android_kernel_samsung_sm8650/drivers/mfd/qcom-i2c-pmic.c
Jishnu Prakash 5ce214e69b mfd: qcom-i2c-pmic: Skip suspend/resume callbacks when interrupts undefined
In the case where the I2C PMIC controller does not have interrupt defined,
skip the suspend and resume callbacks completely as there is nothing
to be done in them.

Change-Id: I26cdf74730acf2f603cc3f36d2643f7ad5522eea
Signed-off-by: Jishnu Prakash <quic_jprakash@quicinc.com>
2024-01-05 17:25:26 +05:30

821 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2018, 2020, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#define pr_fmt(fmt) "I2C PMIC: %s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/consumer.h>
#include <linux/qti-regmap-debugfs.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define I2C_INTR_STATUS_BASE 0x0550
#define INT_RT_STS_OFFSET 0x10
#define INT_SET_TYPE_OFFSET 0x11
#define INT_POL_HIGH_OFFSET 0x12
#define INT_POL_LOW_OFFSET 0x13
#define INT_LATCHED_CLR_OFFSET 0x14
#define INT_EN_SET_OFFSET 0x15
#define INT_EN_CLR_OFFSET 0x16
#define INT_LATCHED_STS_OFFSET 0x18
#define INT_PENDING_STS_OFFSET 0x19
#define INT_MID_SEL_OFFSET 0x1A
#define INT_MID_SEL_MASK GENMASK(1, 0)
#define INT_PRIORITY_OFFSET 0x1B
#define INT_PRIORITY_BIT BIT(0)
enum {
IRQ_SET_TYPE = 0,
IRQ_POL_HIGH,
IRQ_POL_LOW,
IRQ_LATCHED_CLR, /* not needed but makes life easy */
IRQ_EN_SET,
IRQ_MAX_REGS,
};
struct i2c_pmic_periph {
void *data;
u16 addr;
u8 cached[IRQ_MAX_REGS];
u8 synced[IRQ_MAX_REGS];
u8 wake;
struct mutex lock;
};
struct i2c_pmic {
struct device *dev;
struct regmap *regmap;
struct irq_domain *domain;
struct i2c_pmic_periph *periph;
struct pinctrl *pinctrl;
struct mutex irq_complete;
const char *pinctrl_name;
int num_periphs;
int summary_irq;
bool resume_completed;
bool irq_waiting;
bool toggle_stat;
};
static void i2c_pmic_irq_bus_lock(struct irq_data *d)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
mutex_lock(&periph->lock);
}
static void i2c_pmic_sync_type_polarity(struct i2c_pmic *chip,
struct i2c_pmic_periph *periph)
{
int rc;
/* did any irq type change? */
if (periph->cached[IRQ_SET_TYPE] ^ periph->synced[IRQ_SET_TYPE]) {
rc = regmap_write(chip->regmap,
periph->addr | INT_SET_TYPE_OFFSET,
periph->cached[IRQ_SET_TYPE]);
if (rc < 0) {
pr_err("Couldn't set periph 0x%04x irqs 0x%02x type rc=%d\n",
periph->addr, periph->cached[IRQ_SET_TYPE], rc);
return;
}
periph->synced[IRQ_SET_TYPE] = periph->cached[IRQ_SET_TYPE];
}
/* did any polarity high change? */
if (periph->cached[IRQ_POL_HIGH] ^ periph->synced[IRQ_POL_HIGH]) {
rc = regmap_write(chip->regmap,
periph->addr | INT_POL_HIGH_OFFSET,
periph->cached[IRQ_POL_HIGH]);
if (rc < 0) {
pr_err("Couldn't set periph 0x%04x irqs 0x%02x polarity high rc=%d\n",
periph->addr, periph->cached[IRQ_POL_HIGH], rc);
return;
}
periph->synced[IRQ_POL_HIGH] = periph->cached[IRQ_POL_HIGH];
}
/* did any polarity low change? */
if (periph->cached[IRQ_POL_LOW] ^ periph->synced[IRQ_POL_LOW]) {
rc = regmap_write(chip->regmap,
periph->addr | INT_POL_LOW_OFFSET,
periph->cached[IRQ_POL_LOW]);
if (rc < 0) {
pr_err("Couldn't set periph 0x%04x irqs 0x%02x polarity low rc=%d\n",
periph->addr, periph->cached[IRQ_POL_LOW], rc);
return;
}
periph->synced[IRQ_POL_LOW] = periph->cached[IRQ_POL_LOW];
}
}
static void i2c_pmic_sync_enable(struct i2c_pmic *chip,
struct i2c_pmic_periph *periph)
{
u8 en_set, en_clr;
int rc;
/* determine which irqs were enabled and which were disabled */
en_clr = periph->synced[IRQ_EN_SET] & ~periph->cached[IRQ_EN_SET];
en_set = ~periph->synced[IRQ_EN_SET] & periph->cached[IRQ_EN_SET];
/* were any irqs disabled? */
if (en_clr) {
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_CLR_OFFSET, en_clr);
if (rc < 0) {
pr_err("Couldn't disable periph 0x%04x irqs 0x%02x rc=%d\n",
periph->addr, en_clr, rc);
return;
}
}
/* were any irqs enabled? */
if (en_set) {
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_SET_OFFSET, en_set);
if (rc < 0) {
pr_err("Couldn't enable periph 0x%04x irqs 0x%02x rc=%d\n",
periph->addr, en_set, rc);
return;
}
}
/* irq enabled status was written to hardware */
periph->synced[IRQ_EN_SET] = periph->cached[IRQ_EN_SET];
}
static void i2c_pmic_irq_bus_sync_unlock(struct irq_data *d)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
struct i2c_pmic *chip = periph->data;
i2c_pmic_sync_type_polarity(chip, periph);
i2c_pmic_sync_enable(chip, periph);
mutex_unlock(&periph->lock);
}
static void i2c_pmic_irq_disable(struct irq_data *d)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
periph->cached[IRQ_EN_SET] &= ~d->hwirq & 0xFF;
}
static void i2c_pmic_irq_enable(struct irq_data *d)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
periph->cached[IRQ_EN_SET] |= d->hwirq & 0xFF;
}
static int i2c_pmic_irq_set_type(struct irq_data *d, unsigned int irq_type)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
switch (irq_type) {
case IRQ_TYPE_EDGE_RISING:
periph->cached[IRQ_SET_TYPE] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] &= ~d->hwirq & 0xFF;
break;
case IRQ_TYPE_EDGE_FALLING:
periph->cached[IRQ_SET_TYPE] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] &= ~d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] |= d->hwirq & 0xFF;
break;
case IRQ_TYPE_EDGE_BOTH:
periph->cached[IRQ_SET_TYPE] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] |= d->hwirq & 0xFF;
break;
case IRQ_TYPE_LEVEL_HIGH:
periph->cached[IRQ_SET_TYPE] &= ~d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] |= d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] &= ~d->hwirq & 0xFF;
break;
case IRQ_TYPE_LEVEL_LOW:
periph->cached[IRQ_SET_TYPE] &= ~d->hwirq & 0xFF;
periph->cached[IRQ_POL_HIGH] &= ~d->hwirq & 0xFF;
periph->cached[IRQ_POL_LOW] |= d->hwirq & 0xFF;
break;
default:
pr_err("irq type 0x%04x is not supported\n", irq_type);
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int i2c_pmic_irq_set_wake(struct irq_data *d, unsigned int on)
{
struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
if (on)
periph->wake |= d->hwirq & 0xFF;
else
periph->wake &= ~d->hwirq & 0xFF;
return 0;
}
#else
#define i2c_pmic_irq_set_wake NULL
#endif
static struct irq_chip i2c_pmic_irq_chip = {
.name = "i2c_pmic_irq_chip",
.irq_bus_lock = i2c_pmic_irq_bus_lock,
.irq_bus_sync_unlock = i2c_pmic_irq_bus_sync_unlock,
.irq_disable = i2c_pmic_irq_disable,
.irq_enable = i2c_pmic_irq_enable,
.irq_set_type = i2c_pmic_irq_set_type,
.irq_set_wake = i2c_pmic_irq_set_wake,
};
static struct i2c_pmic_periph *i2c_pmic_find_periph(struct i2c_pmic *chip,
irq_hw_number_t hwirq)
{
int i;
for (i = 0; i < chip->num_periphs; i++)
if (chip->periph[i].addr == (hwirq & 0xFF00))
return &chip->periph[i];
pr_err_ratelimited("Couldn't find periph struct for hwirq 0x%04lx\n",
hwirq);
return NULL;
}
static int i2c_pmic_domain_map(struct irq_domain *d, unsigned int virq,
irq_hw_number_t hwirq)
{
struct i2c_pmic *chip = d->host_data;
struct i2c_pmic_periph *periph = i2c_pmic_find_periph(chip, hwirq);
if (!periph)
return -ENODEV;
irq_set_chip_data(virq, periph);
irq_set_chip_and_handler(virq, &i2c_pmic_irq_chip, handle_level_irq);
irq_set_nested_thread(virq, 1);
irq_set_noprobe(virq);
return 0;
}
static int i2c_pmic_domain_xlate(struct irq_domain *d,
struct device_node *ctrlr, const u32 *intspec,
unsigned int intsize, unsigned long *out_hwirq,
unsigned int *out_type)
{
if (intsize != 3)
return -EINVAL;
if (intspec[0] > 0xFF || intspec[1] > 0x7 ||
intspec[2] > IRQ_TYPE_SENSE_MASK)
return -EINVAL;
/*
* Interrupt specifiers are triplets
* <peripheral-address, irq-number, IRQ_TYPE_*>
*
* peripheral-address - The base address of the peripheral
* irq-number - The zero based bit position of the peripheral's
* interrupt registers corresponding to the irq
* where the LSB is 0 and the MSB is 7
* IRQ_TYPE_* - Please refer to linux/irq.h
*/
*out_hwirq = intspec[0] << 8 | BIT(intspec[1]);
*out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static const struct irq_domain_ops i2c_pmic_domain_ops = {
.map = i2c_pmic_domain_map,
.xlate = i2c_pmic_domain_xlate,
};
static void i2c_pmic_irq_ack_now(struct i2c_pmic *chip, u16 hwirq)
{
int rc;
rc = regmap_write(chip->regmap,
(hwirq & 0xFF00) | INT_LATCHED_CLR_OFFSET,
hwirq & 0xFF);
if (rc < 0)
pr_err_ratelimited("Couldn't ack 0x%04x rc=%d\n", hwirq, rc);
}
static void i2c_pmic_irq_disable_now(struct i2c_pmic *chip, u16 hwirq)
{
struct i2c_pmic_periph *periph = i2c_pmic_find_periph(chip, hwirq);
int rc;
if (!periph)
return;
mutex_lock(&periph->lock);
periph->cached[IRQ_EN_SET] &= ~hwirq & 0xFF;
rc = regmap_write(chip->regmap,
(hwirq & 0xFF00) | INT_EN_CLR_OFFSET,
hwirq & 0xFF);
if (rc < 0) {
pr_err_ratelimited("Couldn't disable irq 0x%04x rc=%d\n",
hwirq, rc);
goto unlock;
}
periph->synced[IRQ_EN_SET] = periph->cached[IRQ_EN_SET];
unlock:
mutex_unlock(&periph->lock);
}
static void i2c_pmic_periph_status_handler(struct i2c_pmic *chip,
u16 periph_address, u8 periph_status)
{
unsigned int hwirq, virq;
int i;
while (periph_status) {
i = ffs(periph_status) - 1;
periph_status &= ~BIT(i);
hwirq = periph_address | BIT(i);
virq = irq_find_mapping(chip->domain, hwirq);
if (virq == 0) {
pr_err_ratelimited("Couldn't find mapping; disabling 0x%04x\n",
hwirq);
i2c_pmic_irq_disable_now(chip, hwirq);
continue;
}
handle_nested_irq(virq);
i2c_pmic_irq_ack_now(chip, hwirq);
}
}
static void i2c_pmic_summary_status_handler(struct i2c_pmic *chip,
struct i2c_pmic_periph *periph,
u8 summary_status)
{
unsigned int periph_status;
int rc, i;
while (summary_status) {
i = ffs(summary_status) - 1;
summary_status &= ~BIT(i);
rc = regmap_read(chip->regmap,
periph[i].addr | INT_LATCHED_STS_OFFSET,
&periph_status);
if (rc < 0) {
pr_err_ratelimited("Couldn't read 0x%04x | INT_LATCHED_STS rc=%d\n",
periph[i].addr, rc);
continue;
}
i2c_pmic_periph_status_handler(chip, periph[i].addr,
periph_status);
}
}
static irqreturn_t i2c_pmic_irq_handler(int irq, void *dev_id)
{
struct i2c_pmic *chip = dev_id;
struct i2c_pmic_periph *periph;
unsigned int summary_status;
int rc, i;
mutex_lock(&chip->irq_complete);
chip->irq_waiting = true;
if (!chip->resume_completed) {
pr_debug("IRQ triggered before device-resume\n");
disable_irq_nosync(irq);
mutex_unlock(&chip->irq_complete);
return IRQ_HANDLED;
}
chip->irq_waiting = false;
for (i = 0; i < DIV_ROUND_UP(chip->num_periphs, BITS_PER_BYTE); i++) {
rc = regmap_read(chip->regmap, I2C_INTR_STATUS_BASE + i,
&summary_status);
if (rc < 0) {
pr_err_ratelimited("Couldn't read I2C_INTR_STATUS%d rc=%d\n",
i, rc);
continue;
}
if (summary_status == 0)
continue;
periph = &chip->periph[i * 8];
i2c_pmic_summary_status_handler(chip, periph, summary_status);
}
mutex_unlock(&chip->irq_complete);
return IRQ_HANDLED;
}
static int i2c_pmic_parse_dt(struct i2c_pmic *chip)
{
struct device_node *node = chip->dev->of_node;
int rc, i;
u32 temp;
if (!node) {
pr_err("missing device tree\n");
return -EINVAL;
}
chip->num_periphs = of_property_count_u32_elems(node,
"qcom,periph-map");
if (chip->num_periphs < 0) {
pr_err("missing qcom,periph-map property rc=%d\n",
chip->num_periphs);
return chip->num_periphs;
}
if (chip->num_periphs == 0) {
pr_err("qcom,periph-map must contain at least one address\n");
return -EINVAL;
}
chip->periph = devm_kcalloc(chip->dev, chip->num_periphs,
sizeof(*chip->periph), GFP_KERNEL);
if (!chip->periph)
return -ENOMEM;
for (i = 0; i < chip->num_periphs; i++) {
rc = of_property_read_u32_index(node, "qcom,periph-map",
i, &temp);
if (rc < 0) {
pr_err("Couldn't read qcom,periph-map[%d] rc=%d\n",
i, rc);
return rc;
}
chip->periph[i].addr = (u16)(temp << 8);
chip->periph[i].data = chip;
mutex_init(&chip->periph[i].lock);
}
of_property_read_string(node, "pinctrl-names", &chip->pinctrl_name);
chip->toggle_stat = of_property_read_bool(node,
"qcom,enable-toggle-stat");
return rc;
}
#define MAX_I2C_RETRIES 3
static int i2c_pmic_read(struct regmap *map, unsigned int reg, void *val,
size_t val_count)
{
int rc, retries = 0;
do {
rc = regmap_bulk_read(map, reg, val, val_count);
} while (rc == -ENOTCONN && retries++ < MAX_I2C_RETRIES);
if (retries > 1)
pr_err("i2c_pmic_read failed for %d retries, rc = %d\n",
retries - 1, rc);
return rc;
}
static int i2c_pmic_determine_initial_status(struct i2c_pmic *chip)
{
int rc, i;
for (i = 0; i < chip->num_periphs; i++) {
rc = i2c_pmic_read(chip->regmap,
chip->periph[i].addr | INT_SET_TYPE_OFFSET,
chip->periph[i].cached, IRQ_MAX_REGS);
if (rc < 0) {
pr_err("Couldn't read irq data rc=%d\n", rc);
return rc;
}
memcpy(chip->periph[i].synced, chip->periph[i].cached,
IRQ_MAX_REGS * sizeof(*chip->periph[i].synced));
}
return 0;
}
#define INT_TEST_OFFSET 0xE0
#define INT_TEST_MODE_EN_BIT BIT(7)
#define INT_TEST_VAL_OFFSET 0xE1
#define INT_0_BIT BIT(0)
static int i2c_pmic_toggle_stat(struct i2c_pmic *chip)
{
int rc = 0, i;
if (!chip->toggle_stat || !chip->num_periphs)
return 0;
rc = regmap_write(chip->regmap,
chip->periph[0].addr | INT_EN_SET_OFFSET,
INT_0_BIT);
if (rc < 0) {
pr_err("Couldn't write to int_en_set rc=%d\n", rc);
return rc;
}
rc = regmap_write(chip->regmap, chip->periph[0].addr | INT_TEST_OFFSET,
INT_TEST_MODE_EN_BIT);
if (rc < 0) {
pr_err("Couldn't write to int_test rc=%d\n", rc);
return rc;
}
for (i = 0; i < 5; i++) {
rc = regmap_write(chip->regmap,
chip->periph[0].addr | INT_TEST_VAL_OFFSET,
INT_0_BIT);
if (rc < 0) {
pr_err("Couldn't write to int_test_val rc=%d\n", rc);
goto exit;
}
usleep_range(5000, 5500);
rc = regmap_write(chip->regmap,
chip->periph[0].addr | INT_TEST_VAL_OFFSET,
0);
if (rc < 0) {
pr_err("Couldn't write to int_test_val rc=%d\n", rc);
goto exit;
}
rc = regmap_write(chip->regmap,
chip->periph[0].addr | INT_LATCHED_CLR_OFFSET,
INT_0_BIT);
if (rc < 0) {
pr_err("Couldn't write to int_latched_clr rc=%d\n", rc);
goto exit;
}
usleep_range(5000, 5500);
}
exit:
regmap_write(chip->regmap, chip->periph[0].addr | INT_TEST_OFFSET, 0);
regmap_write(chip->regmap, chip->periph[0].addr | INT_EN_CLR_OFFSET,
INT_0_BIT);
return rc;
}
static struct regmap_config i2c_pmic_regmap_config = {
.reg_bits = 16,
.val_bits = 8,
.max_register = 0xFFFF,
};
static int i2c_pmic_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_pmic *chip;
int rc = 0;
chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->dev = &client->dev;
chip->regmap = devm_regmap_init_i2c(client, &i2c_pmic_regmap_config);
if (!chip->regmap)
return -ENODEV;
devm_regmap_qti_debugfs_register(chip->dev, chip->regmap);
i2c_set_clientdata(client, chip);
chip->summary_irq = -EINVAL;
if (!of_property_read_bool(chip->dev->of_node, "interrupt-controller"))
goto probe_children;
chip->domain = irq_domain_add_tree(client->dev.of_node,
&i2c_pmic_domain_ops, chip);
if (!chip->domain) {
rc = -ENOMEM;
goto cleanup;
}
rc = i2c_pmic_parse_dt(chip);
if (rc < 0) {
pr_err("Couldn't parse device tree rc=%d\n", rc);
goto cleanup;
}
rc = i2c_pmic_determine_initial_status(chip);
if (rc < 0) {
pr_err("Couldn't determine initial status rc=%d\n", rc);
goto cleanup;
}
if (chip->pinctrl_name) {
chip->pinctrl = devm_pinctrl_get_select(chip->dev,
chip->pinctrl_name);
if (IS_ERR(chip->pinctrl)) {
pr_err("Couldn't select %s pinctrl rc=%ld\n",
chip->pinctrl_name, PTR_ERR(chip->pinctrl));
rc = PTR_ERR(chip->pinctrl);
goto cleanup;
}
}
chip->resume_completed = true;
mutex_init(&chip->irq_complete);
rc = i2c_pmic_toggle_stat(chip);
if (rc < 0) {
pr_err("Couldn't toggle stat rc=%d\n", rc);
goto cleanup;
}
rc = devm_request_threaded_irq(&client->dev, client->irq, NULL,
i2c_pmic_irq_handler,
IRQF_ONESHOT | IRQF_SHARED,
"i2c_pmic_stat_irq", chip);
if (rc < 0) {
pr_err("Couldn't request irq %d rc=%d\n", client->irq, rc);
goto cleanup;
}
chip->summary_irq = client->irq;
enable_irq_wake(client->irq);
probe_children:
of_platform_populate(chip->dev->of_node, NULL, NULL, chip->dev);
pr_info("I2C PMIC probe successful\n");
return rc;
cleanup:
if (chip->domain)
irq_domain_remove(chip->domain);
i2c_set_clientdata(client, NULL);
return rc;
}
static void i2c_pmic_remove(struct i2c_client *client)
{
struct i2c_pmic *chip = i2c_get_clientdata(client);
of_platform_depopulate(chip->dev);
if (chip->domain)
irq_domain_remove(chip->domain);
i2c_set_clientdata(client, NULL);
}
#ifdef CONFIG_PM_SLEEP
static int i2c_pmic_suspend_noirq(struct device *dev)
{
struct i2c_pmic *chip = dev_get_drvdata(dev);
if (chip->irq_waiting) {
pr_err_ratelimited("Aborting suspend, an interrupt was detected while suspending\n");
return -EBUSY;
}
return 0;
}
static int i2c_pmic_suspend(struct device *dev)
{
struct i2c_pmic *chip = dev_get_drvdata(dev);
struct i2c_pmic_periph *periph;
int rc = 0, i;
if (chip->summary_irq < 0)
return 0;
for (i = 0; i < chip->num_periphs; i++) {
periph = &chip->periph[i];
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_CLR_OFFSET, 0xFF);
if (rc < 0) {
pr_err_ratelimited("Couldn't clear 0x%04x irqs rc=%d\n",
periph->addr, rc);
continue;
}
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_SET_OFFSET,
periph->wake);
if (rc < 0)
pr_err_ratelimited("Couldn't enable 0x%04x wake irqs 0x%02x rc=%d\n",
periph->addr, periph->wake, rc);
}
if (!rc) {
mutex_lock(&chip->irq_complete);
chip->resume_completed = false;
mutex_unlock(&chip->irq_complete);
}
return rc;
}
static int i2c_pmic_resume(struct device *dev)
{
struct i2c_pmic *chip = dev_get_drvdata(dev);
struct i2c_pmic_periph *periph;
int rc = 0, i;
if (chip->summary_irq < 0)
return 0;
for (i = 0; i < chip->num_periphs; i++) {
periph = &chip->periph[i];
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_CLR_OFFSET, 0xFF);
if (rc < 0) {
pr_err("Couldn't clear 0x%04x irqs rc=%d\n",
periph->addr, rc);
continue;
}
rc = regmap_write(chip->regmap,
periph->addr | INT_EN_SET_OFFSET,
periph->synced[IRQ_EN_SET]);
if (rc < 0)
pr_err("Couldn't restore 0x%04x synced irqs 0x%02x rc=%d\n",
periph->addr, periph->synced[IRQ_EN_SET], rc);
}
mutex_lock(&chip->irq_complete);
chip->resume_completed = true;
if (chip->irq_waiting) {
mutex_unlock(&chip->irq_complete);
/* irq was pending, call the handler */
i2c_pmic_irq_handler(chip->summary_irq, chip);
enable_irq(chip->summary_irq);
} else {
mutex_unlock(&chip->irq_complete);
}
return rc;
}
#else
static int i2c_pmic_suspend(struct device *dev)
{
return 0;
}
static int i2c_pmic_resume(struct device *dev)
{
return 0;
}
static int i2c_pmic_suspend_noirq(struct device *dev)
{
return 0
}
#endif
static const struct dev_pm_ops i2c_pmic_pm_ops = {
.suspend = i2c_pmic_suspend,
.suspend_noirq = i2c_pmic_suspend_noirq,
.resume = i2c_pmic_resume,
};
static const struct of_device_id i2c_pmic_match_table[] = {
{ .compatible = "qcom,i2c-pmic", },
{ },
};
static const struct i2c_device_id i2c_pmic_id[] = {
{ "i2c-pmic", 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, i2c_pmic_id);
static struct i2c_driver i2c_pmic_driver = {
.driver = {
.name = "i2c_pmic",
.pm = &i2c_pmic_pm_ops,
.of_match_table = i2c_pmic_match_table,
},
.probe = i2c_pmic_probe,
.remove = i2c_pmic_remove,
.id_table = i2c_pmic_id,
};
module_i2c_driver(i2c_pmic_driver);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("i2c:i2c_pmic");