9698f7e8e7
We will encounter below inconsistent status when FAULT_BLKADDR type fault injection is on. Info: checkpoint state = d6 : nat_bits crc fsck compacted_summary orphan_inodes sudden-power-off [ASSERT] (fsck_chk_inode_blk:1254) --> ino: 0x1c100 has i_blocks: 000000c0, but has 191 blocks [FIX] (fsck_chk_inode_blk:1260) --> [0x1c100] i_blocks=0x000000c0 -> 0xbf [FIX] (fsck_chk_inode_blk:1269) --> [0x1c100] i_compr_blocks=0x00000026 -> 0x27 [ASSERT] (fsck_chk_inode_blk:1254) --> ino: 0x1cadb has i_blocks: 0000002f, but has 46 blocks [FIX] (fsck_chk_inode_blk:1260) --> [0x1cadb] i_blocks=0x0000002f -> 0x2e [FIX] (fsck_chk_inode_blk:1269) --> [0x1cadb] i_compr_blocks=0x00000011 -> 0x12 [ASSERT] (fsck_chk_inode_blk:1254) --> ino: 0x1c62c has i_blocks: 00000002, but has 1 blocks [FIX] (fsck_chk_inode_blk:1260) --> [0x1c62c] i_blocks=0x00000002 -> 0x1 After we inject fault into f2fs_is_valid_blkaddr() during truncation, a) it missed to increase @nr_free or @valid_blocks b) it can cause in blkaddr leak in truncated dnode Which may cause inconsistent status. This patch separates FAULT_BLKADDR_CONSISTENCE from FAULT_BLKADDR, and rename FAULT_BLKADDR to FAULT_BLKADDR_VALIDITY so that we can: a) use FAULT_BLKADDR_CONSISTENCE in f2fs_truncate_data_blocks_range() to simulate inconsistent issue independently, then it can verify fsck repair flow. b) FAULT_BLKADDR_VALIDITY fault will not cause any inconsistent status, we can just use it to check error path handling in kernel side. Reviewed-by: Daeho Jeong <daehojeong@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Bug: 313549450 (cherry picked from commit c7115e094ca820bb72e0c89f158d16bc48c6fa04 https://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs.git dev) Change-Id: Ifd6527aa2e48d883ae4063bfce1a404ccfbdaa48 Signed-off-by: Daeho Jeong <daehojeong@google.com> |
||
---|---|---|
.. | ||
obsolete | ||
removed | ||
stable | ||
testing | ||
README |
This directory attempts to document the ABI between the Linux kernel and userspace, and the relative stability of these interfaces. Due to the everchanging nature of Linux, and the differing maturity levels, these interfaces should be used by userspace programs in different ways. We have four different levels of ABI stability, as shown by the four different subdirectories in this location. Interfaces may change levels of stability according to the rules described below. The different levels of stability are: stable/ This directory documents the interfaces that the developer has defined to be stable. Userspace programs are free to use these interfaces with no restrictions, and backward compatibility for them will be guaranteed for at least 2 years. Most interfaces (like syscalls) are expected to never change and always be available. testing/ This directory documents interfaces that are felt to be stable, as the main development of this interface has been completed. The interface can be changed to add new features, but the current interface will not break by doing this, unless grave errors or security problems are found in them. Userspace programs can start to rely on these interfaces, but they must be aware of changes that can occur before these interfaces move to be marked stable. Programs that use these interfaces are strongly encouraged to add their name to the description of these interfaces, so that the kernel developers can easily notify them if any changes occur (see the description of the layout of the files below for details on how to do this.) obsolete/ This directory documents interfaces that are still remaining in the kernel, but are marked to be removed at some later point in time. The description of the interface will document the reason why it is obsolete and when it can be expected to be removed. removed/ This directory contains a list of the old interfaces that have been removed from the kernel. Every file in these directories will contain the following information: What: Short description of the interface Date: Date created KernelVersion: Kernel version this feature first showed up in. Contact: Primary contact for this interface (may be a mailing list) Description: Long description of the interface and how to use it. Users: All users of this interface who wish to be notified when it changes. This is very important for interfaces in the "testing" stage, so that kernel developers can work with userspace developers to ensure that things do not break in ways that are unacceptable. It is also important to get feedback for these interfaces to make sure they are working in a proper way and do not need to be changed further. Note: The fields should be use a simple notation, compatible with ReST markup. Also, the file **should not** have a top-level index, like:: === foo === How things move between levels: Interfaces in stable may move to obsolete, as long as the proper notification is given. Interfaces may be removed from obsolete and the kernel as long as the documented amount of time has gone by. Interfaces in the testing state can move to the stable state when the developers feel they are finished. They cannot be removed from the kernel tree without going through the obsolete state first. It's up to the developer to place their interfaces in the category they wish for it to start out in. Notable bits of non-ABI, which should not under any circumstances be considered stable: - Kconfig. Userspace should not rely on the presence or absence of any particular Kconfig symbol, in /proc/config.gz, in the copy of .config commonly installed to /boot, or in any invocation of the kernel build process. - Kernel-internal symbols. Do not rely on the presence, absence, location, or type of any kernel symbol, either in System.map files or the kernel binary itself. See Documentation/process/stable-api-nonsense.rst.