android_kernel_samsung_sm8650/include/linux/iio/trigger.h
Greg Kroah-Hartman 069f0e0c06 Round one of new device support, features and cleanup for IIO in the 4.15 cycle.
Note there is a misc driver drop in here given we have support
 in IIO and the feeling is no one will care.
 
 A large part of this series is a boiler plate removal series avoiding
 the need to explicitly provide THIS_MODULE in various locations.
 It's very dull but touches all drivers.
 
 New device support
 * ad5446
   - add ids to support compatible parts DAC081S101, DAC101S101,
     DAC121S101.
   - add the dac7512 id and drop the misc driver as feeling is no
     one is using it (was introduced for a board that is long obsolete)
 * mt6577
   - add bindings for mt2712 which is fully compatible with other
     supported parts.
 * st_pressure
   - add support for LPS33HW and LPS35HW with bindings (ids mostly).
 
 New features
 * ccs811
   - Add support for the data ready trigger.
 * mma8452
   - remove artifical restriction on supporting multiple event types
     at the same time.
 * tcs3472
   - support out of threshold events
 
 Core and tree wide cleanup
 * Use macro magic to remove the need to provide THIS_MODULE as part of
   struct iio_info or struct iio_trigger_ops.  This is similar to
   work done in a number of other subsystems (e.g. i2c, spi).
 
   All drivers are fixed and then the fields in these structures are
   removed.
 
   This will cause build failures for out of tree drivers and any
   new drivers that cross with this work going into the kernel.
 
   Note mostly done with a coccinelle patch, included in the series
   on the mailing list but not merged as the fields no longer exist
   in the structures so the any hold outs will cause a build failure.
 
 Cleanups
 * ads1015
   - avoid writing config register when it doesn't change.
   - add 10% to conversion wait time as it seems it is sometimes
     a little small.
 * ade7753
   - replace use of core mlock with a local lock.  This is part of a
     long term effort to make the use of mlock opaque and single
     purpose.
 * ade7759
   - expand the use of buf_lock to cover previous mlock cases.  This
     is a slightly nicer solution to the same issue as in ade7753.
 * cros_ec
   - drop an unused variable
 * inv_mpu6050
   - add a missing break in a switch for consistency - not actual
     bug,
   - make some local arrays static to save on object code size.
 * max5481
   - drop manual setting of the spi module owner as handled by the
     spi core.
 * max5487
   - drop manual setting of the spi module owner as handled by the
     spi core.
 * max9611
   - drop explicit setting of the i2c module owner as handled by
     the i2c core.
 * mcp320x
   - speed up reads on single channel devices,
   - drop unused of_device_id data elements,
   - document the struct mcp320x,
   - improve binding docs to reflect restrictions on spi setup and
     to make it explicit that the reference regulator is needed.
 * mma8452
   - symbolic to octal permissions,
   - unsigned to unsigned int.
 * st_lsm6dsx
   - avoid setting odr values multiple times,
   - drop config of LIR as it is only ever set to the existing
     defaults,
   - drop rounding configuration as it only ever matches the defaults.
 * ti-ads8688
   - drop manual setting of the spi module owner as handled by the
     spi core.
 * tsl2x7x
   - constify the i2c_device_id,
   - cleanup limit checks to avoid static checker warnings (and generally
     have nicer code).
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCAAvFiEEbilms4eEBlKRJoGxVIU0mcT0FogFAlnH4XkRHGppYzIzQGtl
 cm5lbC5vcmcACgkQVIU0mcT0Fogkaw//e3z+4TQT2Hn+550lBYUV8pBR5emDiSe3
 0QTG+ZS7Kh+fPYENLCXtW9ttZicmUSqkTQFvlMTjAxHyj9XzL7+BXS9UlNgVLsqX
 pn9KprPj31lrXpJOXMSgcdiqWMZLtCvprAJgnwfZt1GevS3WbCMmnnoaBuJV61jp
 w0VD+forukTGF7b0OMGB0d5mwtYS0bJYqXRRMPD+2bNeM4hqt5YM3+wHSqP35t3l
 MoaqKlbx7ZtKDF4zIa59nKNP7Ky7IByWogLZRlJ/vD/uKrACckPT22+KT8rX2TwA
 NpZb1Oy/KZBTl5D9iRjZADq4NaRJENFXJiG6GkjoGjrQhUqHaCinHWpLioqLGlRq
 qCPL2nRjqm4Qr7E8sxlwR1Ajlg0utBMY7Oflym/XJMMLF/ZE6HSrzyrxuVMG2EjV
 T7SVIncbfg6kyr/r4kKsAT3BUMV+TdO4sXm+JgphZBUqZLp0nFHnmjP7Rm2j2uWq
 +yLrSuF25RijrRj3sp28zg9dFWlRwRvZvcAx8kEGm1kMjMWr+Q10xTK9o/5LlFEw
 57sUm6qgmigPK8sahDtcdLIwaCPVvAYvJ0e4Mfw5UsPSlZmHmM1mLwjpwiXBZ5ig
 oxnJmTXsn5RcOGiW/mg0VCH26NkBx7H0fsRqQeq9wkxHLrm75vXroIn7YqRIg+Ad
 /Itu6x6fOIg=
 =ik5C
 -----END PGP SIGNATURE-----

Merge tag 'iio-for-4.15a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio into staging-next

Jonathan writes:

Round one of new device support, features and cleanup for IIO in the 4.15 cycle.

Note there is a misc driver drop in here given we have support
in IIO and the feeling is no one will care.

A large part of this series is a boiler plate removal series avoiding
the need to explicitly provide THIS_MODULE in various locations.
It's very dull but touches all drivers.

New device support
* ad5446
  - add ids to support compatible parts DAC081S101, DAC101S101,
    DAC121S101.
  - add the dac7512 id and drop the misc driver as feeling is no
    one is using it (was introduced for a board that is long obsolete)
* mt6577
  - add bindings for mt2712 which is fully compatible with other
    supported parts.
* st_pressure
  - add support for LPS33HW and LPS35HW with bindings (ids mostly).

New features
* ccs811
  - Add support for the data ready trigger.
* mma8452
  - remove artifical restriction on supporting multiple event types
    at the same time.
* tcs3472
  - support out of threshold events

Core and tree wide cleanup
* Use macro magic to remove the need to provide THIS_MODULE as part of
  struct iio_info or struct iio_trigger_ops.  This is similar to
  work done in a number of other subsystems (e.g. i2c, spi).

  All drivers are fixed and then the fields in these structures are
  removed.

  This will cause build failures for out of tree drivers and any
  new drivers that cross with this work going into the kernel.

  Note mostly done with a coccinelle patch, included in the series
  on the mailing list but not merged as the fields no longer exist
  in the structures so the any hold outs will cause a build failure.

Cleanups
* ads1015
  - avoid writing config register when it doesn't change.
  - add 10% to conversion wait time as it seems it is sometimes
    a little small.
* ade7753
  - replace use of core mlock with a local lock.  This is part of a
    long term effort to make the use of mlock opaque and single
    purpose.
* ade7759
  - expand the use of buf_lock to cover previous mlock cases.  This
    is a slightly nicer solution to the same issue as in ade7753.
* cros_ec
  - drop an unused variable
* inv_mpu6050
  - add a missing break in a switch for consistency - not actual
    bug,
  - make some local arrays static to save on object code size.
* max5481
  - drop manual setting of the spi module owner as handled by the
    spi core.
* max5487
  - drop manual setting of the spi module owner as handled by the
    spi core.
* max9611
  - drop explicit setting of the i2c module owner as handled by
    the i2c core.
* mcp320x
  - speed up reads on single channel devices,
  - drop unused of_device_id data elements,
  - document the struct mcp320x,
  - improve binding docs to reflect restrictions on spi setup and
    to make it explicit that the reference regulator is needed.
* mma8452
  - symbolic to octal permissions,
  - unsigned to unsigned int.
* st_lsm6dsx
  - avoid setting odr values multiple times,
  - drop config of LIR as it is only ever set to the existing
    defaults,
  - drop rounding configuration as it only ever matches the defaults.
* ti-ads8688
  - drop manual setting of the spi module owner as handled by the
    spi core.
* tsl2x7x
  - constify the i2c_device_id,
  - cleanup limit checks to avoid static checker warnings (and generally
    have nicer code).
2017-09-25 12:56:37 +02:00

186 lines
5.3 KiB
C

/* The industrial I/O core, trigger handling functions
*
* Copyright (c) 2008 Jonathan Cameron
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/atomic.h>
#ifndef _IIO_TRIGGER_H_
#define _IIO_TRIGGER_H_
#ifdef CONFIG_IIO_TRIGGER
struct iio_subirq {
bool enabled;
};
struct iio_dev;
struct iio_trigger;
/**
* struct iio_trigger_ops - operations structure for an iio_trigger.
* @set_trigger_state: switch on/off the trigger on demand
* @try_reenable: function to reenable the trigger when the
* use count is zero (may be NULL)
* @validate_device: function to validate the device when the
* current trigger gets changed.
*
* This is typically static const within a driver and shared by
* instances of a given device.
**/
struct iio_trigger_ops {
int (*set_trigger_state)(struct iio_trigger *trig, bool state);
int (*try_reenable)(struct iio_trigger *trig);
int (*validate_device)(struct iio_trigger *trig,
struct iio_dev *indio_dev);
};
/**
* struct iio_trigger - industrial I/O trigger device
* @ops: [DRIVER] operations structure
* @id: [INTERN] unique id number
* @name: [DRIVER] unique name
* @dev: [DRIVER] associated device (if relevant)
* @list: [INTERN] used in maintenance of global trigger list
* @alloc_list: [DRIVER] used for driver specific trigger list
* @use_count: use count for the trigger
* @subirq_chip: [INTERN] associate 'virtual' irq chip.
* @subirq_base: [INTERN] base number for irqs provided by trigger.
* @subirqs: [INTERN] information about the 'child' irqs.
* @pool: [INTERN] bitmap of irqs currently in use.
* @pool_lock: [INTERN] protection of the irq pool.
* @attached_own_device:[INTERN] if we are using our own device as trigger,
* i.e. if we registered a poll function to the same
* device as the one providing the trigger.
**/
struct iio_trigger {
const struct iio_trigger_ops *ops;
struct module *owner;
int id;
const char *name;
struct device dev;
struct list_head list;
struct list_head alloc_list;
atomic_t use_count;
struct irq_chip subirq_chip;
int subirq_base;
struct iio_subirq subirqs[CONFIG_IIO_CONSUMERS_PER_TRIGGER];
unsigned long pool[BITS_TO_LONGS(CONFIG_IIO_CONSUMERS_PER_TRIGGER)];
struct mutex pool_lock;
bool attached_own_device;
};
static inline struct iio_trigger *to_iio_trigger(struct device *d)
{
return container_of(d, struct iio_trigger, dev);
}
static inline void iio_trigger_put(struct iio_trigger *trig)
{
module_put(trig->owner);
put_device(&trig->dev);
}
static inline struct iio_trigger *iio_trigger_get(struct iio_trigger *trig)
{
get_device(&trig->dev);
__module_get(trig->owner);
return trig;
}
/**
* iio_device_set_drvdata() - Set trigger driver data
* @trig: IIO trigger structure
* @data: Driver specific data
*
* Allows to attach an arbitrary pointer to an IIO trigger, which can later be
* retrieved by iio_trigger_get_drvdata().
*/
static inline void iio_trigger_set_drvdata(struct iio_trigger *trig, void *data)
{
dev_set_drvdata(&trig->dev, data);
}
/**
* iio_trigger_get_drvdata() - Get trigger driver data
* @trig: IIO trigger structure
*
* Returns the data previously set with iio_trigger_set_drvdata()
*/
static inline void *iio_trigger_get_drvdata(struct iio_trigger *trig)
{
return dev_get_drvdata(&trig->dev);
}
/**
* iio_trigger_register() - register a trigger with the IIO core
* @trig_info: trigger to be registered
**/
#define iio_trigger_register(trig_info) \
__iio_trigger_register((trig_info), THIS_MODULE)
int __iio_trigger_register(struct iio_trigger *trig_info,
struct module *this_mod);
#define devm_iio_trigger_register(dev, trig_info) \
__devm_iio_trigger_register((dev), (trig_info), THIS_MODULE)
int __devm_iio_trigger_register(struct device *dev,
struct iio_trigger *trig_info,
struct module *this_mod);
/**
* iio_trigger_unregister() - unregister a trigger from the core
* @trig_info: trigger to be unregistered
**/
void iio_trigger_unregister(struct iio_trigger *trig_info);
void devm_iio_trigger_unregister(struct device *dev,
struct iio_trigger *trig_info);
/**
* iio_trigger_set_immutable() - set an immutable trigger on destination
*
* @indio_dev: IIO device structure containing the device
* @trig: trigger to assign to device
*
**/
int iio_trigger_set_immutable(struct iio_dev *indio_dev, struct iio_trigger *trig);
/**
* iio_trigger_poll() - called on a trigger occurring
* @trig: trigger which occurred
*
* Typically called in relevant hardware interrupt handler.
**/
void iio_trigger_poll(struct iio_trigger *trig);
void iio_trigger_poll_chained(struct iio_trigger *trig);
irqreturn_t iio_trigger_generic_data_rdy_poll(int irq, void *private);
__printf(1, 2) struct iio_trigger *iio_trigger_alloc(const char *fmt, ...);
void iio_trigger_free(struct iio_trigger *trig);
/**
* iio_trigger_using_own() - tells us if we use our own HW trigger ourselves
* @indio_dev: device to check
*/
bool iio_trigger_using_own(struct iio_dev *indio_dev);
int iio_trigger_validate_own_device(struct iio_trigger *trig,
struct iio_dev *indio_dev);
#else
struct iio_trigger;
struct iio_trigger_ops;
#endif
#endif /* _IIO_TRIGGER_H_ */