRACE_EVENT(kvm_arm_set_regset,
TP_PROTO(const char *type, int len, __u64 *control, __u64 *value),
TP_ARGS(type, len, control, value),
TP_STRUCT__entry(
__field(const char *, name)
__field(int, len)
__array(u64, ctrls, 16)
__array(u64, values, 16)
),
TP_fast_assign(
__entry->name = type;
__entry->len = len;
memcpy(__entry->ctrls, control, len << 3);
memcpy(__entry->values, value, len << 3);
),
TP_printk("%d %s CTRL:%s VALUE:%s", __entry->len, __entry->name,
__print_array(__entry->ctrls, __entry->len, sizeof(__u64)),
__print_array(__entry->values, __entry->len, sizeof(__u64)))
);
TRACE_EVENT(trap_reg,
TP_PROTO(const char *fn, int reg, bool is_write, u64 write_value),
TP_ARGS(fn, reg, is_write, write_value),
TP_STRUCT__entry(
__field(const char *, fn)
__field(int, reg)
__field(bool, is_write)
__field(u64, write_value)
),
TP_fast_assign(
__entry->fn = fn;
__entry->reg = reg;
__entry->is_write = is_write;
__entry->write_value = write_value;
),
TP_printk("%s %s reg %d (0x%08llx)", __entry->fn, __entry->is_write?"write to":"read from", __entry->reg, __entry->write_value)
);
TRACE_EVENT(kvm_handle_sys_reg,
TP_PROTO(unsigned long hsr),
TP_ARGS(hsr),
TP_STRUCT__entry(
__field(unsigned long, hsr)
),
TP_fast_assign(
__entry->hsr = hsr;
),
TP_printk("HSR 0x%08lx", __entry->hsr)
);
TRACE_EVENT(kvm_sys_access,
TP_PROTO(unsigned long vcpu_pc, struct sys_reg_params *params, const struct sys_reg_desc *reg),
TP_ARGS(vcpu_pc, params, reg),
TP_STRUCT__entry(
__field(unsigned long, vcpu_pc)
__field(bool, is_write)
__field(const char *, name)
__field(u8, Op0)
__field(u8, Op1)
__field(u8, CRn)
__field(u8, CRm)
__field(u8, Op2)
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->is_write = params->is_write;
__entry->name = reg->name;
__entry->Op0 = reg->Op0;
__entry->Op0 = reg->Op0;
__entry->Op1 = reg->Op1;
__entry->CRn = reg->CRn;
__entry->CRm = reg->CRm;
__entry->Op2 = reg->Op2;
),
TP_printk("PC: %lx %s (%d,%d,%d,%d,%d) %s",
__entry->vcpu_pc, __entry->name ?: "UNKN",
__entry->Op0, __entry->Op1, __entry->CRn,
__entry->CRm, __entry->Op2,
__entry->is_write ? "write" : "read")
);
TRACE_EVENT(kvm_set_guest_debug,
TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
TP_ARGS(vcpu, guest_debug),
TP_STRUCT__entry(
__field(struct kvm_vcpu *, vcpu)
__field(__u32, guest_debug)
),
TP_fast_assign(
__entry->vcpu = vcpu;
__entry->guest_debug = guest_debug;
),
TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
);
#endif /* _TRACE_ARM64_KVM_H */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE trace
/* This part must be outside protection */
#include <trace/define_trace.h>
#endif /* _TRACE_ARM64_KVM_H */

View File

@ -1,10 +1,9 @@
/* SPDX-License-Identifier: GPL-2.0 */
#if !defined(_TRACE_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_KVM_H
#if !defined(_TRACE_ARM_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_ARM_ARM64_KVM_H
#include <kvm/arm_arch_timer.h>
#include <linux/tracepoint.h>
#include <asm/kvm_arm.h>
#undef TRACE_SYSTEM
#define TRACE_SYSTEM kvm
@ -368,12 +367,12 @@ TRACE_EVENT(kvm_timer_emulate,
__entry->timer_idx, __entry->should_fire)
);
#endif /* _TRACE_KVM_H */
#endif /* _TRACE_ARM_ARM64_KVM_H */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH ../../virt/kvm/arm
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE trace
#define TRACE_INCLUDE_FILE trace_arm
/* This part must be outside protection */
#include <trace/define_trace.h>

View File

@ -0,0 +1,215 @@
/* SPDX-License-Identifier: GPL-2.0 */
#if !defined(_TRACE_HANDLE_EXIT_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_HANDLE_EXIT_ARM64_KVM_H
#include <linux/tracepoint.h>
#include "sys_regs.h"
#undef TRACE_SYSTEM
#define TRACE_SYSTEM kvm
TRACE_EVENT(kvm_wfx_arm64,
TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
TP_ARGS(vcpu_pc, is_wfe),
TP_STRUCT__entry(
__field(unsigned long, vcpu_pc)
__field(bool, is_wfe)
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->is_wfe = is_wfe;
),
TP_printk("guest executed wf%c at: 0x%08lx",
__entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
);
TRACE_EVENT(kvm_hvc_arm64,
TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
TP_ARGS(vcpu_pc, r0, imm),
TP_STRUCT__entry(
__field(unsigned long, vcpu_pc)
__field(unsigned long, r0)
__field(unsigned long, imm)
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->r0 = r0;
__entry->imm = imm;
),
TP_printk("HVC at 0x%08lx (r0: 0x%08lx, imm: 0x%lx)",
__entry->vcpu_pc, __entry->r0, __entry->imm)
);
TRACE_EVENT(kvm_arm_setup_debug,
TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
TP_ARGS(vcpu, guest_debug),
TP_STRUCT__entry(
__field(struct kvm_vcpu *, vcpu)
__field(__u32, guest_debug)
),
TP_fast_assign(
__entry->vcpu = vcpu;
__entry->guest_debug = guest_debug;
),
TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
);
TRACE_EVENT(kvm_arm_clear_debug,
TP_PROTO(__u32 guest_debug),
TP_ARGS(guest_debug),
TP_STRUCT__entry(
__field(__u32, guest_debug)
),
TP_fast_assign(
__entry->guest_debug = guest_debug;
),
TP_printk("flags: 0x%08x", __entry->guest_debug)
);
TRACE_EVENT(kvm_arm_set_dreg32,
TP_PROTO(const char *name, __u32 value),
TP_ARGS(name, value),
TP_STRUCT__entry(
__field(const char *, name)
__field(__u32, value)
),
TP_fast_assign(
__entry->name = name;
__entry->value = value;
),
TP_printk("%s: 0x%08x", __entry->name, __entry->value)
);
TRACE_DEFINE_SIZEOF(__u64);
TRACE_EVENT(kvm_arm_set_regset,
TP_PROTO(const char *type, int len, __u64 *control, __u64 *value),
TP_ARGS(type, len, control, value),
TP_STRUCT__entry(
__field(const char *, name)
__field(int, len)
__array(u64, ctrls, 16)
__array(u64, values, 16)
),
TP_fast_assign(
__entry->name = type;
__entry->len = len;
memcpy(__entry->ctrls, control, len << 3);
memcpy(__entry->values, value, len << 3);
),
TP_printk("%d %s CTRL:%s VALUE:%s", __entry->len, __entry->name,
__print_array(__entry->ctrls, __entry->len, sizeof(__u64)),
__print_array(__entry->values, __entry->len, sizeof(__u64)))
);
TRACE_EVENT(trap_reg,
TP_PROTO(const char *fn, int reg, bool is_write, u64 write_value),
TP_ARGS(fn, reg, is_write, write_value),
TP_STRUCT__entry(
__field(const char *, fn)
__field(int, reg)
__field(bool, is_write)
__field(u64, write_value)
),
TP_fast_assign(
__entry->fn = fn;
__entry->reg = reg;
__entry->is_write = is_write;
__entry->write_value = write_value;
),
TP_printk("%s %s reg %d (0x%08llx)", __entry->fn, __entry->is_write?"write to":"read from", __entry->reg, __entry->write_value)
);
TRACE_EVENT(kvm_handle_sys_reg,
TP_PROTO(unsigned long hsr),
TP_ARGS(hsr),
TP_STRUCT__entry(
__field(unsigned long, hsr)
),
TP_fast_assign(
__entry->hsr = hsr;
),
TP_printk("HSR 0x%08lx", __entry->hsr)
);
TRACE_EVENT(kvm_sys_access,
TP_PROTO(unsigned long vcpu_pc, struct sys_reg_params *params, const struct sys_reg_desc *reg),
TP_ARGS(vcpu_pc, params, reg),
TP_STRUCT__entry(
__field(unsigned long, vcpu_pc)
__field(bool, is_write)
__field(const char *, name)
__field(u8, Op0)
__field(u8, Op1)
__field(u8, CRn)
__field(u8, CRm)
__field(u8, Op2)
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->is_write = params->is_write;
__entry->name = reg->name;
__entry->Op0 = reg->Op0;
__entry->Op0 = reg->Op0;
__entry->Op1 = reg->Op1;
__entry->CRn = reg->CRn;
__entry->CRm = reg->CRm;
__entry->Op2 = reg->Op2;
),
TP_printk("PC: %lx %s (%d,%d,%d,%d,%d) %s",
__entry->vcpu_pc, __entry->name ?: "UNKN",
__entry->Op0, __entry->Op1, __entry->CRn,
__entry->CRm, __entry->Op2,
__entry->is_write ? "write" : "read")
);
TRACE_EVENT(kvm_set_guest_debug,
TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug),
TP_ARGS(vcpu, guest_debug),
TP_STRUCT__entry(
__field(struct kvm_vcpu *, vcpu)
__field(__u32, guest_debug)
),
TP_fast_assign(
__entry->vcpu = vcpu;
__entry->guest_debug = guest_debug;
),
TP_printk("vcpu: %p, flags: 0x%08x", __entry->vcpu, __entry->guest_debug)
);
#endif /* _TRACE_HANDLE_EXIT_ARM64_KVM_H */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE trace_handle_exit
/* This part must be outside protection */
#include <trace/define_trace.h>

View File

@ -7,7 +7,7 @@
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <asm/kvm_emulate.h>
#include "vgic.h"
#include "vgic/vgic.h"
#include "sys_regs.h"
static bool access_gic_ctlr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,

View File

@ -30,7 +30,7 @@ TRACE_EVENT(vgic_update_irq_pending,
#endif /* _TRACE_VGIC_H */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH ../../virt/kvm/arm/vgic
#define TRACE_INCLUDE_PATH ../../arch/arm64/kvm/vgic
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE trace

View File

@ -56,7 +56,7 @@ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
cpuif->vgic_hcr &= ~GICH_HCR_UIE;
for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) {
u32 val = cpuif->vgic_lr[lr];
u32 cpuid, intid = val & GICH_LR_VIRTUALID;
struct vgic_irq *irq;
@ -120,7 +120,7 @@ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
vgic_put_irq(vcpu->kvm, irq);
}
vgic_cpu->used_lrs = 0;
cpuif->used_lrs = 0;
}
/*
@ -427,7 +427,7 @@ int vgic_v2_probe(const struct gic_kvm_info *info)
static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
u64 used_lrs = cpu_if->used_lrs;
u64 elrsr;
int i;
@ -448,7 +448,7 @@ static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
void vgic_v2_save_state(struct kvm_vcpu *vcpu)
{
void __iomem *base = kvm_vgic_global_state.vctrl_base;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
if (!base)
return;
@ -463,7 +463,7 @@ void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
void __iomem *base = kvm_vgic_global_state.vctrl_base;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
u64 used_lrs = cpu_if->used_lrs;
int i;
if (!base)

View File

@ -39,7 +39,7 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
cpuif->vgic_hcr &= ~ICH_HCR_UIE;
for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
for (lr = 0; lr < cpuif->used_lrs; lr++) {
u64 val = cpuif->vgic_lr[lr];
u32 intid, cpuid;
struct vgic_irq *irq;
@ -111,7 +111,7 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
vgic_put_irq(vcpu->kvm, irq);
}
vgic_cpu->used_lrs = 0;
cpuif->used_lrs = 0;
}
/* Requires the irq to be locked already */
@ -587,7 +587,7 @@ int vgic_v3_probe(const struct gic_kvm_info *info)
int ret;
/*
* The ListRegs field is 5 bits, but there is a architectural
* The ListRegs field is 5 bits, but there is an architectural
* maximum of 16 list registers. Just ignore bit 4...
*/
kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
@ -630,12 +630,10 @@ int vgic_v3_probe(const struct gic_kvm_info *info)
if (kvm_vgic_global_state.vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n");
#ifdef CONFIG_ARM64
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
group0_trap = true;
group1_trap = true;
}
#endif
if (group0_trap || group1_trap || common_trap) {
kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
@ -664,10 +662,10 @@ void vgic_v3_load(struct kvm_vcpu *vcpu)
if (likely(cpu_if->vgic_sre))
kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
kvm_call_hyp(__vgic_v3_restore_aprs, kern_hyp_va(cpu_if));
if (has_vhe())
__vgic_v3_activate_traps(vcpu);
__vgic_v3_activate_traps(cpu_if);
WARN_ON(vgic_v4_load(vcpu));
}
@ -682,12 +680,14 @@ void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
void vgic_v3_put(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
WARN_ON(vgic_v4_put(vcpu, false));
vgic_v3_vmcr_sync(vcpu);
kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
kvm_call_hyp(__vgic_v3_save_aprs, kern_hyp_va(cpu_if));
if (has_vhe())
__vgic_v3_deactivate_traps(vcpu);
__vgic_v3_deactivate_traps(cpu_if);
}

View File

@ -786,6 +786,7 @@ static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
int count;
bool multi_sgi;
u8 prio = 0xff;
int i = 0;
lockdep_assert_held(&vgic_cpu->ap_list_lock);
@ -827,11 +828,14 @@ static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
}
}
vcpu->arch.vgic_cpu.used_lrs = count;
/* Nuke remaining LRs */
for ( ; count < kvm_vgic_global_state.nr_lr; count++)
vgic_clear_lr(vcpu, count);
for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
vgic_clear_lr(vcpu, i);
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
else
vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
}
static inline bool can_access_vgic_from_kernel(void)
@ -849,13 +853,13 @@ static inline void vgic_save_state(struct kvm_vcpu *vcpu)
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
vgic_v2_save_state(vcpu);
else
__vgic_v3_save_state(vcpu);
__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
}
/* Sync back the hardware VGIC state into our emulation after a guest's run. */
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
int used_lrs;
/* An empty ap_list_head implies used_lrs == 0 */
if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
@ -864,7 +868,12 @@ void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
if (can_access_vgic_from_kernel())
vgic_save_state(vcpu);
if (vgic_cpu->used_lrs)
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
else
used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
if (used_lrs)
vgic_fold_lr_state(vcpu);
vgic_prune_ap_list(vcpu);
}
@ -874,7 +883,7 @@ static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
vgic_v2_restore_state(vcpu);
else
__vgic_v3_restore_state(vcpu);
__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
}
/* Flush our emulation state into the GIC hardware before entering the guest. */

View File

@ -12,7 +12,7 @@
#include <linux/types.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <net/checksum.h>
/*
* XXX Fixme: those 2 inlines are meant for debugging and will go away

View File

@ -63,21 +63,21 @@ static __inline__ void release_dma_lock(unsigned long flags)
}
static __inline__ unsigned char fd_inb(int port)
static __inline__ unsigned char fd_inb(int base, int reg)
{
if(MACH_IS_Q40)
return inb_p(port);
return inb_p(base + reg);
else if(MACH_IS_SUN3X)
return sun3x_82072_fd_inb(port);
return sun3x_82072_fd_inb(base + reg);
return 0;
}
static __inline__ void fd_outb(unsigned char value, int port)
static __inline__ void fd_outb(unsigned char value, int base, int reg)
{
if(MACH_IS_Q40)
outb_p(value, port);
outb_p(value, base + reg);
else if(MACH_IS_SUN3X)
sun3x_82072_fd_outb(value, port);
sun3x_82072_fd_outb(value, base + reg);
}
@ -211,26 +211,27 @@ asmlinkage irqreturn_t floppy_hardint(int irq, void *dev_id)
st=1;
for(lcount=virtual_dma_count, lptr=virtual_dma_addr;
lcount; lcount--, lptr++) {
st=inb(virtual_dma_port+4) & 0xa0 ;
if(st != 0xa0)
st = inb(virtual_dma_port + FD_STATUS);
st &= STATUS_DMA | STATUS_READY;
if (st != (STATUS_DMA | STATUS_READY))
break;
if(virtual_dma_mode)
outb_p(*lptr, virtual_dma_port+5);
outb_p(*lptr, virtual_dma_port + FD_DATA);
else
*lptr = inb_p(virtual_dma_port+5);
*lptr = inb_p(virtual_dma_port + FD_DATA);
}
virtual_dma_count = lcount;
virtual_dma_addr = lptr;
st = inb(virtual_dma_port+4);
st = inb(virtual_dma_port + FD_STATUS);
}
#ifdef TRACE_FLPY_INT
calls++;
#endif
if(st == 0x20)
if (st == STATUS_DMA)
return IRQ_HANDLED;
if(!(st & 0x20)) {
if (!(st & STATUS_DMA)) {
virtual_dma_residue += virtual_dma_count;
virtual_dma_count=0;
#ifdef TRACE_FLPY_INT

View File

@ -12,7 +12,7 @@ obj-y := $(platform-y)
# make clean traverses $(obj-) without having included .config, so
# everything ends up here
obj- := $(platform-)
obj- := $(platform-y)
# mips object files
# The object files are linked as core-y files would be linked

View File

@ -1,42 +1,44 @@
# SPDX-License-Identifier: GPL-2.0
# All platforms listed in alphabetic order
platforms += alchemy
platforms += ar7
platforms += ath25
platforms += ath79
platforms += bcm47xx
platforms += bcm63xx
platforms += bmips
platforms += cavium-octeon
platforms += cobalt
platforms += dec
platforms += emma
platforms += generic
platforms += jazz
platforms += jz4740
platforms += lantiq
platforms += lasat
platforms += loongson2ef
platforms += loongson32
platforms += loongson64
platforms += mti-malta
platforms += netlogic
platforms += paravirt
platforms += pic32
platforms += pistachio
platforms += pmcs-msp71xx
platforms += pnx833x
platforms += ralink
platforms += rb532
platforms += sgi-ip22
platforms += sgi-ip27
platforms += sgi-ip30
platforms += sgi-ip32
platforms += sibyte
platforms += sni
platforms += txx9
platforms += vr41xx
platform-$(CONFIG_MIPS_ALCHEMY) += alchemy/
platform-$(CONFIG_AR7) += ar7/
platform-$(CONFIG_ATH25) += ath25/
platform-$(CONFIG_ATH79) += ath79/
platform-$(CONFIG_BCM47XX) += bcm47xx/
platform-$(CONFIG_BCM63XX) += bcm63xx/
platform-$(CONFIG_BMIPS_GENERIC) += bmips/
platform-$(CONFIG_CAVIUM_OCTEON_SOC) += cavium-octeon/
platform-$(CONFIG_MIPS_COBALT) += cobalt/
platform-$(CONFIG_MACH_DECSTATION) += dec/
platform-$(CONFIG_MIPS_GENERIC) += generic/
platform-$(CONFIG_MACH_JAZZ) += jazz/
platform-$(CONFIG_MACH_INGENIC) += jz4740/
platform-$(CONFIG_LANTIQ) += lantiq/
platform-$(CONFIG_MACH_LOONGSON2EF) += loongson2ef/
platform-$(CONFIG_MACH_LOONGSON32) += loongson32/
platform-$(CONFIG_MACH_LOONGSON64) += loongson64/
platform-$(CONFIG_MIPS_MALTA) += mti-malta/
platform-$(CONFIG_NLM_COMMON) += netlogic/
platform-$(CONFIG_MIPS_PARAVIRT) += paravirt/
platform-$(CONFIG_PIC32MZDA) += pic32/
platform-$(CONFIG_MACH_PISTACHIO) += pistachio/
platform-$(CONFIG_SOC_PNX833X) += pnx833x/
platform-$(CONFIG_RALINK) += ralink/
platform-$(CONFIG_MIKROTIK_RB532) += rb532/
platform-$(CONFIG_SGI_IP22) += sgi-ip22/
platform-$(CONFIG_SGI_IP27) += sgi-ip27/
platform-$(CONFIG_SGI_IP28) += sgi-ip22/
platform-$(CONFIG_SGI_IP30) += sgi-ip30/
platform-$(CONFIG_SGI_IP32) += sgi-ip32/
platform-$(CONFIG_SIBYTE_BCM112X) += sibyte/
platform-$(CONFIG_SIBYTE_SB1250) += sibyte/
platform-$(CONFIG_SIBYTE_BCM1x55) += sibyte/
platform-$(CONFIG_SIBYTE_BCM1x80) += sibyte/
platform-$(CONFIG_SNI_RM) += sni/
platform-$(CONFIG_MACH_TX39XX) += txx9/
platform-$(CONFIG_MACH_TX49XX) += txx9/
platform-$(CONFIG_MACH_VR41XX) += vr41xx/
# include the platform specific files
include $(patsubst %, $(srctree)/arch/mips/%/Platform, $(platforms))
include $(patsubst %, $(srctree)/arch/mips/%/Platform, $(platform-y))

View File

@ -92,6 +92,9 @@ config MIPS
select SYSCTL_EXCEPTION_TRACE
select VIRT_TO_BUS
config MIPS_FIXUP_BIGPHYS_ADDR
bool
menu "Machine selection"
choice
@ -157,6 +160,7 @@ config MIPS_ALCHEMY
select CSRC_R4K
select IRQ_MIPS_CPU
select DMA_MAYBE_COHERENT # Au1000,1500,1100 aren't, rest is
select MIPS_FIXUP_BIGPHYS_ADDR if PCI
select SYS_HAS_CPU_MIPS32_R1
select SYS_SUPPORTS_32BIT_KERNEL
select SYS_SUPPORTS_APM_EMULATION
@ -427,23 +431,6 @@ config LANTIQ
select ARCH_HAS_RESET_CONTROLLER
select RESET_CONTROLLER
config LASAT
bool "LASAT Networks platforms"
select CEVT_R4K
select CRC32
select CSRC_R4K
select DMA_NONCOHERENT
select SYS_HAS_EARLY_PRINTK
select HAVE_PCI
select IRQ_MIPS_CPU
select PCI_GT64XXX_PCI0
select MIPS_NILE4
select R5000_CPU_SCACHE
select SYS_HAS_CPU_R5000
select SYS_SUPPORTS_32BIT_KERNEL
select SYS_SUPPORTS_64BIT_KERNEL if BROKEN
select SYS_SUPPORTS_LITTLE_ENDIAN
config MACH_LOONGSON32
bool "Loongson 32-bit family of machines"
select SYS_SUPPORTS_ZBOOT
@ -475,8 +462,10 @@ config MACH_LOONGSON64
select ISA
select I8259
select IRQ_MIPS_CPU
select NR_CPUS_DEFAULT_4
select NO_EXCEPT_FILL
select NR_CPUS_DEFAULT_64
select USE_GENERIC_EARLY_PRINTK_8250
select PCI_DRIVERS_GENERIC
select SYS_HAS_CPU_LOONGSON64
select SYS_HAS_EARLY_PRINTK
select SYS_SUPPORTS_SMP
@ -593,13 +582,6 @@ config MACH_PIC32
Microchip PIC32 is a family of general-purpose 32 bit MIPS core
microcontrollers.
config NEC_MARKEINS
bool "NEC EMMA2RH Mark-eins board"
select SOC_EMMA2RH
select HAVE_PCI
help
This enables support for the NEC Electronics Mark-eins boards.
config MACH_VR41XX
bool "NEC VR4100 series based machines"
select CEVT_R4K
@ -621,30 +603,6 @@ config NXP_STB225
help
Support for NXP Semiconductors STB225 Development Board.
config PMC_MSP
bool "PMC-Sierra MSP chipsets"
select CEVT_R4K
select CSRC_R4K
select DMA_NONCOHERENT
select SWAP_IO_SPACE
select NO_EXCEPT_FILL
select BOOT_RAW
select SYS_HAS_CPU_MIPS32_R1
select SYS_HAS_CPU_MIPS32_R2
select SYS_SUPPORTS_32BIT_KERNEL
select SYS_SUPPORTS_BIG_ENDIAN
select SYS_SUPPORTS_MIPS16
select IRQ_MIPS_CPU
select SERIAL_8250
select SERIAL_8250_CONSOLE
select USB_EHCI_BIG_ENDIAN_MMIO
select USB_EHCI_BIG_ENDIAN_DESC
help
This adds support for the PMC-Sierra family of Multi-Service
Processor System-On-A-Chips. These parts include a number
of integrated peripherals, interfaces and DSPs in addition to
a variety of MIPS cores.
config RALINK
bool "Ralink based machines"
select CEVT_R4K
@ -1087,10 +1045,8 @@ source "arch/mips/generic/Kconfig"
source "arch/mips/jazz/Kconfig"
source "arch/mips/jz4740/Kconfig"
source "arch/mips/lantiq/Kconfig"
source "arch/mips/lasat/Kconfig"
source "arch/mips/pic32/Kconfig"
source "arch/mips/pistachio/Kconfig"
source "arch/mips/pmcs-msp71xx/Kconfig"
source "arch/mips/ralink/Kconfig"
source "arch/mips/sgi-ip27/Kconfig"
source "arch/mips/sibyte/Kconfig"
@ -1154,6 +1110,7 @@ config CSRC_IOASIC
bool
config CSRC_R4K
select CLOCKSOURCE_WATCHDOG if CPU_FREQ
bool
config CSRC_SB1250
@ -1211,9 +1168,6 @@ config MIPS_BONITO64
config MIPS_MSC
bool
config MIPS_NILE4
bool
config SYNC_R4K
bool
@ -1334,18 +1288,6 @@ config PCI_XTALK_BRIDGE
config NO_EXCEPT_FILL
bool
config SOC_EMMA2RH
bool
select CEVT_R4K
select CSRC_R4K
select DMA_NONCOHERENT
select IRQ_MIPS_CPU
select SWAP_IO_SPACE
select SYS_HAS_CPU_R5500
select SYS_SUPPORTS_32BIT_KERNEL
select SYS_SUPPORTS_64BIT_KERNEL
select SYS_SUPPORTS_BIG_ENDIAN
config SOC_PNX833X
bool
select CEVT_R4K
@ -1419,9 +1361,6 @@ config MIPS_L1_CACHE_SHIFT
default "4" if MIPS_L1_CACHE_SHIFT_4
default "5"
config HAVE_STD_PC_SERIAL_PORT
bool
config ARC_CMDLINE_ONLY
bool
@ -1504,6 +1443,18 @@ config CPU_LOONGSON3_WORKAROUNDS
If unsure, please say Y.
config CPU_LOONGSON3_CPUCFG_EMULATION
bool "Emulate the CPUCFG instruction on older Loongson cores"
default y
depends on CPU_LOONGSON64
help
Loongson-3A R4 and newer have the CPUCFG instruction available for
userland to query CPU capabilities, much like CPUID on x86. This
option provides emulation of the instruction on older Loongson
cores, back to Loongson-3A1000.
If unsure, please say Y.
config CPU_LOONGSON2E
bool "Loongson 2E"
depends on SYS_HAS_CPU_LOONGSON2E
@ -1580,6 +1531,21 @@ config CPU_MIPS32_R2
specific type of processor in your system, choose those that one
otherwise CPU_MIPS32_R1 is a safe bet for any MIPS32 system.
config CPU_MIPS32_R5
bool "MIPS32 Release 5"
depends on SYS_HAS_CPU_MIPS32_R5
select CPU_HAS_PREFETCH
select CPU_SUPPORTS_32BIT_KERNEL
select CPU_SUPPORTS_HIGHMEM
select CPU_SUPPORTS_MSA
select HAVE_KVM
select MIPS_O32_FP64_SUPPORT
help
Choose this option to build a kernel for release 5 or later of the
MIPS32 architecture. New MIPS processors, starting with the Warrior
family, are based on a MIPS32r5 processor. If you own an older
processor, you probably need to select MIPS32r1 or MIPS32r2 instead.
config CPU_MIPS32_R6
bool "MIPS32 Release 6"
depends on SYS_HAS_CPU_MIPS32_R6
@ -1632,6 +1598,23 @@ config CPU_MIPS64_R2
specific type of processor in your system, choose those that one
otherwise CPU_MIPS64_R1 is a safe bet for any MIPS64 system.
config CPU_MIPS64_R5
bool "MIPS64 Release 5"
depends on SYS_HAS_CPU_MIPS64_R5
select CPU_HAS_PREFETCH
select CPU_SUPPORTS_32BIT_KERNEL
select CPU_SUPPORTS_64BIT_KERNEL
select CPU_SUPPORTS_HIGHMEM
select CPU_SUPPORTS_HUGEPAGES
select CPU_SUPPORTS_MSA
select MIPS_O32_FP64_SUPPORT if 32BIT || MIPS32_O32
select HAVE_KVM
help
Choose this option to build a kernel for release 5 or later of the
MIPS64 architecture. This is a intermediate MIPS architecture
release partly implementing release 6 features. Though there is no
any hardware known to be based on this release.
config CPU_MIPS64_R6
bool "MIPS64 Release 6"
depends on SYS_HAS_CPU_MIPS64_R6
@ -1650,6 +1633,28 @@ config CPU_MIPS64_R6
family, are based on a MIPS64r6 processor. If you own an older
processor, you probably need to select MIPS64r1 or MIPS64r2 instead.
config CPU_P5600
bool "MIPS Warrior P5600"
depends on SYS_HAS_CPU_P5600
select CPU_HAS_PREFETCH
select CPU_SUPPORTS_32BIT_KERNEL
select CPU_SUPPORTS_HIGHMEM
select CPU_SUPPORTS_MSA
select CPU_SUPPORTS_UNCACHED_ACCELERATED
select CPU_SUPPORTS_CPUFREQ
select CPU_MIPSR2_IRQ_VI
select CPU_MIPSR2_IRQ_EI
select HAVE_KVM
select MIPS_O32_FP64_SUPPORT
help
Choose this option to build a kernel for MIPS Warrior P5600 CPU.
It's based on MIPS32r5 ISA with XPA, EVA, dual/quad issue exec pipes,
MMU with two-levels TLB, UCA, MSA, MDU core level features and system
level features like up to six P5600 calculation cores, CM2 with L2
cache, IOCU/IOMMU (though might be unused depending on the system-
specific IP core configuration), GIC, CPC, virtualisation module,
eJTAG and PDtrace.
config CPU_R3000
bool "R3000"
depends on SYS_HAS_CPU_R3000
@ -1826,7 +1831,8 @@ endchoice
config CPU_MIPS32_3_5_FEATURES
bool "MIPS32 Release 3.5 Features"
depends on SYS_HAS_CPU_MIPS32_R3_5
depends on CPU_MIPS32_R2 || CPU_MIPS32_R6
depends on CPU_MIPS32_R2 || CPU_MIPS32_R5 || CPU_MIPS32_R6 || \
CPU_P5600
help
Choose this option to build a kernel for release 2 or later of the
MIPS32 architecture including features from the 3.5 release such as
@ -1846,7 +1852,7 @@ config CPU_MIPS32_3_5_EVA
config CPU_MIPS32_R5_FEATURES
bool "MIPS32 Release 5 Features"
depends on SYS_HAS_CPU_MIPS32_R5
depends on CPU_MIPS32_R2
depends on CPU_MIPS32_R2 || CPU_MIPS32_R5 || CPU_P5600
help
Choose this option to build a kernel for release 2 or later of the
MIPS32 architecture including features from release 5 such as
@ -2001,6 +2007,10 @@ config SYS_HAS_CPU_MIPS64_R6
bool
select ARCH_HAS_SYNC_DMA_FOR_CPU if DMA_NONCOHERENT
config SYS_HAS_CPU_P5600
bool
select ARCH_HAS_SYNC_DMA_FOR_CPU if DMA_NONCOHERENT
config SYS_HAS_CPU_R3000
bool
@ -2084,11 +2094,13 @@ endmenu
#
config CPU_MIPS32
bool
default y if CPU_MIPS32_R1 || CPU_MIPS32_R2 || CPU_MIPS32_R6
default y if CPU_MIPS32_R1 || CPU_MIPS32_R2 || CPU_MIPS32_R5 || \
CPU_MIPS32_R6 || CPU_P5600
config CPU_MIPS64
bool
default y if CPU_MIPS64_R1 || CPU_MIPS64_R2 || CPU_MIPS64_R6
default y if CPU_MIPS64_R1 || CPU_MIPS64_R2 || CPU_MIPS64_R5 || \
CPU_MIPS64_R6
#
# These indicate the revision of the architecture
@ -2104,6 +2116,13 @@ config CPU_MIPSR2
select CPU_HAS_DIEI if !CPU_DIEI_BROKEN
select MIPS_SPRAM
config CPU_MIPSR5
bool
default y if CPU_MIPS32_R5 || CPU_MIPS64_R5 || CPU_P5600
select CPU_HAS_RIXI
select CPU_HAS_DIEI if !CPU_DIEI_BROKEN
select MIPS_SPRAM
config CPU_MIPSR6
bool
default y if CPU_MIPS32_R6 || CPU_MIPS64_R6
@ -2118,6 +2137,7 @@ config TARGET_ISA_REV
int
default 1 if CPU_MIPSR1
default 2 if CPU_MIPSR2
default 5 if CPU_MIPSR5
default 6 if CPU_MIPSR6
default 0
help
@ -2707,7 +2727,11 @@ config NEED_PER_CPU_EMBED_FIRST_CHUNK
config RELOCATABLE
bool "Relocatable kernel"
depends on SYS_SUPPORTS_RELOCATABLE && (CPU_MIPS32_R2 || CPU_MIPS64_R2 || CPU_MIPS32_R6 || CPU_MIPS64_R6 || CAVIUM_OCTEON_SOC)
depends on SYS_SUPPORTS_RELOCATABLE
depends on CPU_MIPS32_R2 || CPU_MIPS64_R2 || \
CPU_MIPS32_R5 || CPU_MIPS64_R5 || \
CPU_MIPS32_R6 || CPU_MIPS64_R6 || \
CPU_P5600 || CAVIUM_OCTEON_SOC
help
This builds a kernel image that retains relocation information
so it can be loaded someplace besides the default 1MB.
@ -3275,3 +3299,5 @@ endmenu
source "drivers/firmware/Kconfig"
source "arch/mips/kvm/Kconfig"
source "arch/mips/vdso/Kconfig"

View File

@ -148,4 +148,14 @@ config MIPS_CPS_NS16550_SHIFT
form their addresses. That is, log base 2 of the span between
adjacent ns16550 registers in the system.
config MIPS_CPS_NS16550_WIDTH
int "UART Register Width"
default 1
help
ns16550 registers width. UART registers IO access methods will be
selected in accordance with this parameter. By setting it to 1, 2 or
4 UART registers will be accessed by means of lb/sb, lh/sh or lw/sw
instructions respectively. Any value not from that set activates
lb/sb instructions.
endif # MIPS_CPS_NS16550_BOOL

View File

@ -116,33 +116,8 @@ endif
cflags-y += -ffreestanding
#
# We explicitly add the endianness specifier if needed, this allows
# to compile kernels with a toolchain for the other endianness. We
# carefully avoid to add it redundantly because gcc 3.3/3.4 complains
# when fed the toolchain default!
#
# Certain gcc versions up to gcc 4.1.1 (probably 4.2-subversion as of
# 2006-10-10 don't properly change the predefined symbols if -EB / -EL
# are used, so we kludge that here. A bug has been filed at
# http://gcc.gnu.org/bugzilla/show_bug.cgi?id=29413.
#
# clang doesn't suffer from these issues and our checks against -dumpmachine
# don't work so well when cross compiling, since without providing --target
# clang's output will be based upon the build machine. So for clang we simply
# unconditionally specify -EB or -EL as appropriate.
#
ifdef CONFIG_CC_IS_CLANG
cflags-$(CONFIG_CPU_BIG_ENDIAN) += -EB
cflags-$(CONFIG_CPU_LITTLE_ENDIAN) += -EL
else
undef-all += -UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__
undef-all += -UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__
predef-be += -DMIPSEB -D_MIPSEB -D__MIPSEB -D__MIPSEB__
predef-le += -DMIPSEL -D_MIPSEL -D__MIPSEL -D__MIPSEL__
cflags-$(CONFIG_CPU_BIG_ENDIAN) += $(shell $(CC) -dumpmachine |grep -q 'mips.*el-.*' && echo -EB $(undef-all) $(predef-be))
cflags-$(CONFIG_CPU_LITTLE_ENDIAN) += $(shell $(CC) -dumpmachine |grep -q 'mips.*el-.*' || echo -EL $(undef-all) $(predef-le))
endif
cflags-$(CONFIG_SB1XXX_CORELIS) += $(call cc-option,-mno-sched-prolog) \
-fno-omit-frame-pointer
@ -171,10 +146,13 @@ cflags-$(CONFIG_CPU_R4X00) += -march=r4600 -Wa,--trap
cflags-$(CONFIG_CPU_TX49XX) += -march=r4600 -Wa,--trap
cflags-$(CONFIG_CPU_MIPS32_R1) += -march=mips32 -Wa,--trap
cflags-$(CONFIG_CPU_MIPS32_R2) += -march=mips32r2 -Wa,--trap
cflags-$(CONFIG_CPU_MIPS32_R5) += -march=mips32r5 -Wa,--trap -modd-spreg
cflags-$(CONFIG_CPU_MIPS32_R6) += -march=mips32r6 -Wa,--trap -modd-spreg
cflags-$(CONFIG_CPU_MIPS64_R1) += -march=mips64 -Wa,--trap
cflags-$(CONFIG_CPU_MIPS64_R2) += -march=mips64r2 -Wa,--trap
cflags-$(CONFIG_CPU_MIPS64_R5) += -march=mips64r5 -Wa,--trap
cflags-$(CONFIG_CPU_MIPS64_R6) += -march=mips64r6 -Wa,--trap
cflags-$(CONFIG_CPU_P5600) += -march=p5600 -Wa,--trap -modd-spreg
cflags-$(CONFIG_CPU_R5000) += -march=r5000 -Wa,--trap
cflags-$(CONFIG_CPU_R5500) += $(call cc-option,-march=r5500,-march=r5000) \
-Wa,--trap
@ -288,12 +266,23 @@ ifdef CONFIG_64BIT
endif
endif
# When linking a 32-bit executable the LLVM linker cannot cope with a
# 32-bit load address that has been sign-extended to 64 bits. Simply
# remove the upper 32 bits then, as it is safe to do so with other
# linkers.
ifdef CONFIG_64BIT
load-ld = $(load-y)
else
load-ld = $(subst 0xffffffff,0x,$(load-y))
endif
KBUILD_AFLAGS += $(cflags-y)
KBUILD_CFLAGS += $(cflags-y)
KBUILD_CPPFLAGS += -DVMLINUX_LOAD_ADDRESS=$(load-y)
KBUILD_CPPFLAGS += -DVMLINUX_LOAD_ADDRESS=$(load-y) -DLINKER_LOAD_ADDRESS=$(load-ld)
KBUILD_CPPFLAGS += -DDATAOFFSET=$(if $(dataoffset-y),$(dataoffset-y),0)
bootvars-y = VMLINUX_LOAD_ADDRESS=$(load-y) \
LINKER_LOAD_ADDRESS=$(load-ld) \
VMLINUX_ENTRY_ADDRESS=$(entry-y) \
PLATFORM="$(platform-y)" \
ITS_INPUTS="$(its-y)"
@ -359,12 +348,6 @@ ifeq ($(shell expr $(zload-y) \< 0xffffffff80000000 2> /dev/null), 0)
bootz-y += uzImage.bin
endif
ifdef CONFIG_LASAT
rom.bin rom.sw: vmlinux
$(Q)$(MAKE) $(build)=arch/mips/lasat/image \
$(bootvars-y) $@
endif
#
# Some machines like the Indy need 32-bit ELF binaries for booting purposes.
# Other need ECOFF, so we build a 32-bit ELF binary for them which we then
@ -430,7 +413,6 @@ archclean:
$(Q)$(MAKE) $(clean)=arch/mips/boot
$(Q)$(MAKE) $(clean)=arch/mips/boot/compressed
$(Q)$(MAKE) $(clean)=arch/mips/boot/tools
$(Q)$(MAKE) $(clean)=arch/mips/lasat
archheaders:
$(Q)$(MAKE) $(build)=arch/mips/kernel/syscalls all

View File

@ -15,19 +15,16 @@ load-$(CONFIG_MIPS_DB1XXX) += 0xffffffff80100000
#
# 4G-Systems MTX-1 "MeshCube" wireless router
#
platform-$(CONFIG_MIPS_MTX1) += alchemy/
load-$(CONFIG_MIPS_MTX1) += 0xffffffff80100000
#
# MyCable eval board
#
platform-$(CONFIG_MIPS_XXS1500) += alchemy/
load-$(CONFIG_MIPS_XXS1500) += 0xffffffff80100000
#
# Trapeze ITS GRP board
#
platform-$(CONFIG_MIPS_GPR) += alchemy/
load-$(CONFIG_MIPS_GPR) += 0xffffffff80100000
# boards can specify their own <gpio.h> in one of their include dirs.

View File

@ -27,6 +27,7 @@
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <asm/dma-coherence.h>
#include <asm/mipsregs.h>
@ -72,9 +73,9 @@ void __init plat_mem_setup(void)
iomem_resource.end = IOMEM_RESOURCE_END;
}
#if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_PCI)
#ifdef CONFIG_MIPS_FIXUP_BIGPHYS_ADDR
/* This routine should be valid for all Au1x based boards */
phys_addr_t __fixup_bigphys_addr(phys_addr_t phys_addr, phys_addr_t size)
phys_addr_t fixup_bigphys_addr(phys_addr_t phys_addr, phys_addr_t size)
{
unsigned long start = ALCHEMY_PCI_MEMWIN_START;
unsigned long end = ALCHEMY_PCI_MEMWIN_END;
@ -90,5 +91,13 @@ phys_addr_t __fixup_bigphys_addr(phys_addr_t phys_addr, phys_addr_t size)
/* default nop */
return phys_addr;
}
EXPORT_SYMBOL(__fixup_bigphys_addr);
#endif
int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long vaddr,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
phys_addr_t phys_addr = fixup_bigphys_addr(pfn << PAGE_SHIFT, size);
return remap_pfn_range(vma, vaddr, phys_addr >> PAGE_SHIFT, size, prot);
}
EXPORT_SYMBOL(io_remap_pfn_range);
#endif /* CONFIG_MIPS_FIXUP_BIGPHYS_ADDR */

View File

@ -225,7 +225,7 @@ static void __init pb1550_nand_setup(void)
case 0: case 2: case 8: case 0xC: case 0xD:
/* x16 NAND Flash */
pb1550_nand_pd.devwidth = 1;
/* fallthrough */
fallthrough;
case 1: case 3: case 9: case 0xE: case 0xF:
/* x8 NAND, already set up */
platform_device_register(&pb1550_nand_dev);

View File

@ -1,6 +1,5 @@
#
# Texas Instruments AR7
#
platform-$(CONFIG_AR7) += ar7/
cflags-$(CONFIG_AR7) += -I$(srctree)/arch/mips/include/asm/mach-ar7
load-$(CONFIG_AR7) += 0xffffffff94100000

View File

@ -57,7 +57,7 @@ const char *get_system_type(void)
case TITAN_CHIP_1060:
return "TI AR7 (TNETV1060)";
}
/* fall through */
fallthrough;
default:
return "TI AR7 (unknown)";
}

View File

@ -1,6 +1,5 @@
#
# Atheros AR531X/AR231X WiSoC
#
platform-$(CONFIG_ATH25) += ath25/
cflags-$(CONFIG_ATH25) += -I$(srctree)/arch/mips/include/asm/mach-ath25
load-$(CONFIG_ATH25) += 0xffffffff80041000

View File

@ -2,6 +2,5 @@
# Atheros AR71xx/AR724x/AR913x
#
platform-$(CONFIG_ATH79) += ath79/
cflags-$(CONFIG_ATH79) += -I$(srctree)/arch/mips/include/asm/mach-ath79
load-$(CONFIG_ATH79) = 0xffffffff80060000

View File

@ -153,8 +153,7 @@ static void __init ath79_detect_sys_type(void)
case REV_ID_MAJOR_QCA9533_V2:
ver = 2;
ath79_soc_rev = 2;
/* fall through */
fallthrough;
case REV_ID_MAJOR_QCA9533:
ath79_soc = ATH79_SOC_QCA9533;
chip = "9533";

View File

@ -1,7 +1,6 @@
#
# Broadcom BCM47XX boards
#
platform-$(CONFIG_BCM47XX) += bcm47xx/
cflags-$(CONFIG_BCM47XX) += \
-I$(srctree)/arch/mips/include/asm/mach-bcm47xx
load-$(CONFIG_BCM47XX) := 0xffffffff80001000

View File

@ -1,7 +1,6 @@
#
# Broadcom BCM63XX boards
#
platform-$(CONFIG_BCM63XX) += bcm63xx/
cflags-$(CONFIG_BCM63XX) += \
-I$(srctree)/arch/mips/include/asm/mach-bcm63xx/
load-$(CONFIG_BCM63XX) := 0xffffffff80010000

View File

@ -304,7 +304,7 @@ void __init bcm63xx_cpu_init(void)
case CPU_BMIPS3300:
if ((read_c0_prid() & PRID_IMP_MASK) != PRID_IMP_BMIPS3300_ALT)
__cpu_name[cpu] = "Broadcom BCM6338";
/* fall-through */
fallthrough;
case CPU_BMIPS32:
chipid_reg = BCM_6345_PERF_BASE;
break;

View File

@ -94,7 +94,7 @@ static int __init bcm63xx_detect_flash_type(void)
case STRAPBUS_6368_BOOT_SEL_PARALLEL:
return BCM63XX_FLASH_TYPE_PARALLEL;
}
/* fall through */
fallthrough;
default:
return -EINVAL;
}

View File

@ -1,7 +1,6 @@
#
# Broadcom Generic BMIPS kernel
#
platform-$(CONFIG_BMIPS_GENERIC) += bmips/
cflags-$(CONFIG_BMIPS_GENERIC) += \
-I$(srctree)/arch/mips/include/asm/mach-bmips/
load-$(CONFIG_BMIPS_GENERIC) := 0xffffffff80010000

View File

@ -90,7 +90,7 @@ ifneq ($(zload-y),)
VMLINUZ_LOAD_ADDRESS := $(zload-y)
else
VMLINUZ_LOAD_ADDRESS = $(shell $(obj)/calc_vmlinuz_load_addr \
$(obj)/vmlinux.bin $(VMLINUX_LOAD_ADDRESS))
$(obj)/vmlinux.bin $(LINKER_LOAD_ADDRESS))
endif
UIMAGE_LOADADDR = $(VMLINUZ_LOAD_ADDRESS)

View File

@ -1,17 +1,19 @@
# SPDX-License-Identifier: GPL-2.0
subdir-y += brcm
subdir-y += cavium-octeon
subdir-y += img
subdir-y += ingenic
subdir-y += lantiq
subdir-y += loongson
subdir-y += mscc
subdir-y += mti
subdir-y += netlogic
subdir-y += ni
subdir-y += pic32
subdir-y += qca
subdir-y += ralink
subdir-y += xilfpga
subdir-$(CONFIG_BMIPS_GENERIC) += brcm
subdir-$(CONFIG_CAVIUM_OCTEON_SOC) += cavium-octeon
subdir-$(CONFIG_MACH_PISTACHIO) += img
subdir-$(CONFIG_FIT_IMAGE_FDT_BOSTON) += img
subdir-$(CONFIG_MACH_INGENIC) += ingenic
subdir-$(CONFIG_LANTIQ) += lantiq
subdir-$(CONFIG_MACH_LOONGSON64) += loongson
subdir-$(CONFIG_MSCC_OCELOT) += mscc
subdir-$(CONFIG_MIPS_MALTA) += mti
subdir-$(CONFIG_LEGACY_BOARD_SEAD3) += mti
subdir-$(CONFIG_NLM_XLP_BOARD) += netlogic
subdir-$(CONFIG_FIT_IMAGE_FDT_NI169445) += ni
subdir-$(CONFIG_MACH_PIC32) += pic32
subdir-$(CONFIG_ATH79) += qca
subdir-$(CONFIG_RALINK) += ralink
subdir-$(CONFIG_FIT_IMAGE_FDT_XILFPGA) += xilfpga
obj-$(CONFIG_BUILTIN_DTB) := $(addsuffix /, $(subdir-y))

View File

@ -386,6 +386,9 @@ dm9000@6 {
interrupt-parent = <&gpe>;
interrupts = <19 4>;
nvmem-cells = <&eth0_addr>;
nvmem-cell-names = "mac-address";
};
};

View File

@ -4,6 +4,10 @@
#include "jz4770.dtsi"
#include <dt-bindings/clock/ingenic,tcu.h>
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/iio/adc/ingenic,adc.h>
#include <dt-bindings/input/input.h>
/ {
compatible = "gcw,zero", "ingenic,jz4770";
model = "GCW Zero";
@ -15,20 +19,370 @@ aliases {
serial3 = &uart3;
};
memory: memory {
device_type = "memory";
reg = <0x0 0x10000000>,
<0x30000000 0x10000000>;
};
chosen {
stdout-path = "serial2:57600n8";
};
board {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges;
vcc: regulator@0 {
compatible = "regulator-fixed";
regulator-name = "vcc";
otg_phy: otg-phy {
compatible = "usb-nop-xceiv";
clocks = <&cgu JZ4770_CLK_OTG_PHY>;
clock-names = "main_clk";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
regulator-always-on;
};
mmc1_power: regulator@1 {
compatible = "regulator-fixed";
regulator-name = "mmc1_vcc";
gpio = <&gpe 9 0>;
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
vin-supply = <&vcc>;
};
headphones_amp: analog-amplifier@0 {
compatible = "simple-audio-amplifier";
enable-gpios = <&gpf 3 GPIO_ACTIVE_LOW>;
enable-delay-ms = <50>;
VCC-supply = <&ldo5>;
sound-name-prefix = "Headphones Amp";
};
speaker_amp: analog-amplifier@1 {
compatible = "simple-audio-amplifier";
enable-gpios = <&gpf 20 GPIO_ACTIVE_HIGH>;
VCC-supply = <&ldo5>;
sound-name-prefix = "Speaker Amp";
};
sound {
compatible = "simple-audio-card";
simple-audio-card,name = "gcw0-audio";
simple-audio-card,format = "i2s";
simple-audio-card,widgets =
"Speaker", "Speaker",
"Headphone", "Headphones",
"Line", "FM Radio",
"Microphone", "Built-in Mic";
simple-audio-card,routing =
"Headphones Amp INL", "LHPOUT",
"Headphones Amp INR", "RHPOUT",
"Headphones", "Headphones Amp OUTL",
"Headphones", "Headphones Amp OUTR",
"Speaker Amp INL", "LOUT",
"Speaker Amp INR", "ROUT",
"Speaker", "Speaker Amp OUTL",
"Speaker", "Speaker Amp OUTR",
"LLINEIN", "FM Radio",
"RLINEIN", "FM Radio",
"Built-in Mic", "MICBIAS",
"MIC1P", "Built-in Mic",
"MIC1N", "Built-in Mic";
simple-audio-card,pin-switches = "Speaker", "Headphones";
simple-audio-card,hp-det-gpio = <&gpf 21 GPIO_ACTIVE_HIGH>;
simple-audio-card,aux-devs = <&speaker_amp>, <&headphones_amp>;
simple-audio-card,bitclock-master = <&dai_codec>;
simple-audio-card,frame-master = <&dai_codec>;
dai_cpu: simple-audio-card,cpu {
sound-dai = <&aic>;
};
dai_codec: simple-audio-card,codec {
sound-dai = <&codec>;
};
};
rumble {
compatible = "pwm-vibrator";
pwms = <&pwm 4 2000000 0>;
pwm-names = "enable";
pinctrl-names = "default";
pinctrl-0 = <&pins_pwm4>;
};
backlight: backlight {
compatible = "pwm-backlight";
pwms = <&pwm 1 40000 0>;
power-supply = <&vcc>;
brightness-levels = <0 16 32 48 64 80 96 112 128
144 160 176 192 208 224 240 255>;
default-brightness-level = <12>;
pinctrl-names = "default";
pinctrl-0 = <&pins_pwm1>;
};
gpio-keys {
compatible = "gpio-keys";
#address-cells = <1>;
#size-cells = <0>;
autorepeat;
button@0 {
label = "D-pad up";
linux,code = <KEY_UP>;
linux,can-disable;
gpios = <&gpe 21 GPIO_ACTIVE_LOW>;
};
button@1 {
label = "D-pad down";
linux,code = <KEY_DOWN>;
linux,can-disable;
gpios = <&gpe 25 GPIO_ACTIVE_LOW>;
};
button@2 {
label = "D-pad left";
linux,code = <KEY_LEFT>;
linux,can-disable;
gpios = <&gpe 23 GPIO_ACTIVE_LOW>;
};
button@3 {
label = "D-pad right";
linux,code = <KEY_RIGHT>;
linux,can-disable;
gpios = <&gpe 24 GPIO_ACTIVE_LOW>;
};
button@4 {
label = "Button A";
linux,code = <KEY_LEFTCTRL>;
linux,can-disable;
gpios = <&gpe 29 GPIO_ACTIVE_LOW>;
};
button@5 {
label = "Button B";
linux,code = <KEY_LEFTALT>;
linux,can-disable;
gpios = <&gpe 20 GPIO_ACTIVE_LOW>;
};
button@6 {
label = "Button Y";
linux,code = <KEY_SPACE>;
linux,can-disable;
gpios = <&gpe 27 GPIO_ACTIVE_LOW>;
};
button@7 {
label = "Button X";
linux,code = <KEY_LEFTSHIFT>;
linux,can-disable;
gpios = <&gpe 28 GPIO_ACTIVE_LOW>;
};
button@8 {
label = "Left shoulder button";
linux,code = <KEY_TAB>;
linux,can-disable;
gpios = <&gpb 20 GPIO_ACTIVE_LOW>;
};
button@9 {
label = "Right shoulder button";
linux,code = <KEY_BACKSPACE>;
linux,can-disable;
gpios = <&gpe 26 GPIO_ACTIVE_LOW>;
};
button@10 {
label = "Start button";
linux,code = <KEY_ENTER>;
linux,can-disable;
gpios = <&gpb 21 GPIO_ACTIVE_LOW>;
};
button@11 {
label = "Select button";
linux,code = <KEY_ESC>;
linux,can-disable;
/*
* This is the only button that is active high,
* since it doubles as BOOT_SEL1.
*/
gpios = <&gpd 18 GPIO_ACTIVE_HIGH>;
};
button@12 {
label = "Power slider";
linux,code = <KEY_POWER>;
linux,can-disable;
gpios = <&gpa 30 GPIO_ACTIVE_LOW>;
wakeup-source;
};
button@13 {
label = "Power hold";
linux,code = <KEY_PAUSE>;
linux,can-disable;
gpios = <&gpf 11 GPIO_ACTIVE_LOW>;
};
};
i2c3: i2c-controller@3 {
compatible = "i2c-gpio";
#address-cells = <1>;
#size-cells = <0>;
sda-gpios = <&gpd 5 GPIO_ACTIVE_HIGH>;
scl-gpios = <&gpd 4 GPIO_ACTIVE_HIGH>;
i2c-gpio,delay-us = <2>; /* 250 kHz */
act8600: pmic@5a {
compatible = "active-semi,act8600";
reg = <0x5a>;
regulators {
/* USB OTG */
otg_vbus: SUDCDC_REG4 {
/*
* 5.3V instead of 5.0V to compensate
* for the voltage drop of a diode
* between the regulator and the
* connector.
*/
regulator-min-microvolt = <5300000>;
regulator-max-microvolt = <5300000>;
inl-supply = <&vcc>;
};
/*
* When this is off, there is no sound, but also
* no USB networking.
*/
ldo5: LDO5 {
regulator-min-microvolt = <2500000>;
regulator-max-microvolt = <2500000>;
inl-supply = <&vcc>;
};
/* LCD panel and FM radio */
ldo6: LDO6 {
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
inl-supply = <&vcc>;
};
/* ??? */
LDO7 {
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
/*regulator-always-on;*/
inl-supply = <&vcc>;
};
/*
* The colors on the LCD are wrong when this is
* off. Which is strange, since the LCD panel
* data sheet only mentions a 3.3V input.
*/
LDO8 {
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
regulator-always-on;
inl-supply = <&vcc>;
};
/* RTC fixed 3.3V */
LDO_REG9 {
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
regulator-always-on;
inl-supply = <&vcc>;
};
/* Unused fixed 1.2V */
LDO_REG10 {
inl-supply = <&vcc>;
};
};
};
};
leds {
compatible = "gpio-leds";
led {
gpios = <&gpb 30 GPIO_ACTIVE_LOW>;
default-state = "on";
};
};
spi {
compatible = "spi-gpio";
#address-cells = <1>;
#size-cells = <0>;
sck-gpios = <&gpe 15 GPIO_ACTIVE_HIGH>;
mosi-gpios = <&gpe 17 GPIO_ACTIVE_HIGH>;
cs-gpios = <&gpe 16 GPIO_ACTIVE_HIGH>;
num-chipselects = <1>;
nt39016@0 {
compatible = "kingdisplay,kd035g6-54nt";
reg = <0>;
spi-max-frequency = <3125000>;
spi-3wire;
spi-cs-high;
reset-gpios = <&gpe 2 GPIO_ACTIVE_LOW>;
backlight = <&backlight>;
power-supply = <&ldo6>;
port {
panel_input: endpoint {
remote-endpoint = <&panel_output>;
};
};
};
};
connector {
compatible = "gpio-usb-b-connector", "usb-b-connector";
label = "mini-USB";
type = "mini";
/*
* USB OTG is not yet working reliably, the ID detection
* mechanism tends to fry easily for unknown reasons.
* Until this is fixed, disable OTG by not providing the
* ID GPIO to the driver.
*/
//id-gpios = <&gpf 18 GPIO_ACTIVE_LOW>;
vbus-gpios = <&gpb 5 GPIO_ACTIVE_HIGH>;
vbus-supply = <&otg_vbus>;
pinctrl-names = "default";
pinctrl-0 = <&pins_otg>;
port {
usb_ep: endpoint {
remote-endpoint = <&usb_otg_ep>;
};
};
};
};
@ -37,24 +391,86 @@ &ext {
clock-frequency = <12000000>;
};
&pinctrl {
pins_lcd: lcd {
function = "lcd";
groups = "lcd-24bit";
};
pins_uart2: uart2 {
function = "uart2";
groups = "uart2-data";
};
pins_mmc0: mmc0 {
function = "mmc0";
groups = "mmc0-1bit-a", "mmc0-4bit-a";
};
pins_mmc1: mmc1 {
function = "mmc1";
groups = "mmc1-1bit-d", "mmc1-4bit-d";
};
pins_otg: otg {
otg-vbus-pin {
function = "otg";
groups = "otg-vbus";
};
vbus-pin {
pins = "PB5";
bias-disable;
};
};
pins_pwm1: pwm1 {
function = "pwm1";
groups = "pwm1";
};
pins_pwm4: pwm4 {
function = "pwm4";
groups = "pwm4";
};
};
&uart2 {
pinctrl-names = "default";
pinctrl-0 = <&pins_uart2>;
status = "okay";
};
&cgu {
/* Put high-speed peripherals under PLL1, such that we can change the
/*
* Put high-speed peripherals under PLL1, such that we can change the
* PLL0 frequency on demand without having to suspend peripherals.
* We use a rate of 432 MHz, which is the least common multiple of
* 27 MHz (required by TV encoder) and 48 MHz (required by USB host).
* Put the GPU under PLL0 since we want a higher frequency.
* Use the 32 kHz oscillator as the parent of the RTC for a higher
* precision.
*/
assigned-clocks =
<&cgu JZ4770_CLK_PLL1>,
<&cgu JZ4770_CLK_UHC>;
<&cgu JZ4770_CLK_GPU>,
<&cgu JZ4770_CLK_RTC>,
<&cgu JZ4770_CLK_UHC>,
<&cgu JZ4770_CLK_LPCLK_MUX>,
<&cgu JZ4770_CLK_MMC0_MUX>,
<&cgu JZ4770_CLK_MMC1_MUX>;
assigned-clock-parents =
<0>,
<&cgu JZ4770_CLK_PLL0>,
<&cgu JZ4770_CLK_OSC32K>,
<&cgu JZ4770_CLK_PLL1>,
<&cgu JZ4770_CLK_PLL1>,
<&cgu JZ4770_CLK_PLL1>,
<&cgu JZ4770_CLK_PLL1>;
assigned-clock-rates =
<432000000>;
<432000000>,
<600000000>;
};
&uhc {
@ -63,10 +479,69 @@ &uhc {
};
&tcu {
/* 750 kHz for the system timer and clocksource */
assigned-clocks = <&tcu TCU_CLK_TIMER0>, <&tcu TCU_CLK_TIMER2>;
assigned-clock-rates = <750000>, <750000>;
/*
* 750 kHz for the system timer and clocksource, 12 MHz for the OST,
* and use RTC as the parent for the watchdog clock
*/
assigned-clocks = <&tcu TCU_CLK_TIMER0>, <&tcu TCU_CLK_TIMER2>,
<&tcu TCU_CLK_OST>, <&tcu TCU_CLK_WDT>;
assigned-clock-parents = <0>, <0>, <0>, <&cgu JZ4770_CLK_RTC>;
assigned-clock-rates = <750000>, <750000>, <12000000>;
/* PWM1 is in use, so reserve channel #2 for the clocksource */
/* PWM1 is in use, so use channel #2 for the clocksource */
ingenic,pwm-channels-mask = <0xfa>;
};
&usb_otg {
port {
usb_otg_ep: endpoint {
remote-endpoint = <&usb_ep>;
};
};
};
&otg_phy {
vcc-supply = <&ldo5>;
};
&rtc {
clocks = <&cgu JZ4770_CLK_RTC>;
clock-names = "rtc";
system-power-controller;
};
&mmc0 {
status = "okay";
bus-width = <4>;
max-frequency = <48000000>;
vmmc-supply = <&vcc>;
non-removable;
pinctrl-names = "default";
pinctrl-0 = <&pins_mmc0>;
};
&mmc1 {
status = "okay";
bus-width = <4>;
max-frequency = <48000000>;
cd-gpios = <&gpb 2 GPIO_ACTIVE_LOW>;
vmmc-supply = <&mmc1_power>;
pinctrl-names = "default";
pinctrl-0 = <&pins_mmc1>;
};
&lcd {
pinctrl-names = "default";
pinctrl-0 = <&pins_lcd>;
port {
panel_output: endpoint {
remote-endpoint = <&panel_input>;
};
};
};

View File

@ -0,0 +1,13 @@
// SPDX-License-Identifier: GPL-2.0
/dts-v1/;
#include "gcw0.dts"
/ {
model = "GCW Zero Prototype";
};
&memory {
/* Prototype has only 256 MiB of RAM */
reg = <0x0 0x10000000>;
};

Some files were not shown because too many files have changed in this diff Show More