android_kernel_samsung_sm8650/block/ssg-iosched.c
2024-10-20 20:09:27 +02:00

901 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* SamSung Generic I/O scheduler
* for the blk-mq scheduling framework
*
* Copyright (C) 2021 Jisoo Oh <jisoo2146.oh@samsung.com>
* Copyright (C) 2021 Manjong Lee <mj0123.lee@samsung.com>
* Copyright (C) 2021 Changheun Lee <nanich.lee@samsung.com>
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/bio.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/rbtree.h>
#include <linux/sbitmap.h>
#include <trace/events/block.h>
#include "blk.h"
#include "elevator.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-mq-tag.h"
#include "blk-mq-sched.h"
#include "ssg.h"
#include "blk-sec.h"
#define MAX_ASYNC_WRITE_RQS 8
static const int read_expire = HZ / 2; /* max time before a read is submitted. */
static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
static const int max_write_starvation = 2; /* max times reads can starve a write */
static const int congestion_threshold = 90; /* percentage of congestion threshold */
static const int max_tgroup_io_ratio = 50; /* maximum service ratio for each thread group */
static const int max_async_write_ratio = 25; /* maximum service ratio for async write */
static inline struct rb_root *ssg_rb_root(struct ssg_data *ssg, struct request *rq)
{
return &ssg->sort_list[rq_data_dir(rq)];
}
/*
* get the request after `rq' in sector-sorted order
*/
static inline struct request *ssg_latter_request(struct request *rq)
{
struct rb_node *node = rb_next(&rq->rb_node);
if (node)
return rb_entry_rq(node);
return NULL;
}
static void ssg_add_rq_rb(struct ssg_data *ssg, struct request *rq)
{
struct rb_root *root = ssg_rb_root(ssg, rq);
elv_rb_add(root, rq);
}
static inline void ssg_del_rq_rb(struct ssg_data *ssg, struct request *rq)
{
const int data_dir = rq_data_dir(rq);
if (ssg->next_rq[data_dir] == rq)
ssg->next_rq[data_dir] = ssg_latter_request(rq);
elv_rb_del(ssg_rb_root(ssg, rq), rq);
}
static inline struct ssg_request_info *ssg_rq_info(struct ssg_data *ssg,
struct request *rq)
{
if (unlikely(!ssg->rq_info))
return NULL;
if (unlikely(!rq))
return NULL;
if (unlikely(rq->internal_tag < 0))
return NULL;
if (unlikely(rq->internal_tag >= rq->q->nr_requests))
return NULL;
return &ssg->rq_info[rq->internal_tag];
}
/*
* remove rq from rbtree and fifo.
*/
static void ssg_remove_request(struct request_queue *q, struct request *rq)
{
struct ssg_data *ssg = q->elevator->elevator_data;
list_del_init(&rq->queuelist);
/*
* We might not be on the rbtree, if we are doing an insert merge
*/
if (!RB_EMPTY_NODE(&rq->rb_node))
ssg_del_rq_rb(ssg, rq);
elv_rqhash_del(q, rq);
if (q->last_merge == rq)
q->last_merge = NULL;
}
static void ssg_request_merged(struct request_queue *q, struct request *req,
enum elv_merge type)
{
struct ssg_data *ssg = q->elevator->elevator_data;
/*
* if the merge was a front merge, we need to reposition request
*/
if (type == ELEVATOR_FRONT_MERGE) {
elv_rb_del(ssg_rb_root(ssg, req), req);
ssg_add_rq_rb(ssg, req);
}
}
static void ssg_merged_requests(struct request_queue *q, struct request *req,
struct request *next)
{
/*
* if next expires before rq, assign its expire time to rq
* and move into next position (next will be deleted) in fifo
*/
if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
if (time_before((unsigned long)next->fifo_time,
(unsigned long)req->fifo_time)) {
list_move(&req->queuelist, &next->queuelist);
req->fifo_time = next->fifo_time;
}
}
/*
* kill knowledge of next, this one is a goner
*/
ssg_remove_request(q, next);
}
/*
* move an entry to dispatch queue
*/
static void ssg_move_request(struct ssg_data *ssg, struct request *rq)
{
const int data_dir = rq_data_dir(rq);
ssg->next_rq[READ] = NULL;
ssg->next_rq[WRITE] = NULL;
ssg->next_rq[data_dir] = ssg_latter_request(rq);
/*
* take it off the sort and fifo list
*/
ssg_remove_request(rq->q, rq);
}
/*
* ssg_check_fifo returns 0 if there are no expired requests on the fifo,
* 1 otherwise. Requires !list_empty(&ssg->fifo_list[data_dir])
*/
static inline int ssg_check_fifo(struct ssg_data *ssg, int ddir)
{
struct request *rq = rq_entry_fifo(ssg->fifo_list[ddir].next);
/*
* rq is expired!
*/
if (time_after_eq(jiffies, (unsigned long)rq->fifo_time))
return 1;
return 0;
}
/*
* For the specified data direction, return the next request to
* dispatch using arrival ordered lists.
*/
static struct request *ssg_fifo_request(struct ssg_data *ssg, int data_dir)
{
struct request *rq;
unsigned long flags;
if (WARN_ON_ONCE(data_dir != READ && data_dir != WRITE))
return NULL;
if (list_empty(&ssg->fifo_list[data_dir]))
return NULL;
rq = rq_entry_fifo(ssg->fifo_list[data_dir].next);
if (data_dir == READ || !blk_queue_is_zoned(rq->q))
return rq;
/*
* Look for a write request that can be dispatched, that is one with
* an unlocked target zone.
*/
spin_lock_irqsave(&ssg->zone_lock, flags);
list_for_each_entry(rq, &ssg->fifo_list[WRITE], queuelist) {
if (blk_req_can_dispatch_to_zone(rq))
goto out;
}
rq = NULL;
out:
spin_unlock_irqrestore(&ssg->zone_lock, flags);
return rq;
}
/*
* For the specified data direction, return the next request to
* dispatch using sector position sorted lists.
*/
static struct request *ssg_next_request(struct ssg_data *ssg, int data_dir)
{
struct request *rq;
unsigned long flags;
if (WARN_ON_ONCE(data_dir != READ && data_dir != WRITE))
return NULL;
rq = ssg->next_rq[data_dir];
if (!rq)
return NULL;
if (data_dir == READ || !blk_queue_is_zoned(rq->q))
return rq;
/*
* Look for a write request that can be dispatched, that is one with
* an unlocked target zone.
*/
spin_lock_irqsave(&ssg->zone_lock, flags);
while (rq) {
if (blk_req_can_dispatch_to_zone(rq))
break;
rq = ssg_latter_request(rq);
}
spin_unlock_irqrestore(&ssg->zone_lock, flags);
return rq;
}
/*
* ssg_dispatch_requests selects the best request according to
* read/write expire, etc
*/
static struct request *__ssg_dispatch_request(struct ssg_data *ssg)
{
struct request *rq, *next_rq;
bool reads, writes;
int data_dir;
if (!list_empty(&ssg->dispatch)) {
rq = list_first_entry(&ssg->dispatch, struct request, queuelist);
list_del_init(&rq->queuelist);
goto done;
}
reads = !list_empty(&ssg->fifo_list[READ]);
writes = !list_empty(&ssg->fifo_list[WRITE]);
/*
* select the appropriate data direction (read / write)
*/
if (reads) {
BUG_ON(RB_EMPTY_ROOT(&ssg->sort_list[READ]));
if (ssg_fifo_request(ssg, WRITE) &&
(ssg->starved_writes++ >= ssg->max_write_starvation))
goto dispatch_writes;
data_dir = READ;
goto dispatch_find_request;
}
/*
* there are either no reads or writes have been starved
*/
if (writes) {
dispatch_writes:
BUG_ON(RB_EMPTY_ROOT(&ssg->sort_list[WRITE]));
ssg->starved_writes = 0;
data_dir = WRITE;
goto dispatch_find_request;
}
return NULL;
dispatch_find_request:
/*
* we are not running a batch, find best request for selected data_dir
*/
next_rq = ssg_next_request(ssg, data_dir);
if (ssg_check_fifo(ssg, data_dir) || !next_rq) {
/*
* A deadline has expired, the last request was in the other
* direction, or we have run out of higher-sectored requests.
* Start again from the request with the earliest expiry time.
*/
rq = ssg_fifo_request(ssg, data_dir);
} else {
/*
* The last req was the same dir and we have a next request in
* sort order. No expired requests so continue on from here.
*/
rq = next_rq;
}
/*
* For a zoned block device, if we only have writes queued and none of
* them can be dispatched, rq will be NULL.
*/
if (!rq)
return NULL;
/*
* rq is the selected appropriate request.
*/
ssg_move_request(ssg, rq);
done:
/*
* If the request needs its target zone locked, do it.
*/
blk_req_zone_write_lock(rq);
rq->rq_flags |= RQF_STARTED;
return rq;
}
/*
* One confusing aspect here is that we get called for a specific
* hardware queue, but we may return a request that is for a
* different hardware queue. This is because ssg-iosched has shared
* state for all hardware queues, in terms of sorting, FIFOs, etc.
*/
static struct request *ssg_dispatch_request(struct blk_mq_hw_ctx *hctx)
{
struct ssg_data *ssg = hctx->queue->elevator->elevator_data;
struct request *rq;
struct ssg_request_info *rqi;
spin_lock(&ssg->lock);
rq = __ssg_dispatch_request(ssg);
spin_unlock(&ssg->lock);
rqi = ssg_rq_info(ssg, rq);
if (likely(rqi)) {
rqi->sector = blk_rq_pos(rq);
rqi->data_size = blk_rq_bytes(rq);
}
return rq;
}
static void ssg_completed_request(struct request *rq, u64 now)
{
struct ssg_data *ssg = rq->q->elevator->elevator_data;
struct ssg_request_info *rqi;
rqi = ssg_rq_info(ssg, rq);
if (likely(rqi && rqi->sector == blk_rq_pos(rq))) {
ssg_stat_account_io_done(ssg, rq, rqi->data_size, now);
blk_sec_stat_account_io_complete(rq, rqi->data_size, rqi->pio);
}
}
static void ssg_set_shallow_depth(struct ssg_data *ssg, struct blk_mq_tags *tags)
{
unsigned int depth = tags->bitmap_tags.sb.depth;
unsigned int map_nr = tags->bitmap_tags.sb.map_nr;
ssg->max_async_write_rqs = depth * max_async_write_ratio / 100U;
ssg->max_async_write_rqs =
min_t(int, ssg->max_async_write_rqs, MAX_ASYNC_WRITE_RQS);
ssg->async_write_shallow_depth =
max_t(unsigned int, ssg->max_async_write_rqs / map_nr, 1);
ssg->max_tgroup_rqs = depth * max_tgroup_io_ratio / 100U;
ssg->tgroup_shallow_depth =
max_t(unsigned int, ssg->max_tgroup_rqs / map_nr, 1);
}
static void ssg_depth_updated(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
struct ssg_data *ssg = q->elevator->elevator_data;
struct blk_mq_tags *tags = hctx->sched_tags;
unsigned int depth = tags->bitmap_tags.sb.depth;
ssg->congestion_threshold_rqs = depth * congestion_threshold / 100U;
kfree(ssg->rq_info);
ssg->rq_info = kmalloc_array(depth, sizeof(struct ssg_request_info),
GFP_KERNEL | __GFP_ZERO);
if (ZERO_OR_NULL_PTR(ssg->rq_info))
ssg->rq_info = NULL;
ssg_set_shallow_depth(ssg, tags);
sbitmap_queue_min_shallow_depth(&tags->bitmap_tags,
ssg->async_write_shallow_depth);
ssg_blkcg_depth_updated(hctx);
ssg_wb_depth_updated(hctx);
}
static inline bool ssg_op_is_async_write(unsigned int op)
{
return (op & REQ_OP_MASK) == REQ_OP_WRITE && !op_is_sync(op);
}
static unsigned int ssg_async_write_shallow_depth(unsigned int op,
struct blk_mq_alloc_data *data)
{
struct ssg_data *ssg = data->q->elevator->elevator_data;
if (!ssg_op_is_async_write(op))
return 0;
if (atomic_read(&ssg->async_write_rqs) < ssg->max_async_write_rqs)
return 0;
return ssg->async_write_shallow_depth;
}
static unsigned int ssg_tgroup_shallow_depth(struct blk_mq_alloc_data *data)
{
struct ssg_data *ssg = data->q->elevator->elevator_data;
pid_t tgid = task_tgid_nr(current->group_leader);
int nr_requests = data->q->nr_requests;
int tgroup_rqs = 0;
int i;
if (unlikely(!ssg->rq_info))
return 0;
for (i = 0; i < nr_requests; i++)
if (tgid == ssg->rq_info[i].tgid)
tgroup_rqs++;
if (tgroup_rqs < ssg->max_tgroup_rqs)
return 0;
return ssg->tgroup_shallow_depth;
}
static void ssg_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
{
struct ssg_data *ssg = data->q->elevator->elevator_data;
unsigned int shallow_depth = ssg_blkcg_shallow_depth(data->q);
shallow_depth = min_not_zero(shallow_depth,
ssg_async_write_shallow_depth(op, data));
if (atomic_read(&ssg->allocated_rqs) > ssg->congestion_threshold_rqs)
shallow_depth = min_not_zero(shallow_depth,
ssg_tgroup_shallow_depth(data));
data->shallow_depth = shallow_depth;
}
static int ssg_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
struct ssg_data *ssg = hctx->queue->elevator->elevator_data;
struct blk_mq_tags *tags = hctx->sched_tags;
ssg_set_shallow_depth(ssg, tags);
sbitmap_queue_min_shallow_depth(&tags->bitmap_tags,
ssg->async_write_shallow_depth);
return 0;
}
static void ssg_exit_queue(struct elevator_queue *e)
{
struct ssg_data *ssg = e->elevator_data;
ssg_blkcg_deactivate(ssg->queue);
BUG_ON(!list_empty(&ssg->fifo_list[READ]));
BUG_ON(!list_empty(&ssg->fifo_list[WRITE]));
ssg_stat_exit(ssg);
ssg_wb_exit(ssg);
blk_sec_stat_account_exit(e);
kfree(ssg->rq_info);
kfree(ssg);
}
/*
* initialize elevator private data (ssg_data).
*/
static int ssg_init_queue(struct request_queue *q, struct elevator_type *e)
{
struct ssg_data *ssg;
struct elevator_queue *eq;
eq = elevator_alloc(q, e);
if (!eq)
return -ENOMEM;
ssg = kzalloc_node(sizeof(*ssg), GFP_KERNEL, q->node);
if (!ssg) {
kobject_put(&eq->kobj);
return -ENOMEM;
}
eq->elevator_data = ssg;
ssg->queue = q;
INIT_LIST_HEAD(&ssg->fifo_list[READ]);
INIT_LIST_HEAD(&ssg->fifo_list[WRITE]);
ssg->sort_list[READ] = RB_ROOT;
ssg->sort_list[WRITE] = RB_ROOT;
ssg->fifo_expire[READ] = read_expire;
ssg->fifo_expire[WRITE] = write_expire;
ssg->max_write_starvation = max_write_starvation;
ssg->front_merges = 1;
atomic_set(&ssg->allocated_rqs, 0);
atomic_set(&ssg->async_write_rqs, 0);
ssg->congestion_threshold_rqs =
q->nr_requests * congestion_threshold / 100U;
ssg->rq_info = kmalloc_array(q->nr_requests,
sizeof(struct ssg_request_info),
GFP_KERNEL | __GFP_ZERO);
if (ZERO_OR_NULL_PTR(ssg->rq_info))
ssg->rq_info = NULL;
spin_lock_init(&ssg->lock);
spin_lock_init(&ssg->zone_lock);
INIT_LIST_HEAD(&ssg->dispatch);
ssg_blkcg_activate(q);
q->elevator = eq;
ssg_stat_init(ssg);
blk_stat_enable_accounting(q);
blk_sec_stat_account_init(q);
ssg_wb_init(ssg);
return 0;
}
static int ssg_request_merge(struct request_queue *q, struct request **rq,
struct bio *bio)
{
struct ssg_data *ssg = q->elevator->elevator_data;
sector_t sector = bio_end_sector(bio);
struct request *__rq;
if (!ssg->front_merges)
return ELEVATOR_NO_MERGE;
__rq = elv_rb_find(&ssg->sort_list[bio_data_dir(bio)], sector);
if (__rq) {
BUG_ON(sector != blk_rq_pos(__rq));
if (elv_bio_merge_ok(__rq, bio)) {
*rq = __rq;
return ELEVATOR_FRONT_MERGE;
}
}
return ELEVATOR_NO_MERGE;
}
static bool ssg_bio_merge(struct request_queue *q, struct bio *bio,
unsigned int nr_segs)
{
struct ssg_data *ssg = q->elevator->elevator_data;
struct request *free = NULL;
bool ret;
spin_lock(&ssg->lock);
ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
spin_unlock(&ssg->lock);
if (free)
blk_mq_free_request(free);
return ret;
}
/*
* add rq to rbtree and fifo
*/
static void ssg_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
bool at_head)
{
struct request_queue *q = hctx->queue;
struct ssg_data *ssg = q->elevator->elevator_data;
const int data_dir = rq_data_dir(rq);
LIST_HEAD(free);
/*
* This may be a requeue of a write request that has locked its
* target zone. If it is the case, this releases the zone lock.
*/
blk_req_zone_write_unlock(rq);
if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
blk_mq_free_requests(&free);
return;
}
trace_block_rq_insert(rq);
if (at_head || blk_rq_is_passthrough(rq)) {
if (at_head)
list_add(&rq->queuelist, &ssg->dispatch);
else
list_add_tail(&rq->queuelist, &ssg->dispatch);
} else {
ssg_add_rq_rb(ssg, rq);
if (rq_mergeable(rq)) {
elv_rqhash_add(q, rq);
if (!q->last_merge)
q->last_merge = rq;
}
/*
* set expire time and add to fifo list
*/
rq->fifo_time = jiffies + ssg->fifo_expire[data_dir];
list_add_tail(&rq->queuelist, &ssg->fifo_list[data_dir]);
}
}
static void ssg_insert_requests(struct blk_mq_hw_ctx *hctx,
struct list_head *list, bool at_head)
{
struct request_queue *q = hctx->queue;
struct ssg_data *ssg = q->elevator->elevator_data;
spin_lock(&ssg->lock);
while (!list_empty(list)) {
struct request *rq;
rq = list_first_entry(list, struct request, queuelist);
list_del_init(&rq->queuelist);
ssg_insert_request(hctx, rq, at_head);
}
spin_unlock(&ssg->lock);
}
/*
* Nothing to do here. This is defined only to ensure that .finish_request
* method is called upon request completion.
*/
static void ssg_prepare_request(struct request *rq)
{
struct ssg_data *ssg = rq->q->elevator->elevator_data;
struct ssg_request_info *rqi;
atomic_inc(&ssg->allocated_rqs);
ssg_wb_ctrl(ssg, rq);
rqi = ssg_rq_info(ssg, rq);
if (likely(rqi)) {
rqi->tgid = task_tgid_nr(current->group_leader);
rcu_read_lock();
rqi->blkg = blkg_lookup(css_to_blkcg(curr_css()), rq->q);
ssg_blkcg_inc_rq(rqi->blkg);
rcu_read_unlock();
blk_sec_stat_account_io_prepare(rq, &rqi->pio);
}
if (ssg_op_is_async_write(rq->cmd_flags))
atomic_inc(&ssg->async_write_rqs);
}
/*
* For zoned block devices, write unlock the target zone of
* completed write requests. Do this while holding the zone lock
* spinlock so that the zone is never unlocked while ssg_fifo_request()
* or ssg_next_request() are executing. This function is called for
* all requests, whether or not these requests complete successfully.
*
* For a zoned block device, __ssg_dispatch_request() may have stopped
* dispatching requests if all the queued requests are write requests directed
* at zones that are already locked due to on-going write requests. To ensure
* write request dispatch progress in this case, mark the queue as needing a
* restart to ensure that the queue is run again after completion of the
* request and zones being unlocked.
*/
static void ssg_finish_request(struct request *rq)
{
struct request_queue *q = rq->q;
struct ssg_data *ssg = q->elevator->elevator_data;
struct ssg_request_info *rqi;
if (blk_queue_is_zoned(q)) {
unsigned long flags;
spin_lock_irqsave(&ssg->zone_lock, flags);
blk_req_zone_write_unlock(rq);
if (!list_empty(&ssg->fifo_list[WRITE]))
blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
spin_unlock_irqrestore(&ssg->zone_lock, flags);
}
if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
return;
atomic_dec(&ssg->allocated_rqs);
rqi = ssg_rq_info(ssg, rq);
if (likely(rqi)) {
rqi->tgid = 0;
ssg_blkcg_dec_rq(rqi->blkg);
rqi->blkg = NULL;
blk_sec_stat_account_io_finish(rq, &rqi->pio);
}
if (ssg_op_is_async_write(rq->cmd_flags))
atomic_dec(&ssg->async_write_rqs);
}
static bool ssg_has_work(struct blk_mq_hw_ctx *hctx)
{
struct ssg_data *ssg = hctx->queue->elevator->elevator_data;
return !list_empty_careful(&ssg->dispatch) ||
!list_empty_careful(&ssg->fifo_list[0]) ||
!list_empty_careful(&ssg->fifo_list[1]);
}
/*
* sysfs parts below
*/
static ssize_t ssg_var_show(int var, char *page)
{
return sprintf(page, "%d\n", var);
}
static void ssg_var_store(int *var, const char *page)
{
long val;
if (!kstrtol(page, 10, &val))
*var = val;
}
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
static ssize_t __FUNC(struct elevator_queue *e, char *page) \
{ \
struct ssg_data *ssg = e->elevator_data; \
int __data = __VAR; \
if (__CONV) \
__data = jiffies_to_msecs(__data); \
return ssg_var_show(__data, (page)); \
}
SHOW_FUNCTION(ssg_read_expire_show, ssg->fifo_expire[READ], 1);
SHOW_FUNCTION(ssg_write_expire_show, ssg->fifo_expire[WRITE], 1);
SHOW_FUNCTION(ssg_max_write_starvation_show, ssg->max_write_starvation, 0);
SHOW_FUNCTION(ssg_front_merges_show, ssg->front_merges, 0);
SHOW_FUNCTION(ssg_tgroup_shallow_depth_show, ssg->tgroup_shallow_depth, 0);
SHOW_FUNCTION(ssg_async_write_shallow_depth_show, ssg->async_write_shallow_depth, 0);
#undef SHOW_FUNCTION
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
{ \
struct ssg_data *ssg = e->elevator_data; \
int __data; \
ssg_var_store(&__data, (page)); \
if (__data < (MIN)) \
__data = (MIN); \
else if (__data > (MAX)) \
__data = (MAX); \
if (__CONV) \
*(__PTR) = msecs_to_jiffies(__data); \
else \
*(__PTR) = __data; \
return count; \
}
STORE_FUNCTION(ssg_read_expire_store, &ssg->fifo_expire[READ], 0, INT_MAX, 1);
STORE_FUNCTION(ssg_write_expire_store, &ssg->fifo_expire[WRITE], 0, INT_MAX, 1);
STORE_FUNCTION(ssg_max_write_starvation_store, &ssg->max_write_starvation, INT_MIN, INT_MAX, 0);
STORE_FUNCTION(ssg_front_merges_store, &ssg->front_merges, 0, 1, 0);
#undef STORE_FUNCTION
#define SSG_ATTR(name) \
__ATTR(name, 0644, ssg_##name##_show, ssg_##name##_store)
#define SSG_ATTR_RO(name) \
__ATTR(name, 0444, ssg_##name##_show, NULL)
#define SSG_STAT_ATTR_RO(name) \
__ATTR(name, 0444, ssg_stat_##name##_show, NULL)
static struct elv_fs_entry ssg_attrs[] = {
SSG_ATTR(read_expire),
SSG_ATTR(write_expire),
SSG_ATTR(max_write_starvation),
SSG_ATTR(front_merges),
SSG_ATTR_RO(tgroup_shallow_depth),
SSG_ATTR_RO(async_write_shallow_depth),
SSG_STAT_ATTR_RO(read_latency),
SSG_STAT_ATTR_RO(write_latency),
SSG_STAT_ATTR_RO(flush_latency),
SSG_STAT_ATTR_RO(discard_latency),
SSG_STAT_ATTR_RO(inflight),
SSG_STAT_ATTR_RO(rqs_info),
#if IS_ENABLED(CONFIG_MQ_IOSCHED_SSG_WB)
SSG_ATTR(wb_on_rqs),
SSG_ATTR(wb_off_rqs),
SSG_ATTR(wb_on_dirty_bytes),
SSG_ATTR(wb_off_dirty_bytes),
SSG_ATTR(wb_on_sync_write_bytes),
SSG_ATTR(wb_off_sync_write_bytes),
SSG_ATTR(wb_on_dirty_busy_written_bytes),
SSG_ATTR(wb_on_dirty_busy_msecs),
SSG_ATTR(wb_off_delay_msecs),
SSG_ATTR_RO(wb_triggered),
#endif
__ATTR_NULL
};
static struct elevator_type ssg_iosched = {
.ops = {
.insert_requests = ssg_insert_requests,
.dispatch_request = ssg_dispatch_request,
.completed_request = ssg_completed_request,
.prepare_request = ssg_prepare_request,
.finish_request = ssg_finish_request,
.next_request = elv_rb_latter_request,
.former_request = elv_rb_former_request,
.bio_merge = ssg_bio_merge,
.request_merge = ssg_request_merge,
.requests_merged = ssg_merged_requests,
.request_merged = ssg_request_merged,
.has_work = ssg_has_work,
.limit_depth = ssg_limit_depth,
.depth_updated = ssg_depth_updated,
.init_hctx = ssg_init_hctx,
.init_sched = ssg_init_queue,
.exit_sched = ssg_exit_queue,
},
.elevator_attrs = ssg_attrs,
.elevator_name = "ssg",
.elevator_alias = "ssg",
.elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
.elevator_owner = THIS_MODULE,
};
MODULE_ALIAS("ssg");
static int __init ssg_iosched_init(void)
{
int ret;
ret = elv_register(&ssg_iosched);
if (ret)
return ret;
ret = ssg_blkcg_init();
if (ret) {
elv_unregister(&ssg_iosched);
return ret;
}
return ret;
}
static void __exit ssg_iosched_exit(void)
{
ssg_blkcg_exit();
elv_unregister(&ssg_iosched);
}
module_init(ssg_iosched_init);
module_exit(ssg_iosched_exit);
MODULE_AUTHOR("Jisoo Oh");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SSG IO Scheduler");