android_kernel_samsung_sm8650/drivers/leds/leds-s2mpb02.c
2024-10-20 20:09:27 +02:00

859 lines
23 KiB
C

/*
* LED driver for Samsung S2MPB02
*
* Copyright (C) 2014 Samsung Electronics
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This driver is based on leds-max77804.c
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/leds.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/mfd/samsung/s2mpb02.h>
#include <linux/mfd/samsung/s2mpb02-regulator.h>
#include <linux/leds-s2mpb02.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
struct device *s2mpb02_led_dev;
struct s2mpb02_led_data **global_led_datas;
bool sysfs_flash_op;
bool flash_config_factory;
#ifdef S2MPB02_FLED_CHANNEL_1
#define S2MPB02_REG_FLED_CTRL S2MPB02_REG_FLED_CTRL1
#define S2MPB02_REG_FLED_CUR S2MPB02_REG_FLED_CUR1
#define S2MPB02_REG_FLED_TIME S2MPB02_REG_FLED_TIME1
#else
#define S2MPB02_REG_FLED_CTRL S2MPB02_REG_FLED_CTRL2
#define S2MPB02_REG_FLED_CUR S2MPB02_REG_FLED_CUR2
#define S2MPB02_REG_FLED_TIME S2MPB02_REG_FLED_TIME2
#endif
//#define DEBUG_READ_REGISTER //To dump register values with /sys/kernel/debug/s2mpb02-led-regs
//#define DEBUG_WRITE_REGISTER //To write register with sysfs
struct s2mpb02_led_data {
struct led_classdev led;
struct s2mpb02_dev *s2mpb02;
struct s2mpb02_led *data;
struct i2c_client *i2c;
struct work_struct work;
struct mutex lock;
spinlock_t value_lock;
int brightness;
};
static u8 leds_mask[S2MPB02_LED_MAX] = {
S2MPB02_FLASH_MASK,
S2MPB02_TORCH_MASK,
};
static u8 leds_shift[S2MPB02_LED_MAX] = {
4,
0,
};
#if defined(DEBUG_READ_REGISTER)
#if 0
static void print_all_reg_value(struct i2c_client *client)
{
int ret;
u8 value;
u8 i;
for (i = 0; i <= S2MPB02_REG_LDO_DSCH3; i++) {
ret = s2mpb02_read_reg(client, i, &value);
if (unlikely(ret < 0))
pr_err("[s2mpb02-LED][%s] read failed", __func__);
pr_err("[s2mpb02-LED] register(%x) = %x\n", i, value);
value = 0;
}
}
#endif
static int s2mpb02_debugfs_show(struct seq_file *s, void *data)
{
struct s2mpb02_dev *ldata = s->private;
u8 reg;
u8 reg_data;
int ret;
seq_printf(s, "s2mpb02 IF PMIC :\n");
seq_printf(s, "=============\n");
for (reg = 0; reg <= S2MPB02_REG_LDO_DSCH3; reg++) {
ret = s2mpb02_read_reg(ldata->i2c, reg, &reg_data);
if (unlikely(ret < 0)) {
pr_err("[s2mpb02-LED][%s] read failed", __func__);
}
seq_printf(s, "0x%02x:\t0x%02x\n", reg, reg_data);
}
//print_all_reg_value(ldata->i2c);
seq_printf(s, "\n");
return 0;
}
static int s2mpb02_debugfs_open(struct inode *inode, struct file *file)
{
return single_open(file, s2mpb02_debugfs_show, inode->i_private);
}
static const struct file_operations s2mpb02_debugfs_fops = {
.open = s2mpb02_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif
static int s2mpb02_set_bits(struct i2c_client *client, const u8 reg,
const u8 mask, const u8 inval)
{
int ret;
u8 value;
ret = s2mpb02_read_reg(client, reg, &value);
if (unlikely(ret < 0))
return ret;
value = (value & ~mask) | (inval & mask);
ret = s2mpb02_write_reg(client, reg, value);
return ret;
}
static int s2mpb02_led_get_en_value(struct s2mpb02_led_data *led_data, int on)
{
if (on) {
if (led_data->data->id == S2MPB02_FLASH_LED_1)
return ((S2MPB02_FLED_ENABLE << S2MPB02_FLED_ENABLE_SHIFT) |
(S2MPB02_FLED_FLASH_MODE << S2MPB02_FLED_MODE_SHIFT));
/* Turn on FLASH by I2C */
else
return ((S2MPB02_FLED_ENABLE << S2MPB02_FLED_ENABLE_SHIFT) |
(S2MPB02_FLED_TORCH_MODE << S2MPB02_FLED_MODE_SHIFT));
/* Turn on TORCH by I2C */
} else
return (S2MPB02_FLED_DISABLE << S2MPB02_FLED_ENABLE_SHIFT);
/* controlled by GPIO */
}
static void s2mpb02_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
unsigned long flags;
struct s2mpb02_led_data *led_data
= container_of(led_cdev, struct s2mpb02_led_data, led);
pr_debug("[LED] %s\n", __func__);
spin_lock_irqsave(&led_data->value_lock, flags);
led_data->data->brightness = min_t(int, (int)value, (int)led_cdev->max_brightness);
spin_unlock_irqrestore(&led_data->value_lock, flags);
schedule_work(&led_data->work);
}
static void led_set(struct s2mpb02_led_data *led_data, enum s2mpb02_led_turn_way turn_way)
{
int ret;
struct s2mpb02_led *data = led_data->data;
int id = data->id;
int value = 0;
if (turn_way == S2MPB02_LED_TURN_WAY_GPIO) {
/* First turn off LED turned on by I2C */
value = s2mpb02_led_get_en_value(led_data, 0);
ret = s2mpb02_set_bits(led_data->i2c,
S2MPB02_REG_FLED_CTRL1, S2MPB02_FLED_ENABLE_MODE_MASK, value);
if (unlikely(ret))
goto error_set_bits;
/* Turn way LED by GPIO */
/* set current */
ret = s2mpb02_set_bits(led_data->i2c, S2MPB02_REG_FLED_CUR1,
leds_mask[id], data->brightness << leds_shift[id]);
if (unlikely(ret))
goto error_set_bits;
value = led_data->data->brightness ? 1 : 0;
gpio_request(led_data->data->gpio, NULL);
gpio_direction_output(led_data->data->gpio, value);
gpio_free(led_data->data->gpio);
} else {
if (led_data->data->brightness == LED_OFF) {
value = s2mpb02_led_get_en_value(led_data, 0);
ret = s2mpb02_set_bits(led_data->i2c,
S2MPB02_REG_FLED_CTRL1, S2MPB02_FLED_ENABLE_MODE_MASK, value);
if (unlikely(ret))
goto error_set_bits;
}
/* set current */
ret = s2mpb02_set_bits(led_data->i2c, S2MPB02_REG_FLED_CUR1,
leds_mask[id], data->brightness << leds_shift[id]);
if (unlikely(ret))
goto error_set_bits;
if (led_data->data->brightness != LED_OFF) {
/* Turn on LED by I2C */
value = s2mpb02_led_get_en_value(led_data, 1);
ret = s2mpb02_set_bits(led_data->i2c,
S2MPB02_REG_FLED_CTRL1, S2MPB02_FLED_ENABLE_MODE_MASK, value);
if (unlikely(ret))
goto error_set_bits;
}
}
return;
error_set_bits:
pr_err("%s: can't set led level %d\n", __func__, ret);
return;
}
static void s2mpb02_led_work(struct work_struct *work)
{
struct s2mpb02_led_data *led_data
= container_of(work, struct s2mpb02_led_data, work);
pr_debug("[LED] %s\n", __func__);
if (sysfs_flash_op) {
pr_warn("%s : The camera led control is not allowed"
"because sysfs led control already used it\n", __FUNCTION__);
return;
}
mutex_lock(&led_data->lock);
led_set(led_data, S2MPB02_LED_TURN_WAY_I2C);
mutex_unlock(&led_data->lock);
}
static int s2mpb02_led_setup(struct s2mpb02_led_data *led_data)
{
int ret = 0;
struct s2mpb02_led *data = led_data->data;
int id = data->id;
int value;
/* Disable Low Voltage operating mode control */
ret |= s2mpb02_update_reg(led_data->i2c, S2MPB02_REG_FLED_CTRL1,
S2MPB02_FLED_CTRL1_LV_DISABLE, S2MPB02_FLED_CTRL1_LV_EN_MASK);
/* set operating minimum voltage */
ret |= s2mpb02_update_reg(led_data->i2c, S2MPB02_REG_FLED_CTRL1,
S2MPB02_LV_SEL_VOLT(3000), S2MPB02_LV_SEL_VOUT_MASK);
/* set current & timeout */
ret |= s2mpb02_update_reg(led_data->i2c, S2MPB02_REG_FLED_CUR1,
data->brightness << leds_shift[id], leds_mask[id]);
ret |= s2mpb02_update_reg(led_data->i2c, S2MPB02_REG_FLED_TIME1,
data->timeout << leds_shift[id], leds_mask[id]);
value = s2mpb02_led_get_en_value(led_data, 0);
ret |= s2mpb02_update_reg(led_data->i2c,
S2MPB02_REG_FLED_CTRL1, value, S2MPB02_FLED_ENABLE_MODE_MASK);
#if defined(CONFIG_SAMSUNG_SECURE_CAMERA)
ret |= s2mpb02_ir_led_init();
#endif
return ret;
}
void s2mpb02_led_get_status(struct led_classdev *led_cdev, bool status, bool onoff)
{
int ret = 0;
u8 value[6] = {0, };
struct s2mpb02_led_data *led_data
= container_of(led_cdev, struct s2mpb02_led_data, led);
ret = s2mpb02_read_reg(led_data->i2c, 0x12, &value[0]); //Fled_ctrl1
ret |= s2mpb02_read_reg(led_data->i2c, 0x13, &value[1]); //Fled_ctrl2
ret |= s2mpb02_read_reg(led_data->i2c, 0x14, &value[2]); //Fled_cur1
ret |= s2mpb02_read_reg(led_data->i2c, 0x15, &value[3]); //Fled_time1
ret |= s2mpb02_read_reg(led_data->i2c, 0x16, &value[4]); //Fled_cur2
ret |= s2mpb02_read_reg(led_data->i2c, 0x17, &value[5]); //Fled_time2
if (unlikely(ret < 0)) {
printk("%s : error to get dt node\n", __func__);
}
printk("%s[%d, %d] : Fled_ctrl1 = 0x%12x, Fled_ctrl2 = 0x%13x, Fled_cur1 = 0x%14x, "
"Fled_time1 = 0x%15x, Fled_cur2 = 0x%16x, Fled_time2 = 0x%17x\n",
__func__, status, onoff, value[0], value[1], value[2], value[3], value[4], value[5]);
}
int s2mpb02_led_en(int mode, int onoff, enum s2mpb02_led_turn_way turn_way)
{
int ret = 0;
int i = 0;
if (global_led_datas == NULL) {
pr_err("<%s> global_led_datas is NULL\n", __func__);
return -1;
}
for (i = 0; i < S2MPB02_LED_MAX; i++) {
if (global_led_datas[i] == NULL) {
pr_err("<%s> global_led_datas[%d] is NULL\n", __func__, i);
return -1;
}
}
if (onoff > 0) {/* enable */
pr_info("<%s> enable %d, %d\n", __func__, onoff, mode);
if (mode == S2MPB02_TORCH_LED_1) {
if (onoff >= S2MPB02_TORCH_OUT_I_MAX)
onoff = S2MPB02_TORCH_OUT_I_MAX-1;
} else if (mode == S2MPB02_FLASH_LED_1) {
if (onoff >= S2MPB02_FLASH_OUT_I_MAX)
onoff = S2MPB02_FLASH_OUT_I_MAX-1;
} else {
pr_err("<%s> mode %d is invalid\n", __func__, mode);
return -1;
}
global_led_datas[mode]->data->brightness = onoff;
} else {/* disable */
pr_info("<%s> disable %d, %d\n", __func__, onoff, mode);
global_led_datas[mode]->data->brightness = 0;
}
led_set(global_led_datas[mode], turn_way);
return ret;
}
EXPORT_SYMBOL(s2mpb02_led_en);
#ifdef DEBUG_WRITE_REGISTER
ssize_t s2mpb02_write(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
unsigned int value = 0;
unsigned char reg = 0;
unsigned char data = 0;
if (buf == NULL || kstrtouint(buf, 16, &value)) {
pr_err("[%s] error buf is NULL\n", __func__);
return -1;
}
reg = value >> 8;
data = value & 0xFF;
pr_info("[%s] reg: %x, data: %x\n", __func__, reg, data);
s2mpb02_write_reg(global_led_datas[0]->i2c, reg, data);
return count;
}
static DEVICE_ATTR(s2mpb02_cam_reg, S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH,
NULL, s2mpb02_write);
#endif
#if defined(CONFIG_SAMSUNG_SECURE_CAMERA)
int s2mpb02_ir_led_init(void)
{
int ret = 0;
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_CTRL2, 0x38);
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_CUR2, 0xAF);
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_TIME2, 0x34);
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_TIME2, 0x35);
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_IRON1, 0x19);
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_IRON2, 0x0B);
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_IRD1, 0x00);
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_IRD2, 0X2C);
#if 1 //TEMP_845
s2mpb02_ir_led_current(5);
s2mpb02_ir_led_pulse_width(240);
s2mpb02_ir_led_pulse_delay(0);
s2mpb02_ir_led_max_time(0);
#endif
return ret;
}
EXPORT_SYMBOL(s2mpb02_ir_led_init);
int s2mpb02_ir_led_current(int32_t current_value)
{
int ret = 0;
unsigned int value = 0;
unsigned char data = 0;
if (current_value > 0)
value = current_value - 1;
pr_info("[%s] led current value : %u [current_value::%d]\n", __func__, value, current_value);
data = ((value & 0x0F) << 4) | 0x0F;
ret = s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_CUR2, data);
if (ret < 0)
pr_err("[%s] i2c write error", __func__);
return ret;
}
EXPORT_SYMBOL(s2mpb02_ir_led_current);
int s2mpb02_ir_led_pulse_width(int32_t width)
{
unsigned int value = width;
unsigned char iron1 = 0;
unsigned char iron2 = 0;
int ret = 0;
pr_info("[%s] led pulse_width value : %u\n", __func__, value);
iron1 = (value >> 2) & 0xFF;
iron2 = ((value & 0x03) << 6) | 0x0B;
pr_info("[%s] IRON1(0x%02x), IRON2(0x%02x)\n", __func__, iron1, iron2);
/* set 0x18, 0x19 */
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_IRON1, iron1);
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_IRON2, iron2);
if (ret < 0)
pr_err("[%s] i2c write error", __func__);
return ret;
}
EXPORT_SYMBOL(s2mpb02_ir_led_pulse_width);
int s2mpb02_ir_led_pulse_delay(int32_t delay)
{
unsigned int value = delay;
unsigned char ird1 = 0;
unsigned char ird2 = 0;
int ret = 0;
pr_info("[%s] led pulse_delay value : %u\n", __func__, value);
ird1 = (value >> 2) & 0xFF;
ird2 = ((value & 0x03) << 6) | 0x2C; /* value 0x2C means RSVD[5:0] Reserved */
pr_info("[%s] IRD1(0x%02x), IRD2(0x%02x)\n", __func__, ird1, ird2);
/* set 0x18, 0x19 */
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_IRD1, ird1);
ret |= s2mpb02_write_reg(global_led_datas[0]->i2c, S2MPB02_REG_FLED_IRD2, ird2);
if (ret < 0)
pr_err("[%s] i2c write error", __func__);
return ret;
}
EXPORT_SYMBOL(s2mpb02_ir_led_pulse_delay);
int s2mpb02_ir_led_max_time(int32_t max_time)
{
int ret = 0;
pr_info("[%s] led max_time value : %u\n", __func__, max_time);
ret |= s2mpb02_set_bits(global_led_datas[0]->i2c, S2MPB02_REG_FLED_CTRL2,
S2MPB02_FLED2_MAX_TIME_CLEAR_MASK, 0x00);
ret |= s2mpb02_set_bits(global_led_datas[0]->i2c, S2MPB02_REG_FLED_TIME2,
S2MPB02_FLED2_MAX_TIME_EN_MASK, 0x00);
if (max_time > 0) {
ret |= s2mpb02_set_bits(global_led_datas[0]->i2c, S2MPB02_REG_FLED_TIME2,
S2MPB02_FLED2_MAX_TIME_EN_MASK, 0x01);
ret |= s2mpb02_set_bits(global_led_datas[0]->i2c, S2MPB02_REG_FLED_IRON2,
S2MPB02_FLED2_MAX_TIME_MASK, (u8) max_time - 1);
}
return ret;
}
EXPORT_SYMBOL(s2mpb02_ir_led_max_time);
#endif
ssize_t s2mpb02_store(const char *buf)
{
int i = 0, ret = 0;
int onoff = -1;
sysfs_flash_op = 0;
if (buf == NULL || kstrtouint(buf, 10, &onoff))
return -1;
if (global_led_datas == NULL) {
pr_err("<%s> global_led_datas is NULL\n", __func__);
return -1;
}
for (i = 0; i < S2MPB02_LED_MAX; i++) {
if (global_led_datas[i] == NULL) {
pr_err("<%s> global_led_datas[%d] is NULL\n", __func__, i);
return -1;
}
}
pr_info("<%s> sysfs torch/flash value %d\n", __func__, onoff);
if (onoff == 0) {
// Torch OFF
onoff = 0;
} else if (onoff == 1) {
// Torch ON
onoff = S2MPB02_TORCH_OUT_I_60MA;
} else if (onoff == 100) {
// Factory Torch ON
onoff = S2MPB02_TORCH_OUT_I_240MA;
} else if (onoff == 200) {
pr_info("<%s> sysfs flash value %d\n", __func__, onoff);
/* Factory mode Turn on Flash */
/* set reserved reg. 0x63 for continuous flash on */
flash_config_factory = true;
ret = s2mpb02_write_reg(global_led_datas[S2MPB02_FLASH_LED_1]->i2c, 0x63, 0x5F);
if (ret < 0)
pr_info("[LED]%s , failed set flash register setting\n", __func__);
onoff = S2MPB02_FLASH_OUT_I_300MA;
} else if (onoff == 1001) {
// level 1 (Flashlight level 1)
onoff = S2MPB02_TORCH_OUT_I_40MA;
} else if (onoff == 1002) {
// level 2 (Flashlight level 2)
onoff = S2MPB02_TORCH_OUT_I_60MA;
} else if (onoff == 1003) {
// level 3
onoff = S2MPB02_TORCH_OUT_I_80MA;
} else if (onoff == 1004) {
// level 4 (Flashlight level 3)
onoff = S2MPB02_TORCH_OUT_I_100MA;
} else if (onoff == 1005) {
// level 5
onoff = S2MPB02_TORCH_OUT_I_120MA;
} else if (onoff == 1006) {
// level 6 (Flashlight level 4)
onoff = S2MPB02_TORCH_OUT_I_160MA;
} else if (onoff == 1007) {
// level 7
onoff = S2MPB02_TORCH_OUT_I_180MA;
} else if (onoff == 1008) {
// level 8
onoff = S2MPB02_TORCH_OUT_I_180MA;
} else if (onoff == 1009) {
// level 9 (Flashlight level 5)
onoff = S2MPB02_TORCH_OUT_I_200MA;
} else if (onoff == 1010) {
// level 10
onoff = S2MPB02_TORCH_OUT_I_200MA;
} else if ((2001 <= onoff) && (onoff <= 2015)) {
// Torch ON for tunning : Step 20mA ~ 300mA
onoff = onoff - 2000;
pr_info("<%s> torch level %d\n", __func__, onoff);
} else {
pr_err("<%s> value %d is invalid\n", __func__, onoff);
onoff = 0;
}
if (flash_config_factory) {
if (onoff == 0) {
s2mpb02_write_reg(global_led_datas[S2MPB02_FLASH_LED_1]->i2c, 0x63, 0x7F);
flash_config_factory = false;
}
#if defined(S2MPB02_FLED_CONTROLED_BY_GPIO)
s2mpb02_led_en(S2MPB02_FLASH_LED_1, onoff, S2MPB02_LED_TURN_WAY_GPIO);
#else
s2mpb02_led_en(S2MPB02_FLASH_LED_1, onoff, S2MPB02_LED_TURN_WAY_I2C);
#endif
} else
#if defined(S2MPB02_FLED_CONTROLED_BY_GPIO)
s2mpb02_led_en(S2MPB02_TORCH_LED_1, onoff, S2MPB02_LED_TURN_WAY_GPIO);
#else
s2mpb02_led_en(S2MPB02_TORCH_LED_1, onoff, S2MPB02_LED_TURN_WAY_I2C);
#endif
if (onoff)
sysfs_flash_op = 1;
return 0;
}
EXPORT_SYMBOL(s2mpb02_store);
ssize_t s2mpb02_show(char *buf)
{
int i = 0;
if (global_led_datas == NULL) {
pr_err("<%s> global_led_datas is NULL\n", __func__);
return sprintf(buf, "%d\n", -1);
}
for (i = 0; i < S2MPB02_LED_MAX; i++) {
if (global_led_datas[i] == NULL) {
pr_err("<%s> global_led_datas[%d] is NULL\n", __func__, i);
return sprintf(buf, "%d\n", -1);
}
}
if (global_led_datas[S2MPB02_TORCH_LED_1]->data->brightness == LED_OFF) {
return sprintf(buf, "%d\n", 0);
} else {
return sprintf(buf, "%d\n", global_led_datas[S2MPB02_TORCH_LED_1]->data->brightness);
}
}
EXPORT_SYMBOL(s2mpb02_show);
#if defined(CONFIG_OF)
static int of_s2mpb02_led_dt(struct s2mpb02_dev *iodev,
struct s2mpb02_led_platform_data *pdata)
{
struct device_node *led_np, *np, *c_np;
int ret;
u32 temp;
const char *temp_str;
int index;
led_np = iodev->dev->of_node;
if (!led_np) {
pr_err("<%s> could not find led sub-node\n", __func__);
return -ENODEV;
}
np = of_find_node_by_name(led_np, "torch");
if (!np) {
pr_err("<%s> could not find led sub-node\n",
__func__);
return -EINVAL;
}
pdata->num_leds = of_get_child_count(np);
for_each_child_of_node(np, c_np) {
ret = of_property_read_u32(c_np, "id", &temp);
if (ret < 0)
goto dt_err;
index = temp;
pdata->leds[index].id = temp;
ret = of_property_read_string(c_np, "ledname", &temp_str);
if (ret < 0)
goto dt_err;
pdata->leds[index].name = temp_str;
ret = of_property_read_u32(c_np, "brightness", &temp);
if (ret < 0)
goto dt_err;
if (temp > S2MPB02_FLASH_TORCH_CURRENT_MAX)
temp = S2MPB02_FLASH_TORCH_CURRENT_MAX;
pdata->leds[index].brightness = temp;
ret = of_property_read_u32(c_np, "timeout", &temp);
if (ret < 0)
goto dt_err;
if (temp > S2MPB02_TIMEOUT_MAX)
temp = S2MPB02_TIMEOUT_MAX;
pdata->leds[index].timeout = temp;
ret = of_property_read_string(c_np, "default-trigger", &temp_str);
if (ret < 0)
goto dt_err;
pdata->leds[index].default_trigger = temp_str;
#if defined(S2MPB02_FLED_CONTROLED_BY_GPIO)
temp = of_gpio_count(c_np);
if (temp > 0) {
pdata->leds[index].gpio = of_get_gpio(c_np, 0);
}
#endif
}
of_node_put(led_np);
return 0;
dt_err:
pr_err("%s failed to get a dt info\n", __func__);
return ret;
}
#endif /* CONFIG_OF */
static int s2mpb02_led_probe(struct platform_device *pdev)
{
int ret = 0;
int i;
struct s2mpb02_dev *s2mpb02 = dev_get_drvdata(pdev->dev.parent);
#ifndef CONFIG_OF
struct s2mpb02_platform_data *s2mpb02_pdata
= dev_get_platdata(s2mpb02->dev);
#endif
struct s2mpb02_led_platform_data *pdata;
struct s2mpb02_led_data *led_data;
struct s2mpb02_led *data;
struct s2mpb02_led_data **led_datas;
#ifdef CONFIG_OF
pdata = kzalloc(sizeof(struct s2mpb02_led_platform_data), GFP_KERNEL);
if (!pdata) {
pr_err("%s: failed to allocate driver data\n", __func__);
return -ENOMEM;
}
ret = of_s2mpb02_led_dt(s2mpb02, pdata);
if (ret < 0) {
pr_err("s2mpb02-torch : %s not found torch dt! ret[%d]\n",
__func__, ret);
kfree(pdata);
return ret;
}
#else
pdata = s2mpb02_pdata->led_data;
if (pdata == NULL) {
pr_err("[LED] no platform data for this led is found\n");
return -EFAULT;
}
#endif
sysfs_flash_op = 0; //default off
global_led_datas = kzalloc(sizeof(struct s2mpb02_led_data *)*S2MPB02_LED_MAX, GFP_KERNEL);
led_datas = kzalloc(sizeof(struct s2mpb02_led_data *)
* S2MPB02_LED_MAX, GFP_KERNEL);
if (unlikely(!led_datas)) {
pr_err("[LED] memory allocation error %s", __func__);
kfree(pdata);
return -ENOMEM;
}
platform_set_drvdata(pdev, led_datas);
pr_info("[LED] %s %d leds\n", __func__, pdata->num_leds);
for (i = 0; i != pdata->num_leds; ++i) {
pr_info("%s led%d setup ...\n", __func__, i);
data = kzalloc(sizeof(struct s2mpb02_led), GFP_KERNEL);
if (unlikely(!data)) {
pr_err("[LED] memory allocation error %s\n", __func__);
ret = -ENOMEM;
continue;
}
memcpy(data, &(pdata->leds[i]), sizeof(struct s2mpb02_led));
led_data = kzalloc(sizeof(struct s2mpb02_led_data),
GFP_KERNEL);
global_led_datas[i] = led_data;
led_datas[i] = led_data;
if (unlikely(!led_data)) {
pr_err("[LED] memory allocation error %s\n", __func__);
ret = -ENOMEM;
kfree(data);
continue;
}
led_data->s2mpb02 = s2mpb02;
led_data->i2c = s2mpb02->i2c;
led_data->data = data;
led_data->led.name = data->name;
led_data->led.brightness_set = s2mpb02_led_set;
led_data->led.brightness = LED_OFF;
led_data->brightness = data->brightness;
led_data->led.flags = 0;
led_data->led.max_brightness = LED_FULL;
led_data->led.default_trigger = data->default_trigger;
mutex_init(&led_data->lock);
spin_lock_init(&led_data->value_lock);
INIT_WORK(&led_data->work, s2mpb02_led_work);
ret = led_classdev_register(&pdev->dev, &led_data->led);
if (unlikely(ret)) {
pr_err("unable to register LED\n");
cancel_work_sync(&led_data->work);
mutex_destroy(&led_data->lock);
kfree(data);
kfree(led_data);
led_datas[i] = NULL;
ret = -EFAULT;
continue;
}
ret = s2mpb02_led_setup(led_data);
if (unlikely(ret)) {
pr_err("unable to register LED\n");
cancel_work_sync(&led_data->work);
mutex_destroy(&led_data->lock);
led_classdev_unregister(&led_data->led);
kfree(data);
kfree(led_data);
led_datas[i] = NULL;
ret = -EFAULT;
}
}
#if defined(DEBUG_READ_REGISTER)
(void)debugfs_create_file("s2mpb02-led-regs", S_IRUGO, NULL,
(void *)s2mpb02, &s2mpb02_debugfs_fops);
#endif
#ifdef CONFIG_OF
kfree(pdata);
#endif
pr_info("<%s> end\n", __func__);
return ret;
}
static int s2mpb02_led_remove(struct platform_device *pdev)
{
struct s2mpb02_led_data **led_datas = platform_get_drvdata(pdev);
int i;
for (i = 0; i != S2MPB02_LED_MAX; ++i) {
if (led_datas[i] == NULL)
continue;
cancel_work_sync(&led_datas[i]->work);
mutex_destroy(&led_datas[i]->lock);
led_classdev_unregister(&led_datas[i]->led);
kfree(led_datas[i]->data);
kfree(led_datas[i]);
}
kfree(led_datas);
if (global_led_datas != NULL)
kfree(global_led_datas);
return 0;
}
static struct platform_driver s2mpb02_led_driver = {
.probe = s2mpb02_led_probe,
.remove = s2mpb02_led_remove,
.driver = {
.name = "s2mpb02-led",
.owner = THIS_MODULE,
.suppress_bind_attrs = true,
},
};
static int __init s2mpb02_led_init(void)
{
return platform_driver_register(&s2mpb02_led_driver);
}
module_init(s2mpb02_led_init);
static void __exit s2mpb02_led_exit(void)
{
platform_driver_unregister(&s2mpb02_led_driver);
}
module_exit(s2mpb02_led_exit);
MODULE_DESCRIPTION("S2MPB02 LED driver");
MODULE_LICENSE("GPL");
MODULE_SOFTDEP("pre: s2mpb02-regulator");