android_kernel_samsung_sm8650/drivers/firmware/qcom_scm.c
Wasim Nazir c787ac5c9f firmware: scm: Add checks for NULL pointer dereference
Add macro to check for __scm pointer before accessing.
Also add check for device pointer.

Change-Id: Ib3ef303fd9574bedd87077dcd62a480066d7a7d8
Signed-off-by: Wasim Nazir <quic_wasimn@quicinc.com>
2024-08-12 11:02:18 +05:30

3636 lines
86 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2010,2015,2019,2021 The Linux Foundation. All rights reserved.
* Copyright (C) 2015 Linaro Ltd.
* Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#define pr_fmt(fmt) "qcom-scm: %s: " fmt, __func__
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/cpumask.h>
#include <linux/export.h>
#include <linux/dma-direct.h>
#include <linux/dma-mapping.h>
#include <linux/interconnect.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/qcom_scm.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/reboot.h>
#include <linux/clk.h>
#include <linux/reset-controller.h>
#include <linux/arm-smccc.h>
#include <soc/qcom/qseecom_scm.h>
#include <linux/delay.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/ktime.h>
#include "qcom_scm.h"
#include "qtee_shmbridge_internal.h"
static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
module_param(download_mode, bool, 0);
static unsigned int pas_shutdown_retry_interval = 100;
module_param(pas_shutdown_retry_interval, uint, 0644);
static unsigned int pas_shutdown_retry_max = 50;
module_param(pas_shutdown_retry_max, uint, 0644);
#define SCM_HAS_CORE_CLK BIT(0)
#define SCM_HAS_IFACE_CLK BIT(1)
#define SCM_HAS_BUS_CLK BIT(2)
struct qcom_scm_waitq {
struct idr idr;
spinlock_t idr_lock;
struct work_struct scm_irq_work;
u64 call_ctx_cnt;
u64 irq;
enum qcom_scm_wq_feature wq_feature;
};
struct qcom_scm {
struct device *dev;
struct clk *core_clk;
struct clk *iface_clk;
struct clk *bus_clk;
struct icc_path *path;
struct reset_controller_dev reset;
struct notifier_block restart_nb;
struct qcom_scm_waitq waitq;
/* control access to the interconnect path */
struct mutex scm_bw_lock;
int scm_vote_count;
u64 dload_mode_addr;
};
DEFINE_SEMAPHORE(qcom_scm_sem_lock);
#define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
#define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
#define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
#define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
#define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
#define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
#define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
#define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
#define QCOM_SMC_WAITQ_FLAG_WAKE_ONE BIT(0)
#define QCOM_SMC_WAITQ_FLAG_WAKE_ALL BIT(1)
#define QCOM_SCM_WAITQ_FLAG_WAKE_NONE 0x0
struct qcom_scm_wb_entry {
int flag;
void *entry;
};
static struct qcom_scm_wb_entry qcom_scm_wb[] = {
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
};
static const char * const qcom_scm_convention_names[] = {
[SMC_CONVENTION_UNKNOWN] = "unknown",
[SMC_CONVENTION_ARM_32] = "smc arm 32",
[SMC_CONVENTION_ARM_64] = "smc arm 64",
[SMC_CONVENTION_LEGACY] = "smc legacy",
};
static struct qcom_scm *__scm;
#define SCM_NOT_INITIALIZED() (unlikely(!__scm) ? pr_err("SCM not initialized\n") : 0)
static int qcom_scm_clk_enable(void)
{
int ret;
ret = clk_prepare_enable(__scm->core_clk);
if (ret)
goto bail;
ret = clk_prepare_enable(__scm->iface_clk);
if (ret)
goto disable_core;
ret = clk_prepare_enable(__scm->bus_clk);
if (ret)
goto disable_iface;
return 0;
disable_iface:
clk_disable_unprepare(__scm->iface_clk);
disable_core:
clk_disable_unprepare(__scm->core_clk);
bail:
return ret;
}
static void qcom_scm_clk_disable(void)
{
clk_disable_unprepare(__scm->core_clk);
clk_disable_unprepare(__scm->iface_clk);
clk_disable_unprepare(__scm->bus_clk);
}
static int qcom_scm_bw_enable(void)
{
int ret = 0;
if (!__scm->path)
return 0;
if (IS_ERR(__scm->path))
return -EINVAL;
mutex_lock(&__scm->scm_bw_lock);
if (!__scm->scm_vote_count) {
ret = icc_set_bw(__scm->path, 0, UINT_MAX);
if (ret < 0) {
dev_err(__scm->dev, "failed to set bandwidth request\n");
goto err_bw;
}
}
__scm->scm_vote_count++;
err_bw:
mutex_unlock(&__scm->scm_bw_lock);
return ret;
}
static void qcom_scm_bw_disable(void)
{
if (IS_ERR_OR_NULL(__scm->path))
return;
mutex_lock(&__scm->scm_bw_lock);
if (__scm->scm_vote_count-- == 1)
icc_set_bw(__scm->path, 0, 0);
mutex_unlock(&__scm->scm_bw_lock);
}
enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
static DEFINE_SPINLOCK(scm_query_lock);
static enum qcom_scm_convention __get_convention(void)
{
unsigned long flags;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_INFO,
.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
QCOM_SCM_INFO_IS_CALL_AVAIL) |
(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
.arginfo = QCOM_SCM_ARGS(1),
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
enum qcom_scm_convention probed_convention;
int ret;
bool forced = false;
if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
return qcom_scm_convention;
/*
* Per the "SMC calling convention specification", the 64-bit calling
* convention can only be used when the client is 64-bit, otherwise
* system will encounter the undefined behaviour.
*/
#if IS_ENABLED(CONFIG_ARM64)
/*
* Device isn't required as there is only one argument - no device
* needed to dma_map_single to secure world
*/
probed_convention = SMC_CONVENTION_ARM_64;
ret = __scm_smc_call(__scm->dev, &desc, probed_convention, &res, true);
if (!ret && res.result[0] == 1)
goto found;
/*
* Some SC7180 firmwares didn't implement the
* QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
* calling conventions on these firmwares. Luckily we don't make any
* early calls into the firmware on these SoCs so the device pointer
* will be valid here to check if the compatible matches.
*/
if (of_device_is_compatible(__scm->dev->of_node, "qcom,scm-sc7180")) {
forced = true;
goto found;
}
#endif
probed_convention = SMC_CONVENTION_ARM_32;
ret = __scm_smc_call(__scm->dev, &desc, probed_convention, &res, true);
if (!ret && res.result[0] == 1)
goto found;
probed_convention = SMC_CONVENTION_LEGACY;
found:
spin_lock_irqsave(&scm_query_lock, flags);
if (probed_convention != qcom_scm_convention) {
qcom_scm_convention = probed_convention;
pr_info("qcom_scm: convention: %s%s\n",
qcom_scm_convention_names[qcom_scm_convention],
forced ? " (forced)" : "");
}
spin_unlock_irqrestore(&scm_query_lock, flags);
return qcom_scm_convention;
}
/**
* qcom_scm_call() - Invoke a syscall in the secure world
* @dev: device
* @svc_id: service identifier
* @cmd_id: command identifier
* @desc: Descriptor structure containing arguments and return values
*
* Sends a command to the SCM and waits for the command to finish processing.
* This should *only* be called in pre-emptible context.
*/
static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
struct qcom_scm_res *res)
{
might_sleep();
switch (__get_convention()) {
case SMC_CONVENTION_ARM_32:
case SMC_CONVENTION_ARM_64:
return scm_smc_call(dev, desc, res, QCOM_SCM_CALL_NORMAL);
case SMC_CONVENTION_LEGACY:
return scm_legacy_call(dev, desc, res);
default:
pr_err("Unknown current SCM calling convention.\n");
return -EINVAL;
}
}
/**
* qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
* @dev: device
* @svc_id: service identifier
* @cmd_id: command identifier
* @desc: Descriptor structure containing arguments and return values
* @res: Structure containing results from SMC/HVC call
*
* Sends a command to the SCM and waits for the command to finish processing.
* This can be called in atomic context.
*/
static int qcom_scm_call_atomic(struct device *dev,
const struct qcom_scm_desc *desc,
struct qcom_scm_res *res)
{
switch (__get_convention()) {
case SMC_CONVENTION_ARM_32:
case SMC_CONVENTION_ARM_64:
return scm_smc_call(dev, desc, res, QCOM_SCM_CALL_ATOMIC);
case SMC_CONVENTION_LEGACY:
return scm_legacy_call_atomic(dev, desc, res);
default:
pr_err("Unknown current SCM calling convention.\n");
return -EINVAL;
}
}
/**
* qcom_scm_call_noretry() - noretry variation of qcom_scm_call()
* @dev: device
* @svc_id: service identifier
* @cmd_id: command identifier
* @desc: Descriptor structure containing arguments and return values
* @res: Structure containing results from SMC/HVC call
*
* Sends a command to the SCM and waits for the command to finish processing.
*/
static int qcom_scm_call_noretry(struct device *dev,
const struct qcom_scm_desc *desc,
struct qcom_scm_res *res)
{
switch (__get_convention()) {
case SMC_CONVENTION_ARM_32:
case SMC_CONVENTION_ARM_64:
return scm_smc_call(dev, desc, res, QCOM_SCM_CALL_NORETRY);
case SMC_CONVENTION_LEGACY:
BUG_ON(1); /* No current implementation */
default:
pr_err("Unknown current SCM calling convention.\n");
return -EINVAL;
}
}
static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
u32 cmd_id)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_INFO,
.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
desc.arginfo = QCOM_SCM_ARGS(1);
switch (__get_convention()) {
case SMC_CONVENTION_ARM_32:
case SMC_CONVENTION_ARM_64:
desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
break;
case SMC_CONVENTION_LEGACY:
desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
break;
default:
pr_err("Unknown SMC convention being used\n");
return false;
}
ret = qcom_scm_call(dev, &desc, &res);
return ret ? false : !!res.result[0];
}
/**
* qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the Linux entry point for the SCM to transfer control to when coming
* out of a power down. CPU power down may be executed on cpuidle or hotplug.
*/
int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
{
int ret;
int flags = 0;
int cpu;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_ADDR,
.arginfo = QCOM_SCM_ARGS(2),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
/*
* Reassign only if we are switching from hotplug entry point
* to cpuidle entry point or vice versa.
*/
for_each_cpu(cpu, cpus) {
if (entry == qcom_scm_wb[cpu].entry)
continue;
flags |= qcom_scm_wb[cpu].flag;
}
/* No change in entry function */
if (!flags)
return 0;
desc.args[0] = flags;
desc.args[1] = virt_to_phys(entry);
ret = qcom_scm_call(__scm->dev, &desc, NULL);
if (!ret) {
for_each_cpu(cpu, cpus)
qcom_scm_wb[cpu].entry = entry;
}
return ret;
}
EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
/**
* qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the cold boot address of the cpus. Any cpu outside the supported
* range would be removed from the cpu present mask.
*/
int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
{
int flags = 0;
int cpu;
int scm_cb_flags[] = {
QCOM_SCM_FLAG_COLDBOOT_CPU0,
QCOM_SCM_FLAG_COLDBOOT_CPU1,
QCOM_SCM_FLAG_COLDBOOT_CPU2,
QCOM_SCM_FLAG_COLDBOOT_CPU3,
};
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_ADDR,
.arginfo = QCOM_SCM_ARGS(2),
.owner = ARM_SMCCC_OWNER_SIP,
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
if (!cpus || cpumask_empty(cpus))
return -EINVAL;
for_each_cpu(cpu, cpus) {
if (cpu < ARRAY_SIZE(scm_cb_flags))
flags |= scm_cb_flags[cpu];
else
set_cpu_present(cpu, false);
}
desc.args[0] = flags;
desc.args[1] = virt_to_phys(entry);
return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
/**
* qcom_scm_cpu_power_down() - Power down the cpu
* @flags - Flags to flush cache
*
* This is an end point to power down cpu. If there was a pending interrupt,
* the control would return from this function, otherwise, the cpu jumps to the
* warm boot entry point set for this cpu upon reset.
*/
void qcom_scm_cpu_power_down(u32 flags)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
.arginfo = QCOM_SCM_ARGS(1),
.owner = ARM_SMCCC_OWNER_SIP,
};
if (SCM_NOT_INITIALIZED())
return;
qcom_scm_call_atomic(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_cpu_power_down);
/**
* qcm_scm_sec_wdog_deactivate() - Deactivate secure watchdog
*/
int qcom_scm_sec_wdog_deactivate(void)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SEC_WDOG_DIS,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = 1,
.arginfo = QCOM_SCM_ARGS(1),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_sec_wdog_deactivate);
/**
* qcom_scm_sec_wdog_trigger() - Trigger secure watchdog
*/
int qcom_scm_sec_wdog_trigger(void)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SEC_WDOG_TRIGGER,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = 0,
.arginfo = QCOM_SCM_ARGS(1),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_sec_wdog_trigger);
/**
* qcom_scm_disable_sdi() - Disable SDI
*/
void qcom_scm_disable_sdi(void)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_WDOG_DEBUG_PART,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = 1,
.args[1] = 0,
.arginfo = QCOM_SCM_ARGS(2),
};
if (SCM_NOT_INITIALIZED())
return;
ret = qcom_scm_call_atomic(__scm->dev, &desc, NULL);
if (ret)
pr_err("Failed to disable secure wdog debug: %d\n", ret);
}
EXPORT_SYMBOL(qcom_scm_disable_sdi);
int qcom_scm_set_remote_state(u32 state, u32 id)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = state,
.args[1] = id,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_set_remote_state);
int qcom_scm_spin_cpu(void)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SPIN_CPU,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = 0,
.arginfo = QCOM_SCM_ARGS(1),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_spin_cpu);
static int __qcom_scm_set_dload_mode(struct device *dev, enum qcom_download_mode mode)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = mode,
.owner = ARM_SMCCC_OWNER_SIP,
};
desc.args[1] = 0;
return qcom_scm_call_atomic(dev, &desc, NULL);
}
void qcom_scm_set_download_mode(enum qcom_download_mode mode, phys_addr_t tcsr_boot_misc)
{
int ret = 0;
struct device *dev = NULL;
if (SCM_NOT_INITIALIZED())
return;
dev = __scm->dev;
if (tcsr_boot_misc || __scm->dload_mode_addr) {
ret = qcom_scm_io_writel(tcsr_boot_misc ? : __scm->dload_mode_addr, mode);
} else if (__qcom_scm_is_call_available(dev,
QCOM_SCM_SVC_BOOT,
QCOM_SCM_BOOT_SET_DLOAD_MODE)) {
ret = __qcom_scm_set_dload_mode(dev, mode);
} else {
dev_err(dev,
"No available mechanism for setting download mode\n");
}
if (ret)
dev_err(dev, "failed to set download mode: %d\n", ret);
}
EXPORT_SYMBOL(qcom_scm_set_download_mode);
int qcom_scm_get_download_mode(unsigned int *mode, phys_addr_t tcsr_boot_misc)
{
int ret = -EINVAL;
struct device *dev = NULL;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
dev = __scm->dev;
if (tcsr_boot_misc || __scm->dload_mode_addr) {
ret = qcom_scm_io_readl(tcsr_boot_misc ? : __scm->dload_mode_addr, mode);
} else {
dev_err(dev,
"No available mechanism for getting download mode\n");
}
if (ret)
dev_err(dev, "failed to get download mode: %d\n", ret);
return ret;
}
EXPORT_SYMBOL(qcom_scm_get_download_mode);
int qcom_scm_config_cpu_errata(void)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_CONFIG_CPU_ERRATA,
.owner = ARM_SMCCC_OWNER_SIP,
.arginfo = 0xffffffff,
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_config_cpu_errata);
void qcom_scm_phy_update_scm_level_shifter(u32 val)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_QUSB2PHY_LVL_SHIFTER_CMD_ID,
.owner = ARM_SMCCC_OWNER_SIP
};
if (SCM_NOT_INITIALIZED())
return;
desc.args[0] = val;
desc.args[1] = 0;
desc.arginfo = QCOM_SCM_ARGS(2);
ret = qcom_scm_call(__scm->dev, &desc, NULL);
if (ret)
pr_err("Failed to update scm level shifter=0x%x\n", ret);
}
EXPORT_SYMBOL(qcom_scm_phy_update_scm_level_shifter);
/**
* qcom_scm_pas_init_image() - Initialize peripheral authentication service
* state machine for a given peripheral, using the
* metadata
* @peripheral: peripheral id
* @metadata: pointer to memory containing ELF header, program header table
* and optional blob of data used for authenticating the metadata
* and the rest of the firmware
*
* Returns 0 on success.
*/
int qcom_scm_pas_init_image(u32 peripheral, dma_addr_t metadata)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
.args[0] = peripheral,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = qcom_scm_bw_enable();
if (ret)
return ret;
desc.args[1] = metadata;
ret = qcom_scm_call(__scm->dev, &desc, &res);
qcom_scm_bw_disable();
qcom_scm_clk_disable();
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_init_image);
/**
* qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
* for firmware loading
* @peripheral: peripheral id
* @addr: start address of memory area to prepare
* @size: size of the memory area to prepare
*
* Returns 0 on success.
*/
int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
.arginfo = QCOM_SCM_ARGS(3),
.args[0] = peripheral,
.args[1] = addr,
.args[2] = size,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = qcom_scm_bw_enable();
if (ret)
return ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
qcom_scm_bw_disable();
qcom_scm_clk_disable();
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
/**
* qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
* and reset the remote processor
* @peripheral: peripheral id
*
* Return 0 on success.
*/
int qcom_scm_pas_auth_and_reset(u32 peripheral)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = peripheral,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = qcom_scm_bw_enable();
if (ret)
return ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
qcom_scm_bw_disable();
qcom_scm_clk_disable();
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
/**
* qcom_scm_pas_shutdown() - Shut down the remote processor
* @peripheral: peripheral id
*
* Returns 0 on success.
*/
int qcom_scm_pas_shutdown(u32 peripheral)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = peripheral,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = qcom_scm_bw_enable();
if (ret)
return ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
qcom_scm_bw_disable();
qcom_scm_clk_disable();
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_shutdown);
int qcom_scm_pas_shutdown_retry(u32 peripheral)
{
int ret;
int retry_num = 0;
ret = qcom_scm_pas_shutdown(peripheral);
if (!ret)
return ret;
pr_err("PAS Shutdown: First call to shutdown failed with error: %d\n", ret);
while (retry_num < pas_shutdown_retry_max && ret) {
retry_num++;
msleep(pas_shutdown_retry_interval);
ret = qcom_scm_pas_shutdown(peripheral);
}
pr_err("PAS Shutdown: Attempting to shutdown peripheral %d time(s)\n", retry_num);
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_shutdown_retry);
/**
* qcom_scm_pas_supported() - Check if the peripheral authentication service is
* available for the given peripherial
* @peripheral: peripheral id
*
* Returns true if PAS is supported for this peripheral, otherwise false.
*/
bool qcom_scm_pas_supported(u32 peripheral)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = peripheral,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return false;
if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
QCOM_SCM_PIL_PAS_IS_SUPPORTED))
return false;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? false : !!res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_supported);
static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = reset,
.args[1] = 0,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_pas_mss_reset(__scm->dev, 1);
}
static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_pas_mss_reset(__scm->dev, 0);
}
static const struct reset_control_ops qcom_scm_pas_reset_ops = {
.assert = qcom_scm_pas_reset_assert,
.deassert = qcom_scm_pas_reset_deassert,
};
int qcom_scm_get_sec_dump_state(u32 *dump_state)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_UTIL,
.cmd = QCOM_SCM_UTIL_GET_SEC_DUMP_STATE,
.owner = ARM_SMCCC_OWNER_SIP
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (dump_state)
*dump_state = res.result[0];
return ret;
}
EXPORT_SYMBOL(qcom_scm_get_sec_dump_state);
int qcom_scm_assign_dump_table_region(bool is_assign, phys_addr_t addr, size_t size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_UTIL,
.cmd = QCOM_SCM_UTIL_DUMP_TABLE_ASSIGN,
.arginfo = QCOM_SCM_ARGS(3),
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = is_assign,
.args[1] = addr,
.args[2] = size,
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_assign_dump_table_region);
int qcom_scm_tz_blsp_modify_owner(int food, u64 subsystem, int *out)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_TZ,
.cmd = QOCM_SCM_TZ_BLSP_MODIFY_OWNER,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = subsystem,
.args[1] = food,
.arginfo = QCOM_SCM_ARGS(2),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (out)
*out = res.result[0];
return ret;
}
EXPORT_SYMBOL(qcom_scm_tz_blsp_modify_owner);
int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_IO,
.cmd = QCOM_SCM_IO_READ,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = addr,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
if (ret >= 0)
*val = res.result[0];
return ret < 0 ? ret : 0;
}
EXPORT_SYMBOL(qcom_scm_io_readl);
int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_IO,
.cmd = QCOM_SCM_IO_WRITE,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = addr,
.args[1] = val,
.owner = ARM_SMCCC_OWNER_SIP,
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_io_writel);
/**
* qcom_scm_io_reset()
*/
int qcom_scm_io_reset(void)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_IO,
.cmd = QCOM_SCM_IO_RESET,
.owner = ARM_SMCCC_OWNER_SIP,
.arginfo = QCOM_SCM_ARGS(2),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_io_reset);
bool qcom_scm_is_secure_wdog_trigger_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT,
QCOM_SCM_BOOT_SEC_WDOG_TRIGGER);
}
EXPORT_SYMBOL(qcom_scm_is_secure_wdog_trigger_available);
bool qcom_scm_is_mode_switch_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT,
QCOM_SCM_BOOT_SWITCH_MODE);
}
EXPORT_SYMBOL(qcom_scm_is_mode_switch_available);
int __qcom_scm_get_feat_version(struct device *dev, u64 feat_id, u64 *version)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_INFO,
.cmd = QCOM_SCM_INFO_GET_FEAT_VERSION_CMD,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = feat_id,
.arginfo = QCOM_SCM_ARGS(1),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (version)
*version = res.result[0];
return ret;
}
int qcom_scm_get_jtag_etm_feat_id(u64 *version)
{
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_get_feat_version(__scm->dev,
QCOM_SCM_TZ_DBG_ETM_FEAT_ID, version);
}
EXPORT_SYMBOL(qcom_scm_get_jtag_etm_feat_id);
/**
* qcom_halt_spmi_pmic_arbiter() - Halt SPMI PMIC arbiter
*
* Force the SPMI PMIC arbiter to shutdown so that no more SPMI transactions
* are sent from the MSM to the PMIC. This is required in order to avoid an
* SPMI lockup on certain PMIC chips if PS_HOLD is lowered in the middle of
* an SPMI transaction.
*/
void qcom_scm_halt_spmi_pmic_arbiter(void)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PWR,
.cmd = QCOM_SCM_PWR_IO_DISABLE_PMIC_ARBITER,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = 0,
.arginfo = QCOM_SCM_ARGS(1),
};
if (SCM_NOT_INITIALIZED())
return;
ret = qcom_scm_call_atomic(__scm->dev, &desc, NULL);
if (ret)
pr_debug("Failed to halt_spmi_pmic_arbiter=0x%x\n", ret);
}
EXPORT_SYMBOL(qcom_scm_halt_spmi_pmic_arbiter);
/**
* qcom_deassert_ps_hold() - Deassert PS_HOLD
*
* Deassert PS_HOLD to signal the PMIC that we are ready to power down or reset.
*
* This function should never return if the SCM call is available.
*/
void qcom_scm_deassert_ps_hold(void)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PWR,
.cmd = QCOM_SCM_PWR_IO_DEASSERT_PS_HOLD,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = 0,
.arginfo = QCOM_SCM_ARGS(1),
};
if (SCM_NOT_INITIALIZED())
return;
ret = qcom_scm_call_atomic(__scm->dev, &desc, NULL);
if (ret)
pr_err("Failed to deassert_ps_hold=0x%x\n", ret);
}
EXPORT_SYMBOL(qcom_scm_deassert_ps_hold);
static int __qcom_scm_paravirt_smmu_attach(struct device *dev, u64 sid,
u64 asid, u64 ste_pa, u64 ste_size,
u64 cd_pa, u64 cd_size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
.cmd = ARM_SMMU_PARAVIRT_CMD,
.owner = ARM_SMCCC_OWNER_SIP,
};
int ret;
struct qcom_scm_res res;
desc.args[0] = SMMU_PARAVIRT_OP_ATTACH;
desc.args[1] = sid;
desc.args[2] = asid;
desc.args[3] = 0;
desc.args[4] = ste_pa;
desc.args[5] = ste_size;
desc.args[6] = cd_pa;
desc.args[7] = cd_size;
desc.arginfo = ARM_SMMU_PARAVIRT_DESCARG;
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
static int __qcom_scm_paravirt_tlb_inv(struct device *dev, u64 asid, u64 sid)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
.cmd = ARM_SMMU_PARAVIRT_CMD,
.owner = ARM_SMCCC_OWNER_SIP,
};
int ret;
struct qcom_scm_res res;
desc.args[0] = SMMU_PARAVIRT_OP_INVAL_ASID;
desc.args[1] = sid;
desc.args[2] = asid;
desc.args[3] = 0;
desc.args[4] = 0;
desc.args[5] = 0;
desc.args[6] = 0;
desc.args[7] = 0;
desc.arginfo = ARM_SMMU_PARAVIRT_DESCARG;
ret = qcom_scm_call_atomic(dev, &desc, &res);
return ret ? : res.result[0];
}
static int __qcom_scm_paravirt_smmu_detach(struct device *dev, u64 sid)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
.cmd = ARM_SMMU_PARAVIRT_CMD,
.owner = ARM_SMCCC_OWNER_SIP,
};
int ret;
struct qcom_scm_res res;
desc.args[0] = SMMU_PARAVIRT_OP_DETACH;
desc.args[1] = sid;
desc.args[2] = 0;
desc.args[3] = 0;
desc.args[4] = 0;
desc.args[5] = 0;
desc.args[6] = 0;
desc.args[7] = 0;
desc.arginfo = ARM_SMMU_PARAVIRT_DESCARG;
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
int qcom_scm_paravirt_smmu_attach(u64 sid, u64 asid,
u64 ste_pa, u64 ste_size, u64 cd_pa,
u64 cd_size)
{
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_paravirt_smmu_attach(__scm->dev, sid, asid,
ste_pa, ste_size, cd_pa, cd_size);
}
EXPORT_SYMBOL_GPL(qcom_scm_paravirt_smmu_attach);
int qcom_scm_paravirt_tlb_inv(u64 asid, u64 sid)
{
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_paravirt_tlb_inv(__scm->dev, asid, sid);
}
EXPORT_SYMBOL_GPL(qcom_scm_paravirt_tlb_inv);
int qcom_scm_paravirt_smmu_detach(u64 sid)
{
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_paravirt_smmu_detach(__scm->dev, sid);
}
EXPORT_SYMBOL_GPL(qcom_scm_paravirt_smmu_detach);
void qcom_scm_mmu_sync(bool sync)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PWR,
.cmd = QCOM_SCM_PWR_MMU_SYNC,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = sync,
.arginfo = QCOM_SCM_ARGS(1),
};
if (SCM_NOT_INITIALIZED())
return;
ret = qcom_scm_call_atomic(__scm->dev, &desc, NULL);
if (ret)
pr_err("MMU sync with Hypervisor off %x\n", ret);
}
EXPORT_SYMBOL(qcom_scm_mmu_sync);
/**
* qcom_scm_restore_sec_cfg_available() - Check if secure environment
* supports restore security config interface.
*
* Return true if restore-cfg interface is supported, false if not.
*/
bool qcom_scm_restore_sec_cfg_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
QCOM_SCM_MP_RESTORE_SEC_CFG);
}
EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = device_id,
.args[1] = spare,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = spare,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (size)
*size = res.result[0];
return ret ? : res.result[1];
}
EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
QCOM_SCM_VAL),
.args[0] = addr,
.args[1] = size,
.args[2] = spare,
.owner = ARM_SMCCC_OWNER_SIP,
};
int ret;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, NULL);
/* the pg table has been initialized already, ignore the error */
if (ret == -EPERM)
ret = 0;
return ret;
}
EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
u32 cp_nonpixel_start,
u32 cp_nonpixel_size)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_VIDEO_VAR,
.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL),
.args[0] = cp_start,
.args[1] = cp_size,
.args[2] = cp_nonpixel_start,
.args[3] = cp_nonpixel_size,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
int qcom_scm_mem_protect_region_id(phys_addr_t paddr, size_t size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_MEM_PROTECT_REGION_ID,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = paddr,
.args[1] = size,
.arginfo = QCOM_SCM_ARGS(2),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_mem_protect_region_id);
int qcom_scm_mem_protect_lock_id2_flat(phys_addr_t list_addr,
size_t list_size, size_t chunk_size,
size_t memory_usage, int lock)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_MEM_PROTECT_LOCK_ID2_FLAT,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = list_addr,
.args[1] = list_size,
.args[2] = chunk_size,
.args[3] = memory_usage,
.args[4] = lock,
.args[5] = 0,
.arginfo = QCOM_SCM_ARGS(6, QCOM_SCM_RW, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_mem_protect_lock_id2_flat);
int qcom_scm_iommu_secure_map(phys_addr_t sg_list_addr, size_t num_sg,
size_t sg_block_size, u64 sec_id, int cbndx,
unsigned long iova, size_t total_len)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_IOMMU_SECURE_MAP2_FLAT,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = sg_list_addr,
.args[1] = num_sg,
.args[2] = sg_block_size,
.args[3] = sec_id,
.args[4] = cbndx,
.args[5] = iova,
.args[6] = total_len,
.args[7] = 0,
.arginfo = QCOM_SCM_ARGS(8, QCOM_SCM_RW, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_iommu_secure_map);
int qcom_scm_iommu_secure_unmap(u64 sec_id, int cbndx, unsigned long iova,
size_t total_len)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_IOMMU_SECURE_UNMAP2_FLAT,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = sec_id,
.args[1] = cbndx,
.args[2] = iova,
.args[3] = total_len,
.args[4] = QCOM_SCM_IOMMU_TLBINVAL_FLAG,
.arginfo = QCOM_SCM_ARGS(5),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_iommu_secure_unmap);
static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
size_t mem_sz, phys_addr_t src, size_t src_sz,
phys_addr_t dest, size_t dest_sz)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_ASSIGN,
.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
QCOM_SCM_VAL, QCOM_SCM_VAL),
.args[0] = mem_region,
.args[1] = mem_sz,
.args[2] = src,
.args[3] = src_sz,
.args[4] = dest,
.args[5] = dest_sz,
.args[6] = 0,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
/**
* qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
* @mem_addr: mem region whose ownership need to be reassigned
* @mem_sz: size of the region.
* @srcvm: vmid for current set of owners, each set bit in
* flag indicate a unique owner
* @newvm: array having new owners and corresponding permission
* flags
* @dest_cnt: number of owners in next set.
*
* Return negative errno on failure or 0 on success with @srcvm updated.
*/
int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
u64 *srcvm,
const struct qcom_scm_vmperm *newvm,
unsigned int dest_cnt)
{
struct qcom_scm_current_perm_info *destvm;
struct qcom_scm_mem_map_info *mem_to_map;
phys_addr_t mem_to_map_phys;
phys_addr_t dest_phys;
dma_addr_t ptr_phys;
size_t mem_to_map_sz;
size_t dest_sz;
size_t src_sz;
size_t ptr_sz;
int next_vm;
__le32 *src;
void *ptr;
int ret, i, b;
u64 srcvm_bits = *srcvm;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
src_sz = hweight64(srcvm_bits) * sizeof(*src);
mem_to_map_sz = sizeof(*mem_to_map);
dest_sz = dest_cnt * sizeof(*destvm);
ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
ALIGN(dest_sz, SZ_64);
ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
if (!ptr)
return -ENOMEM;
/* Fill source vmid detail */
src = ptr;
i = 0;
for (b = 0; b < BITS_PER_TYPE(u64); b++) {
if (srcvm_bits & BIT(b))
src[i++] = cpu_to_le32(b);
}
/* Fill details of mem buff to map */
mem_to_map = ptr + ALIGN(src_sz, SZ_64);
mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
mem_to_map->mem_addr = cpu_to_le64(mem_addr);
mem_to_map->mem_size = cpu_to_le64(mem_sz);
next_vm = 0;
/* Fill details of next vmid detail */
destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
destvm->vmid = cpu_to_le32(newvm->vmid);
destvm->perm = cpu_to_le32(newvm->perm);
destvm->ctx = 0;
destvm->ctx_size = 0;
next_vm |= BIT(newvm->vmid);
}
ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
ptr_phys, src_sz, dest_phys, dest_sz);
dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
if (ret) {
dev_err(__scm->dev,
"Assign memory protection call failed %d\n", ret);
return -EINVAL;
}
*srcvm = next_vm;
return 0;
}
EXPORT_SYMBOL(qcom_scm_assign_mem);
/**
* qcom_scm_assign_mem_regions() - Make a secure call to reassign memory
* ownership of several memory regions
* @mem_regions: A buffer describing the set of memory regions that need to
* be reassigned
* @mem_regions_sz: The size of the buffer describing the set of memory
* regions that need to be reassigned (in bytes)
* @srcvms: A buffer populated with he vmid(s) for the current set of
* owners
* @src_sz: The size of the src_vms buffer (in bytes)
* @newvms: A buffer populated with the new owners and corresponding
* permission flags.
* @newvms_sz: The size of the new_vms buffer (in bytes)
*
* NOTE: It is up to the caller to ensure that the buffers that will be accessed
* by the secure world are cache aligned, and have been flushed prior to
* invoking this call.
*
* Return negative errno on failure, 0 on success.
*/
int qcom_scm_assign_mem_regions(struct qcom_scm_mem_map_info *mem_regions,
size_t mem_regions_sz, u32 *srcvms,
size_t src_sz,
struct qcom_scm_current_perm_info *newvms,
size_t newvms_sz)
{
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_assign_mem(__scm->dev,
virt_to_phys(mem_regions), mem_regions_sz,
virt_to_phys(srcvms), src_sz,
virt_to_phys(newvms), newvms_sz);
}
EXPORT_SYMBOL(qcom_scm_assign_mem_regions);
/**
* qcom_scm_mem_protect_sd_ctrl() - SDE memory protect.
*
*/
int qcom_scm_mem_protect_sd_ctrl(u32 devid, phys_addr_t mem_addr, u64 mem_size,
u32 vmid)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_CMD_SD_CTRL,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = devid,
.args[1] = mem_addr,
.args[2] = mem_size,
.args[3] = vmid,
.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_RW,
QCOM_SCM_VAL, QCOM_SCM_VAL)
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_mem_protect_sd_ctrl);
bool qcom_scm_kgsl_set_smmu_aperture_available(void)
{
int ret;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
QCOM_SCM_MP_CP_SMMU_APERTURE_ID);
return ret > 0;
}
EXPORT_SYMBOL(qcom_scm_kgsl_set_smmu_aperture_available);
int qcom_scm_kgsl_set_smmu_aperture(unsigned int num_context_bank)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_CP_SMMU_APERTURE_ID,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = 0xffff0000
| ((QCOM_SCM_CP_APERTURE_REG & 0xff) << 8)
| (num_context_bank & 0xff),
.args[1] = 0xffffffff,
.args[2] = 0xffffffff,
.args[3] = 0xffffffff,
.arginfo = QCOM_SCM_ARGS(4),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_kgsl_set_smmu_aperture);
int qcom_scm_kgsl_set_smmu_lpac_aperture(unsigned int num_context_bank)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_CP_SMMU_APERTURE_ID,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = 0xffff0000
| ((QCOM_SCM_CP_LPAC_APERTURE_REG & 0xff) << 8)
| (num_context_bank & 0xff),
.args[1] = 0xffffffff,
.args[2] = 0xffffffff,
.args[3] = 0xffffffff,
.arginfo = QCOM_SCM_ARGS(4),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_kgsl_set_smmu_lpac_aperture);
int qcom_scm_kgsl_init_regs(u32 gpu_req)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_GPU,
.cmd = QCOM_SCM_SVC_GPU_INIT_REGS,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = gpu_req,
.arginfo = QCOM_SCM_ARGS(1),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_GPU,
QCOM_SCM_SVC_GPU_INIT_REGS))
return -EOPNOTSUPP;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_kgsl_init_regs);
int qcom_scm_enable_shm_bridge(void)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MEMP_SHM_BRIDGE_ENABLE,
.owner = ARM_SMCCC_OWNER_SIP
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_enable_shm_bridge);
int qcom_scm_delete_shm_bridge(u64 handle)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MEMP_SHM_BRIDGE_DELETE,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = handle,
.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_delete_shm_bridge);
int qcom_scm_create_shm_bridge(u64 pfn_and_ns_perm_flags,
u64 ipfn_and_s_perm_flags, u64 size_and_flags, u64 ns_vmids,
u64 *handle)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MEMP_SHM_BRDIGE_CREATE,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = pfn_and_ns_perm_flags,
.args[1] = ipfn_and_s_perm_flags,
.args[2] = size_and_flags,
.args[3] = ns_vmids,
.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (handle)
*handle = res.result[1];
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_create_shm_bridge);
int qcom_scm_smmu_prepare_atos_id(u64 dev_id, int cb_num, int operation)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_SMMU_PREPARE_ATOS_ID,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = dev_id,
.args[1] = cb_num,
.args[2] = operation,
.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_smmu_prepare_atos_id);
/**
* qcom_mdf_assign_memory_to_subsys - SDE memory protect.
*
*/
int qcom_mdf_assign_memory_to_subsys(u64 start_addr, u64 end_addr,
phys_addr_t paddr, u64 size)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_MPU_LOCK_NS_REGION,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = start_addr,
.args[1] = end_addr,
.args[2] = paddr,
.args[3] = size,
.arginfo = QCOM_SCM_ARGS(4),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_mdf_assign_memory_to_subsys);
/**
* qcom_scm_dcvs_core_available() - check if core DCVS operations are available
*/
bool qcom_scm_dcvs_core_available(void)
{
struct device *dev = NULL;
if (SCM_NOT_INITIALIZED())
return false;
dev = __scm->dev;
return __qcom_scm_is_call_available(dev, QCOM_SCM_SVC_DCVS,
QCOM_SCM_DCVS_INIT) &&
__qcom_scm_is_call_available(dev, QCOM_SCM_SVC_DCVS,
QCOM_SCM_DCVS_UPDATE) &&
__qcom_scm_is_call_available(dev, QCOM_SCM_SVC_DCVS,
QCOM_SCM_DCVS_RESET);
}
EXPORT_SYMBOL(qcom_scm_dcvs_core_available);
/**
* qcom_scm_dcvs_ca_available() - check if context aware DCVS operations are
* available
*/
bool qcom_scm_dcvs_ca_available(void)
{
struct device *dev = NULL;
if (SCM_NOT_INITIALIZED())
return false;
dev = __scm->dev;
return __qcom_scm_is_call_available(dev, QCOM_SCM_SVC_DCVS,
QCOM_SCM_DCVS_INIT_CA_V2) &&
__qcom_scm_is_call_available(dev, QCOM_SCM_SVC_DCVS,
QCOM_SCM_DCVS_UPDATE_CA_V2);
}
EXPORT_SYMBOL(qcom_scm_dcvs_ca_available);
/**
* qcom_scm_dcvs_reset()
*/
int qcom_scm_dcvs_reset(void)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_DCVS,
.cmd = QCOM_SCM_DCVS_RESET,
.owner = ARM_SMCCC_OWNER_SIP
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_dcvs_reset);
int qcom_scm_dcvs_init_v2(phys_addr_t addr, size_t size, int *version)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_DCVS,
.cmd = QCOM_SCM_DCVS_INIT_V2,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = addr,
.args[1] = size,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (ret >= 0)
*version = res.result[0];
return ret;
}
EXPORT_SYMBOL(qcom_scm_dcvs_init_v2);
int qcom_scm_dcvs_init_ca_v2(phys_addr_t addr, size_t size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_DCVS,
.cmd = QCOM_SCM_DCVS_INIT_CA_V2,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = addr,
.args[1] = size,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_dcvs_init_ca_v2);
int qcom_scm_dcvs_update(int level, s64 total_time, s64 busy_time)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_DCVS,
.cmd = QCOM_SCM_DCVS_UPDATE,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = level,
.args[1] = total_time,
.args[2] = busy_time,
.arginfo = QCOM_SCM_ARGS(3),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_dcvs_update);
int qcom_scm_dcvs_update_v2(int level, s64 total_time, s64 busy_time)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_DCVS,
.cmd = QCOM_SCM_DCVS_UPDATE_V2,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = level,
.args[1] = total_time,
.args[2] = busy_time,
.arginfo = QCOM_SCM_ARGS(3),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_dcvs_update_v2);
int qcom_scm_dcvs_update_ca_v2(int level, s64 total_time, s64 busy_time,
int context_count)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_DCVS,
.cmd = QCOM_SCM_DCVS_UPDATE_CA_V2,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = level,
.args[1] = total_time,
.args[2] = busy_time,
.args[3] = context_count,
.arginfo = QCOM_SCM_ARGS(4),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_dcvs_update_ca_v2);
int qcom_scm_get_feat_version_cp(u64 *version)
{
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_get_feat_version(__scm->dev, QCOM_SCM_MP_CP_FEAT_ID,
version);
}
EXPORT_SYMBOL(qcom_scm_get_feat_version_cp);
/**
* qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
*/
bool qcom_scm_ocmem_lock_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
QCOM_SCM_OCMEM_LOCK_CMD);
}
EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
/**
* qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
* region to the specified initiator
*
* @id: tz initiator id
* @offset: OCMEM offset
* @size: OCMEM size
* @mode: access mode (WIDE/NARROW)
*/
int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
u32 mode)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_OCMEM,
.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
.args[0] = id,
.args[1] = offset,
.args[2] = size,
.args[3] = mode,
.arginfo = QCOM_SCM_ARGS(4),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_ocmem_lock);
/**
* qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
* region from the specified initiator
*
* @id: tz initiator id
* @offset: OCMEM offset
* @size: OCMEM size
*/
int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_OCMEM,
.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
.args[0] = id,
.args[1] = offset,
.args[2] = size,
.arginfo = QCOM_SCM_ARGS(3),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
/**
* qcom_scm_ice_available() - Is the ICE key programming interface available?
*
* Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
* qcom_scm_ice_set_key() are available.
*/
bool qcom_scm_ice_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
}
EXPORT_SYMBOL(qcom_scm_ice_available);
/**
* qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
* @index: the keyslot to invalidate
*
* The UFSHCI and eMMC standards define a standard way to do this, but it
* doesn't work on these SoCs; only this SCM call does.
*
* It is assumed that the SoC has only one ICE instance being used, as this SCM
* call doesn't specify which ICE instance the keyslot belongs to.
*
* Return: 0 on success; -errno on failure.
*/
int qcom_scm_ice_invalidate_key(u32 index)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_ES,
.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = index,
.owner = ARM_SMCCC_OWNER_SIP,
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
/**
* qcom_scm_ice_set_key() - Set an inline encryption key
* @index: the keyslot into which to set the key
* @key: the key to program
* @key_size: the size of the key in bytes
* @cipher: the encryption algorithm the key is for
* @data_unit_size: the encryption data unit size, i.e. the size of each
* individual plaintext and ciphertext. Given in 512-byte
* units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
*
* Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
* can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
*
* The UFSHCI and eMMC standards define a standard way to do this, but it
* doesn't work on these SoCs; only this SCM call does.
*
* It is assumed that the SoC has only one ICE instance being used, as this SCM
* call doesn't specify which ICE instance the keyslot belongs to.
*
* Return: 0 on success; -errno on failure.
*/
int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_ES,
.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL),
.args[0] = index,
.args[2] = key_size,
.args[3] = cipher,
.args[4] = data_unit_size,
.owner = ARM_SMCCC_OWNER_SIP,
};
void *keybuf;
dma_addr_t key_phys;
int ret;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
/*
* 'key' may point to vmalloc()'ed memory, but we need to pass a
* physical address that's been properly flushed. The sanctioned way to
* do this is by using the DMA API. But as is best practice for crypto
* keys, we also must wipe the key after use. This makes kmemdup() +
* dma_map_single() not clearly correct, since the DMA API can use
* bounce buffers. Instead, just use dma_alloc_coherent(). Programming
* keys is normally rare and thus not performance-critical.
*/
keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
GFP_KERNEL);
if (!keybuf)
return -ENOMEM;
memcpy(keybuf, key, key_size);
desc.args[1] = key_phys;
ret = qcom_scm_call(__scm->dev, &desc, NULL);
memzero_explicit(keybuf, key_size);
dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
return ret;
}
EXPORT_SYMBOL(qcom_scm_ice_set_key);
int qcom_scm_config_set_ice_key(uint32_t index, phys_addr_t paddr, size_t size,
uint32_t cipher, unsigned int data_unit,
unsigned int ce)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_ES,
.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY_V2,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = index,
.args[1] = paddr,
.args[2] = size,
.args[3] = cipher,
.args[4] = data_unit,
.args[5] = ce,
.arginfo = QCOM_SCM_ARGS(6, QCOM_SCM_VAL, QCOM_SCM_RW,
QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_config_set_ice_key);
int qcom_scm_clear_ice_key(uint32_t index, unsigned int ce)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_ES,
.cmd = QCOM_SCM_ES_CLEAR_ICE_KEY,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = index,
.args[1] = ce,
.arginfo = QCOM_SCM_ARGS(2),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_clear_ice_key);
int qcom_scm_derive_raw_secret(phys_addr_t paddr_key, size_t size_key,
phys_addr_t paddr_secret, size_t size_secret)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_ES,
.cmd = QCOM_SCM_ES_DERIVE_RAW_SECRET,
.owner = ARM_SMCCC_OWNER_SIP
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
desc.args[0] = paddr_key;
desc.args[1] = size_key;
desc.args[2] = paddr_secret;
desc.args[3] = size_secret;
desc.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RW, QCOM_SCM_VAL,
QCOM_SCM_RW, QCOM_SCM_VAL);
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_derive_raw_secret);
/**
* qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
*
* Return true if HDCP is supported, false if not.
*/
bool qcom_scm_hdcp_available(void)
{
bool avail;
int ret;
if (SCM_NOT_INITIALIZED())
return false;
ret = qcom_scm_clk_enable();
if (ret)
return false;
avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
QCOM_SCM_HDCP_INVOKE);
qcom_scm_clk_disable();
return avail;
}
EXPORT_SYMBOL(qcom_scm_hdcp_available);
/**
* qcom_scm_hdcp_req() - Send HDCP request.
* @req: HDCP request array
* @req_cnt: HDCP request array count
* @resp: response buffer passed to SCM
*
* Write HDCP register(s) through SCM.
*/
int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_HDCP,
.cmd = QCOM_SCM_HDCP_INVOKE,
.arginfo = QCOM_SCM_ARGS(10),
.args = {
req[0].addr,
req[0].val,
req[1].addr,
req[1].val,
req[2].addr,
req[2].val,
req[3].addr,
req[3].val,
req[4].addr,
req[4].val
},
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
return -ERANGE;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
*resp = res.result[0];
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_hdcp_req);
bool qcom_scm_is_lmh_debug_set_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH,
QCOM_SCM_LMH_DEBUG_SET);
}
EXPORT_SYMBOL(qcom_scm_is_lmh_debug_set_available);
bool qcom_scm_is_lmh_debug_read_buf_size_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH,
QCOM_SCM_LMH_DEBUG_READ_BUF_SIZE);
}
EXPORT_SYMBOL(qcom_scm_is_lmh_debug_read_buf_size_available);
bool qcom_scm_is_lmh_debug_read_buf_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH,
QCOM_SCM_LMH_DEBUG_READ);
}
EXPORT_SYMBOL(qcom_scm_is_lmh_debug_read_buf_available);
bool qcom_scm_is_lmh_debug_get_type_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH,
QCOM_SCM_LMH_DEBUG_GET_TYPE);
}
EXPORT_SYMBOL(qcom_scm_is_lmh_debug_get_type_available);
int qcom_scm_lmh_read_buf_size(int *size)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = QCOM_SCM_LMH_DEBUG_READ_BUF_SIZE,
.owner = ARM_SMCCC_OWNER_SIP
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (size)
*size = res.result[0];
return ret;
}
EXPORT_SYMBOL(qcom_scm_lmh_read_buf_size);
int qcom_scm_lmh_limit_dcvsh(phys_addr_t payload, uint32_t payload_size,
u64 limit_node, uint32_t node_id, u64 version)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = payload,
.args[1] = payload_size,
.args[2] = limit_node,
.args[3] = node_id,
.args[4] = version,
.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_lmh_limit_dcvsh);
int qcom_scm_lmh_debug_read(phys_addr_t payload, uint32_t size)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = QCOM_SCM_LMH_DEBUG_READ,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = payload,
.args[1] = size,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_lmh_debug_read);
int __qcom_scm_lmh_debug_config_write(struct device *dev, u64 cmd_id,
phys_addr_t payload, int payload_size, uint32_t *buf,
int buf_size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = cmd_id,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = payload,
.args[1] = payload_size,
.args[2] = buf[0],
.args[3] = buf[1],
.args[4] = buf[2],
.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
if (buf_size < 3)
return -EINVAL;
return qcom_scm_call(dev, &desc, NULL);
}
int qcom_scm_lmh_debug_set_config_write(phys_addr_t payload, int payload_size,
uint32_t *buf, int buf_size)
{
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_lmh_debug_config_write(__scm->dev,
QCOM_SCM_LMH_DEBUG_SET, payload, payload_size, buf,
buf_size);
}
EXPORT_SYMBOL(qcom_scm_lmh_debug_set_config_write);
int qcom_scm_lmh_get_type(phys_addr_t payload, u64 payload_size,
u64 debug_type, uint32_t get_from, uint32_t *size)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = QCOM_SCM_LMH_DEBUG_GET_TYPE,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = payload,
.args[1] = payload_size,
.args[2] = debug_type,
.args[3] = get_from,
.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RW, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (size)
*size = res.result[0];
return ret;
}
EXPORT_SYMBOL(qcom_scm_lmh_get_type);
int qcom_scm_lmh_fetch_data(u32 node_id, u32 debug_type, uint32_t *peak,
uint32_t *avg)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = QCOM_SCM_LMH_DEBUG_FETCH_DATA,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = node_id,
.args[1] = debug_type,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_VAL),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH,
QCOM_SCM_LMH_DEBUG_FETCH_DATA);
if (ret <= 0)
return ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (peak)
*peak = res.result[0];
if (avg)
*avg = res.result[1];
return ret;
}
EXPORT_SYMBOL(qcom_scm_lmh_fetch_data);
int qcom_scm_smmu_change_pgtbl_format(u64 dev_id, int cbndx)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
.cmd = QCOM_SCM_SMMU_CHANGE_PGTBL_FORMAT,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = dev_id,
.args[1] = cbndx,
.args[2] = 1, /* Enable */
.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_smmu_change_pgtbl_format);
int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
.args[1] = en,
.owner = ARM_SMCCC_OWNER_SIP,
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
int qcom_scm_smmu_notify_secure_lut(u64 dev_id, bool secure)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
.cmd = QCOM_SCM_SMMU_SECURE_LUT,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = dev_id,
.args[1] = secure,
.arginfo = QCOM_SCM_ARGS(2),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_smmu_notify_secure_lut);
int qcom_scm_qdss_invoke(phys_addr_t paddr, size_t size, u64 *out)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_QDSS,
.cmd = QCOM_SCM_QDSS_INVOKE,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = paddr,
.args[1] = size,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RO, QCOM_SCM_VAL),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (out)
*out = res.result[1];
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_qdss_invoke);
int qcom_scm_camera_protect_all(uint32_t protect, uint32_t param)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_CAMERA,
.cmd = QCOM_SCM_CAMERA_PROTECT_ALL,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = protect,
.args[1] = param,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_camera_protect_all);
int qcom_scm_camera_protect_phy_lanes(bool protect, u64 regmask)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_CAMERA,
.cmd = QCOM_SCM_CAMERA_PROTECT_PHY_LANES,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = protect,
.args[1] = regmask,
.arginfo = QCOM_SCM_ARGS(2),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_camera_protect_phy_lanes);
int qcom_scm_camera_update_camnoc_qos(uint32_t use_case_id,
uint32_t cam_qos_cnt, struct qcom_scm_camera_qos *cam_qos)
{
int ret;
dma_addr_t payload_phys;
u32 *payload_buf = NULL;
u32 payload_size = 0;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_CAMERA,
.cmd = QCOM_SCM_CAMERA_UPDATE_CAMNOC_QOS,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = use_case_id,
.args[2] = payload_size,
.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
if ((cam_qos_cnt > QCOM_SCM_CAMERA_MAX_QOS_CNT) || (cam_qos_cnt && !cam_qos)) {
pr_err("Invalid input SmartQoS count: %d\n", cam_qos_cnt);
return -EINVAL;
}
payload_size = cam_qos_cnt * sizeof(struct qcom_scm_camera_qos);
/* fill all required qos settings */
if (use_case_id && payload_size && cam_qos) {
payload_buf = dma_alloc_coherent(__scm->dev,
payload_size, &payload_phys, GFP_KERNEL);
if (!payload_buf)
return -ENOMEM;
memcpy(payload_buf, cam_qos, payload_size);
desc.args[1] = payload_phys;
desc.args[2] = payload_size;
}
ret = qcom_scm_call(__scm->dev, &desc, NULL);
if (payload_buf)
dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
return ret;
}
EXPORT_SYMBOL_GPL(qcom_scm_camera_update_camnoc_qos);
int qcom_scm_tsens_reinit(int *tsens_ret)
{
unsigned int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_TSENS,
.cmd = QCOM_SCM_TSENS_INIT_ID,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (tsens_ret)
*tsens_ret = res.result[0];
return ret;
}
EXPORT_SYMBOL(qcom_scm_tsens_reinit);
static int qcom_scm_reboot(struct device *dev)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_OEM_POWER,
.cmd = QCOM_SCM_OEM_POWER_REBOOT,
.owner = ARM_SMCCC_OWNER_OEM,
};
return qcom_scm_call_atomic(dev, &desc, NULL);
}
int qcom_scm_ice_restore_cfg(void)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_KEYSTORE,
.cmd = QCOM_SCM_ICE_RESTORE_KEY_ID,
.owner = ARM_SMCCC_OWNER_TRUSTED_OS
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_ice_restore_cfg);
bool qcom_scm_lmh_dcvsh_available(void)
{
if (SCM_NOT_INITIALIZED())
return false;
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
}
EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
int qcom_scm_lmh_profile_change(u32 profile_id)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
.args[0] = profile_id,
.owner = ARM_SMCCC_OWNER_SIP,
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
u64 limit_node, u32 node_id, u64 version)
{
dma_addr_t payload_phys;
u32 *payload_buf;
int ret, payload_size = 5 * sizeof(u32);
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL),
.args[1] = payload_size,
.args[2] = limit_node,
.args[3] = node_id,
.args[4] = version,
.owner = ARM_SMCCC_OWNER_SIP,
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
if (!payload_buf)
return -ENOMEM;
payload_buf[0] = payload_fn;
payload_buf[1] = 0;
payload_buf[2] = payload_reg;
payload_buf[3] = 1;
payload_buf[4] = payload_val;
desc.args[0] = payload_phys;
ret = qcom_scm_call(__scm->dev, &desc, NULL);
dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
return ret;
}
EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
int qcom_scm_prefetch_tgt_ctrl(bool en)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_CPUCFG,
.cmd = QCOM_SCM_CPUCFG_PREFETCH_TGT_CMD,
.owner = ARM_SMCCC_OWNER_SIP,
.args[0] = en,
.arginfo = QCOM_SCM_ARGS(1),
};
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_prefetch_tgt_ctrl);
int qcom_scm_get_tz_log_feat_id(u64 *version)
{
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_get_feat_version(__scm->dev, QCOM_SCM_FEAT_LOG_ID,
version);
}
EXPORT_SYMBOL(qcom_scm_get_tz_log_feat_id);
int qcom_scm_get_tz_feat_id_version(u64 feat_id, u64 *version)
{
if (SCM_NOT_INITIALIZED())
return -ENODEV;
return __qcom_scm_get_feat_version(__scm->dev, feat_id,
version);
}
EXPORT_SYMBOL(qcom_scm_get_tz_feat_id_version);
int qcom_scm_register_qsee_log_buf(phys_addr_t buf, size_t len)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_QSEELOG,
.cmd = QCOM_SCM_QSEELOG_REGISTER,
.owner = ARM_SMCCC_OWNER_TRUSTED_OS,
.args[0] = buf,
.args[1] = len,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_register_qsee_log_buf);
int qcom_scm_query_encrypted_log_feature(u64 *enabled)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_QSEELOG,
.cmd = QCOM_SCM_QUERY_ENCR_LOG_FEAT_ID,
.owner = ARM_SMCCC_OWNER_TRUSTED_OS
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (enabled)
*enabled = res.result[0];
return ret;
}
EXPORT_SYMBOL(qcom_scm_query_encrypted_log_feature);
int qcom_scm_request_encrypted_log(phys_addr_t buf,
size_t len,
uint32_t log_id,
bool is_full_tz_logs_supported,
bool is_full_tz_logs_enabled)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_QSEELOG,
.cmd = QCOM_SCM_REQUEST_ENCR_LOG_ID,
.owner = ARM_SMCCC_OWNER_TRUSTED_OS,
.args[0] = buf,
.args[1] = len,
.args[2] = log_id
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
if (is_full_tz_logs_supported) {
if (is_full_tz_logs_enabled) {
/* requesting full logs */
desc.args[3] = 1;
} else {
/* requesting incremental logs */
desc.args[3] = 0;
}
desc.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RW);
} else {
desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW);
}
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_request_encrypted_log);
int qcom_scm_invoke_smc_legacy(phys_addr_t in_buf, size_t in_buf_size,
phys_addr_t out_buf, size_t out_buf_size, int32_t *result,
u64 *response_type, unsigned int *data)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMCINVOKE,
.cmd = QCOM_SCM_SMCINVOKE_INVOKE_LEGACY,
.owner = ARM_SMCCC_OWNER_TRUSTED_OS,
.args[0] = in_buf,
.args[1] = in_buf_size,
.args[2] = out_buf,
.args[3] = out_buf_size,
.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RW, QCOM_SCM_VAL,
QCOM_SCM_RW, QCOM_SCM_VAL),
.multicall_allowed = true,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call_noretry(__scm->dev, &desc, &res);
if (result)
*result = res.result[1];
if (response_type)
*response_type = res.result[0];
if (data)
*data = res.result[2];
return ret;
}
EXPORT_SYMBOL(qcom_scm_invoke_smc_legacy);
int qcom_scm_invoke_smc(phys_addr_t in_buf, size_t in_buf_size,
phys_addr_t out_buf, size_t out_buf_size, int32_t *result,
u64 *response_type, unsigned int *data)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMCINVOKE,
.cmd = QCOM_SCM_SMCINVOKE_INVOKE,
.owner = ARM_SMCCC_OWNER_TRUSTED_OS,
.args[0] = in_buf,
.args[1] = in_buf_size,
.args[2] = out_buf,
.args[3] = out_buf_size,
.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RW, QCOM_SCM_VAL,
QCOM_SCM_RW, QCOM_SCM_VAL),
.multicall_allowed = true,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call_noretry(__scm->dev, &desc, &res);
if (result)
*result = res.result[1];
if (response_type)
*response_type = res.result[0];
if (data)
*data = res.result[2];
return ret;
}
EXPORT_SYMBOL(qcom_scm_invoke_smc);
int qcom_scm_invoke_callback_response(phys_addr_t out_buf,
size_t out_buf_size, int32_t *result, u64 *response_type,
unsigned int *data)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMCINVOKE,
.cmd = QCOM_SCM_SMCINVOKE_CB_RSP,
.owner = ARM_SMCCC_OWNER_TRUSTED_OS,
.args[0] = out_buf,
.args[1] = out_buf_size,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL),
.multicall_allowed = true,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
ret = qcom_scm_call_noretry(__scm->dev, &desc, &res);
if (result)
*result = res.result[1];
if (response_type)
*response_type = res.result[0];
if (data)
*data = res.result[2];
return ret;
}
EXPORT_SYMBOL(qcom_scm_invoke_callback_response);
int qcom_scm_qseecom_call(u32 cmd_id, struct qseecom_scm_desc *desc, bool retry)
{
int ret;
struct device *dev = NULL;
struct qcom_scm_desc _desc = {
.svc = (cmd_id & 0xff00) >> 8,
.cmd = (cmd_id & 0xff),
.owner = (cmd_id & 0x3f000000) >> 24,
.args[0] = desc->args[0],
.args[1] = desc->args[1],
.args[2] = desc->args[2],
.args[3] = desc->args[3],
.args[4] = desc->args[4],
.args[5] = desc->args[5],
.args[6] = desc->args[6],
.args[7] = desc->args[7],
.args[8] = desc->args[8],
.args[9] = desc->args[9],
.arginfo = desc->arginfo,
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
dev = __scm->dev;
if (retry)
ret = qcom_scm_call(dev, &_desc, &res);
else
ret = qcom_scm_call_noretry(dev, &_desc, &res);
desc->ret[0] = res.result[0];
desc->ret[1] = res.result[1];
desc->ret[2] = res.result[2];
return ret;
}
EXPORT_SYMBOL(qcom_scm_qseecom_call);
static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
{
struct device_node *tcsr;
struct device_node *np = dev->of_node;
struct resource res;
u32 offset;
int ret;
tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
if (!tcsr)
return 0;
ret = of_address_to_resource(tcsr, 0, &res);
of_node_put(tcsr);
if (ret)
return ret;
ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
if (ret < 0)
return ret;
*addr = res.start + offset;
return 0;
}
/**
* qcom_scm_is_available() - Checks if SCM is available
*/
bool qcom_scm_is_available(void)
{
return !!__scm;
}
EXPORT_SYMBOL(qcom_scm_is_available);
void *qcom_get_scm_device(void)
{
return __scm ? __scm->dev : NULL;
}
EXPORT_SYMBOL(qcom_get_scm_device);
static int qcom_scm_do_restart(struct notifier_block *this, unsigned long event,
void *ptr)
{
struct qcom_scm *scm = container_of(this, struct qcom_scm, restart_nb);
if (reboot_mode == REBOOT_WARM)
qcom_scm_reboot(scm->dev);
return NOTIFY_OK;
}
static int qcom_scm_query_wq_queue_info(struct qcom_scm *scm)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_WAITQ,
.cmd = QCOM_SCM_GET_WQ_QUEUE_INFO,
.owner = ARM_SMCCC_OWNER_SIP
};
struct qcom_scm_res res;
scm->waitq.wq_feature = QCOM_SCM_SINGLE_SMC_ALLOW;
ret = qcom_scm_call_atomic(scm->dev, &desc, &res);
if (ret) {
pr_err("%s: Failed to get wq queue info: %d\n", __func__, ret);
return ret;
}
scm->waitq.call_ctx_cnt = res.result[0] & 0xFF;
scm->waitq.irq = res.result[1] & 0xFFFF;
scm->waitq.wq_feature = QCOM_SCM_MULTI_SMC_WHITE_LIST_ALLOW;
pr_info("WQ Info, feature: %d call_ctx_cnt: %d irq: %d\n",
scm->waitq.wq_feature, scm->waitq.call_ctx_cnt, scm->waitq.irq);
return ret;
}
bool qcom_scm_multi_call_allow(struct device *dev, bool multicall_allowed)
{
struct qcom_scm *scm;
if (!dev)
return false;
scm = dev_get_drvdata(dev);
if (multicall_allowed &&
scm->waitq.wq_feature == QCOM_SCM_MULTI_SMC_WHITE_LIST_ALLOW)
return true;
return false;
};
struct completion *qcom_scm_lookup_wq(struct qcom_scm *scm, u32 wq_ctx)
{
struct completion *wq = NULL;
unsigned long flags;
int err;
spin_lock_irqsave(&scm->waitq.idr_lock, flags);
wq = idr_find(&scm->waitq.idr, wq_ctx);
if (wq)
goto out;
wq = devm_kzalloc(scm->dev, sizeof(*wq), GFP_ATOMIC);
if (!wq) {
wq = ERR_PTR(-ENOMEM);
goto out;
}
init_completion(wq);
err = idr_alloc_u32(&scm->waitq.idr, wq, &wq_ctx, wq_ctx, GFP_ATOMIC);
if (err < 0) {
devm_kfree(scm->dev, wq);
wq = ERR_PTR(err);
}
out:
spin_unlock_irqrestore(&scm->waitq.idr_lock, flags);
return wq;
}
void scm_waitq_flag_handler(struct completion *wq, u32 flags)
{
switch (flags) {
case QCOM_SMC_WAITQ_FLAG_WAKE_ONE:
complete(wq);
break;
case QCOM_SMC_WAITQ_FLAG_WAKE_ALL:
complete_all(wq);
reinit_completion(wq);
break;
default:
pr_err("invalid flags: %u\n", flags);
}
}
static void scm_irq_work(struct work_struct *work)
{
int ret;
u32 wq_ctx, flags, more_pending = 0;
struct completion *wq_to_wake;
struct qcom_scm_waitq *w = container_of(work, struct qcom_scm_waitq, scm_irq_work);
struct qcom_scm *scm = container_of(w, struct qcom_scm, waitq);
if (qcom_scm_convention != SMC_CONVENTION_ARM_64) {
/* Unsupported */
return;
}
do {
ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
if (ret) {
pr_err("GET_WQ_CTX SMC call failed: %d\n", ret);
return;
}
/* This happens if two wakeups occur in close succession */
if (flags == QCOM_SCM_WAITQ_FLAG_WAKE_NONE)
return;
wq_to_wake = qcom_scm_lookup_wq(scm, wq_ctx);
if (IS_ERR_OR_NULL(wq_to_wake)) {
pr_err("No waitqueue found for wq_ctx %d: %d\n",
wq_ctx, PTR_ERR(wq_to_wake));
return;
}
scm_waitq_flag_handler(wq_to_wake, flags);
} while (more_pending);
}
static irqreturn_t qcom_scm_irq_handler(int irq, void *p)
{
struct qcom_scm *scm = p;
schedule_work(&scm->waitq.scm_irq_work);
return IRQ_HANDLED;
}
static int __qcom_multi_smc_init(struct qcom_scm *scm,
struct platform_device *pdev)
{
int ret = 0, irq;
spin_lock_init(&scm->waitq.idr_lock);
idr_init(&scm->waitq.idr);
if (of_device_is_compatible(scm->dev->of_node, "qcom,scm-v1.1")) {
INIT_WORK(&scm->waitq.scm_irq_work, scm_irq_work);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(scm->dev, "WQ IRQ is not specified: %d\n", irq);
return irq;
}
ret = devm_request_irq(scm->dev, irq,
qcom_scm_irq_handler,
IRQF_ONESHOT, "qcom-scm", scm);
if (ret < 0) {
dev_err(scm->dev, "Failed to request qcom-scm irq: %d\n", ret);
return ret;
}
/* Return success if "no-multi-smc-support" property is present */
if (of_property_read_bool(scm->dev->of_node,
"qcom,no-multi-smc-support")) {
dev_info(scm->dev, "Multi smc is not supported\n");
return 0;
}
/* Detect Multi SMC support present or not */
ret = qcom_scm_query_wq_queue_info(scm);
if (!ret)
sema_init(&qcom_scm_sem_lock,
(int)scm->waitq.call_ctx_cnt);
}
return ret;
}
/**
* scm_mem_protection_init_do() - Makes core kernel bootup milestone call
* to Kernel Protect (KP) in Hypervisor
* to start kernel memory protection. KP will
* start protection on kernel sections like
* .text, .rodata, .bss, .data with applying
* permissions in EL2 page table.
*
* @pid_offset: Offset of PID in task_struct structure to pass in
* hypervisor syscall.
* @task_name_offset: Offset of task name in task_struct structure to pass in
* hypervisor syscall.
*
* Returns 0 on success.
*/
int scm_mem_protection_init_do(void)
{
int ret = 0, resp;
uint32_t pid_offset = 0;
uint32_t task_name_offset = 0;
struct qcom_scm_desc desc = {
.svc = SCM_SVC_RTIC,
.cmd = TZ_HLOS_NOTIFY_CORE_KERNEL_BOOTUP,
.owner = ARM_SMCCC_OWNER_SIP,
.arginfo = QCOM_SCM_ARGS(2),
};
struct qcom_scm_res res;
if (SCM_NOT_INITIALIZED())
return -ENODEV;
/*
* Fetching offset of PID and task_name from task_struct.
* This will be used by fault handler of Kernel Protect (KP)
* in hypervisor to read PID and task name of process for
* which KP fault handler is triggered. This is required to
* record PID and task name in integrity report of kernel.
*/
pid_offset = offsetof(struct task_struct, pid);
task_name_offset = offsetof(struct task_struct, comm);
pr_debug("offset of pid is %zu, offset of comm is %zu\n",
pid_offset, task_name_offset);
desc.args[0] = pid_offset,
desc.args[1] = task_name_offset,
ret = qcom_scm_call(__scm->dev, &desc, &res);
resp = res.result[0];
pr_debug("SCM call values: ret %d, resp %d\n",
ret, resp);
if (ret || resp) {
pr_err("SCM call failed %d, resp %d\n", ret, resp);
if (ret)
return ret;
}
return resp;
}
static int qcom_scm_probe(struct platform_device *pdev)
{
struct qcom_scm *scm;
unsigned long clks;
int ret;
scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
if (!scm)
return -ENOMEM;
ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
if (ret < 0)
return ret;
mutex_init(&scm->scm_bw_lock);
clks = (unsigned long)of_device_get_match_data(&pdev->dev);
scm->dev = &pdev->dev;
scm->path = devm_of_icc_get(&pdev->dev, NULL);
if (IS_ERR(scm->path))
return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
"failed to acquire interconnect path\n");
scm->core_clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(scm->core_clk)) {
if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
return PTR_ERR(scm->core_clk);
if (clks & SCM_HAS_CORE_CLK) {
dev_err(&pdev->dev, "failed to acquire core clk\n");
return PTR_ERR(scm->core_clk);
}
scm->core_clk = NULL;
}
scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(scm->iface_clk)) {
if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
return PTR_ERR(scm->iface_clk);
if (clks & SCM_HAS_IFACE_CLK) {
dev_err(&pdev->dev, "failed to acquire iface clk\n");
return PTR_ERR(scm->iface_clk);
}
scm->iface_clk = NULL;
}
scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(scm->bus_clk)) {
if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
return PTR_ERR(scm->bus_clk);
if (clks & SCM_HAS_BUS_CLK) {
dev_err(&pdev->dev, "failed to acquire bus clk\n");
return PTR_ERR(scm->bus_clk);
}
scm->bus_clk = NULL;
}
scm->reset.ops = &qcom_scm_pas_reset_ops;
scm->reset.nr_resets = 1;
scm->reset.of_node = pdev->dev.of_node;
ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
if (ret)
return ret;
/* vote for max clk rate for highest performance */
ret = clk_set_rate(scm->core_clk, INT_MAX);
if (ret)
return ret;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (ret)
return ret;
platform_set_drvdata(pdev, scm);
__scm = scm;
__qcom_scm_init();
__get_convention();
ret = __qcom_multi_smc_init(scm, pdev);
if (ret)
return ret;
scm->restart_nb.notifier_call = qcom_scm_do_restart;
scm->restart_nb.priority = 130;
register_restart_handler(&scm->restart_nb);
/*
* If requested enable "download mode", from this point on warmboot
* will cause the boot stages to enter download mode, unless
* disabled below by a clean shutdown/reboot.
*/
if (download_mode)
qcom_scm_set_download_mode(QCOM_DOWNLOAD_FULLDUMP, 0);
return 0;
}
static void qcom_scm_shutdown(struct platform_device *pdev)
{
idr_destroy(&__scm->waitq.idr);
qcom_scm_disable_sdi();
qcom_scm_halt_spmi_pmic_arbiter();
/* Clean shutdown, disable download mode to allow normal restart */
if (download_mode)
qcom_scm_set_download_mode(QCOM_DOWNLOAD_NODUMP, 0);
}
static const struct of_device_id qcom_scm_dt_match[] = {
{ .compatible = "qcom,scm-apq8064",
/* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
},
{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-ipq4019" },
{ .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK) },
{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-msm8976", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-msm8994" },
{ .compatible = "qcom,scm-msm8996" },
{ .compatible = "qcom,scm" },
{ .compatible = "qcom,scm-v1.1" },
{}
};
MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
static struct platform_driver qcom_scm_driver = {
.driver = {
.name = "qcom_scm",
.of_match_table = qcom_scm_dt_match,
.suppress_bind_attrs = true,
},
.probe = qcom_scm_probe,
.shutdown = qcom_scm_shutdown,
};
static int __init qcom_scm_init(void)
{
int ret;
ret = platform_driver_register(&qcom_scm_driver);
if (ret)
return ret;
return qtee_shmbridge_driver_init();
}
subsys_initcall(qcom_scm_init);
#if IS_MODULE(CONFIG_QCOM_SCM)
static void __exit qcom_scm_exit(void)
{
__qcom_scm_qcpe_exit();
platform_driver_unregister(&qcom_scm_driver);
qtee_shmbridge_driver_exit();
}
module_exit(qcom_scm_exit);
#endif
MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
MODULE_LICENSE("GPL v2");