Recent commit [1] changed branch stack data indication from
br_stack pointer to sample_flags in perf_sample_data struct.
We need to check sample_flags for PERF_SAMPLE_BRANCH_STACK
bit for valid branch stack data.
[1] a9a931e266 ("perf: Use sample_flags for branch stack")
Fixes: a9a931e266 ("perf: Use sample_flags for branch stack")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lore.kernel.org/r/20220927203259.590950-1-jolsa@kernel.org
Local testing revealed that we can trigger a use-after-free during
rhashtable lookup as follows:
| BUG: KASAN: use-after-free in memcmp lib/string.c:757
| Read of size 8 at addr ffff888107544dc0 by task perf-rhltable-n/1293
|
| CPU: 0 PID: 1293 Comm: perf-rhltable-n Not tainted 6.0.0-rc3-00014-g85260862789c #46
| Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-debian-1.16.0-4 04/01/2014
| Call Trace:
| <TASK>
| memcmp lib/string.c:757
| rhashtable_compare include/linux/rhashtable.h:577 [inline]
| __rhashtable_lookup include/linux/rhashtable.h:602 [inline]
| rhltable_lookup include/linux/rhashtable.h:688 [inline]
| task_bp_pinned kernel/events/hw_breakpoint.c:324
| toggle_bp_slot kernel/events/hw_breakpoint.c:462
| __release_bp_slot kernel/events/hw_breakpoint.c:631 [inline]
| release_bp_slot kernel/events/hw_breakpoint.c:639
| register_perf_hw_breakpoint kernel/events/hw_breakpoint.c:742
| hw_breakpoint_event_init kernel/events/hw_breakpoint.c:976
| perf_try_init_event kernel/events/core.c:11261
| perf_init_event kernel/events/core.c:11325 [inline]
| perf_event_alloc kernel/events/core.c:11619
| __do_sys_perf_event_open kernel/events/core.c:12157
| do_syscall_x64 arch/x86/entry/common.c:50 [inline]
| do_syscall_64 arch/x86/entry/common.c:80
| entry_SYSCALL_64_after_hwframe
| </TASK>
|
| Allocated by task 1292:
| perf_event_alloc kernel/events/core.c:11505
| __do_sys_perf_event_open kernel/events/core.c:12157
| do_syscall_x64 arch/x86/entry/common.c:50 [inline]
| do_syscall_64 arch/x86/entry/common.c:80
| entry_SYSCALL_64_after_hwframe
|
| Freed by task 1292:
| perf_event_alloc kernel/events/core.c:11716
| __do_sys_perf_event_open kernel/events/core.c:12157
| do_syscall_x64 arch/x86/entry/common.c:50 [inline]
| do_syscall_64 arch/x86/entry/common.c:80
| entry_SYSCALL_64_after_hwframe
|
| The buggy address belongs to the object at ffff888107544c00
| which belongs to the cache perf_event of size 1352
| The buggy address is located 448 bytes inside of
| 1352-byte region [ffff888107544c00, ffff888107545148)
This happens because the first perf_event_open() managed to reserve a HW
breakpoint slot, however, later fails for other reasons and returns. The
second perf_event_open() runs concurrently, and during rhltable_lookup()
looks up an entry which is being freed: since rhltable_lookup() may run
concurrently (under the RCU read lock) with rhltable_remove(), we may
end up with a stale entry, for which memory may also have already been
freed when being accessed.
To fix, only free the failed perf_event after an RCU grace period. This
allows subsystems that store references to an event to always access it
concurrently under the RCU read lock, even if initialization will fail.
Given failure is unlikely and a slow-path, turning the immediate free
into a call_rcu()-wrapped free does not affect performance elsewhere.
Fixes: 0370dc314d ("perf/hw_breakpoint: Optimize list of per-task breakpoints")
Reported-by: syzkaller <syzkaller@googlegroups.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220927172025.1636995-1-elver@google.com
Use the new sample_flags to indicate whether the raw data field is
filled by the PMU driver. Although it could check with the NULL,
follow the same rule with other fields.
Remove the raw field from the perf_sample_data_init() to minimize
the number of cache lines touched.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220921220032.2858517-2-namhyung@kernel.org
Use the new sample_flags to indicate whether the addr field is filled by
the PMU driver. As most PMU drivers pass 0, it can set the flag only if
it has a non-zero value. And use 0 in perf_sample_output() if it's not
filled already.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220921220032.2858517-1-namhyung@kernel.org
* Add Waiman Long as a cpuset maintainer.
* cgroup_get_from_id() could be fed a kernfs ID which doesn't point to a
cgroup directory but a knob file and then crash. Error out if the lookup
kernfs_node isn't a directory.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCYy5+yw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGVO/AP9yyLyH9UjRm8HOyXi0mENzVzzPUeO7x3b0lQfT
NxyOPwD+LSF+bycem1vz7YDL60DmNMHrKq+/V24UNmHm3gbr2Ag=
=kWKv
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.0-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
- Add Waiman Long as a cpuset maintainer
- cgroup_get_from_id() could be fed a kernfs ID which doesn't point to
a cgroup directory but a knob file and then crash. Error out if the
lookup kernfs_node isn't a directory.
* tag 'cgroup-for-6.0-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: cgroup_get_from_id() must check the looked-up kn is a directory
cpuset: Add Waiman Long as a cpuset maintainer
Just one patch to improve flush lockdep coverage.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCYy59mA4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGQbdAP9MZIYCsJkmHshVbNcCdsUIzCvymQen7y/mCFYN
4EMArAEApCgZanJ/80Kt468IpCobaPyYhqXwDwxSVEzpYiVscgY=
=DK3F
-----END PGP SIGNATURE-----
Merge tag 'wq-for-6.0-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fix from Tejun Heo:
"Just one patch to improve flush lockdep coverage"
* tag 'wq-for-6.0-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: don't skip lockdep work dependency in cancel_work_sync()
cgroup has to be one kernfs dir, otherwise kernel panic is caused,
especially cgroup id is provide from userspace.
Reported-by: Marco Patalano <mpatalan@redhat.com>
Fixes: 6b658c4863 ("scsi: cgroup: Add cgroup_get_from_id()")
Cc: Muneendra <muneendra.kumar@broadcom.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Cc: stable@vger.kernel.org # v5.14+
Signed-off-by: Tejun Heo <tj@kernel.org>
Coccinelle reports a warning:
WARNING: use scnprintf or sprintf
This LWN article explains the rationale for this change:
https: //lwn.net/Articles/69419/
Ie. snprintf() returns what *would* be the resulting length,
while scnprintf() returns the actual length.
Adding to that, there has also been some slow migration from snprintf to scnprintf,
here's the shift in usage in the past 3.5 years, in all fs/ files:
v5.0 v6.0-rc6
--------------------------------------
snprintf() uses: 63 213
scnprintf() uses: 374 186
No intended change in behavior.
[ mingo: Improved the changelog & reviewed the usage sites. ]
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Remove the recent "unshare time namespace on vfork+exec" feature (Andrei Vagin)
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmMoxpIWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpd/D/9V7iLUZoquMvXFonv//sRH21P+
u7vH03q0X4lSov73jdjizq8znZl9RVO14IYi+6lQE8VHyOjzjBoTALRPnirNCyGa
Ia8P+LPaOHDTDQmGqt+9xmPKp3z0qwrpWWyTrFHLo7GRzWtI0QjQsSlgUTIz7jCw
dSwLRWN6n7d3hzNzFWt9VUOOlzpip8NTcnAbC9YA5dPFLO85+wZ4ZpMYYfFJMcQj
N/Zm63lrqAU0wy7EhonkKJQDjgRP/zYUs6VJMejHqYl951SrZJ+DgXEGaAwR14Sz
IZAUhSM5Fl8alhkrcmlkiy9A5P014iVRR6AaSyeT2616fac97wY1EWHxvBMqzNsB
AJJqjPHoN+mc8cqt9lMyIhbmS8WkTuyTHziEcFyyTVsNYGYN6x9hVVZalqPrl8o3
Y3zC6MfRK33JNVB2GZVUzsf5EZC3mjz9VJKKmLwYmG4X7/JOvIVCiW123b060T7z
b49PzI+0rTG8SHTk1I/T8NpWuvLRTCglzZK06q971uyT80xPoGD/HmSpmm+86dHs
k3WV2qBoz31Eaoewa3NJqn6pBxQLy9WAZP6rJb3aQSFwDRCuvKO4CUpHAXILt5U+
SoarR5445zVzY3NYHaf/3BRsEnCQS06U67ma0lAmMWk4J3ehFOY0DrRqtLJ02iwd
sKJD/KnKC+IEcLjrAA==
=yFGx
-----END PGP SIGNATURE-----
Merge tag 'execve-v6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull execve reverts from Kees Cook:
"The recent work to support time namespace unsharing turns out to have
some undesirable corner cases, so rather than allowing the API to stay
exposed for another release, it'd be best to remove it ASAP, with the
replacement getting another cycle of testing. Nothing is known to use
this yet, so no userspace breakage is expected.
For more details, see:
https://lore.kernel.org/lkml/ed418e43ad28b8688cfea2b7c90fce1c@ispras.ru
Summary:
- Remove the recent 'unshare time namespace on vfork+exec' feature
(Andrei Vagin)"
* tag 'execve-v6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
Revert "fs/exec: allow to unshare a time namespace on vfork+exec"
Revert "selftests/timens: add a test for vfork+exit"
This reverts commit 133e2d3e81.
Alexey pointed out a few undesirable side effects of the reverted change.
First, it doesn't take into account that CLONE_VFORK can be used with
CLONE_THREAD. Second, a child process doesn't enter a target time name-space,
if its parent dies before the child calls exec. It happens because the parent
clears vfork_done.
Eric W. Biederman suggests installing a time namespace as a task gets a new mm.
It includes all new processes cloned without CLONE_VM and all tasks that call
exec(). This is an user API change, but we think there aren't users that depend
on the old behavior.
It is too late to make such changes in this release, so let's roll back
this patch and introduce the right one in the next release.
Cc: Alexey Izbyshev <izbyshev@ispras.ru>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220913102551.1121611-3-avagin@google.com
If the perf_event has PERF_SAMPLE_CALLCHAIN, BPF can use it for stack trace.
The problematic cases like PEBS and IBS already handled in the PMU driver and
they filled the callchain info in the sample data. For others, we can call
perf_callchain() before the BPF handler.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220908214104.3851807-2-namhyung@kernel.org
So that it can call perf_callchain() only if needed. Historically it used
__PERF_SAMPLE_CALLCHAIN_EARLY but we can do that with sample_flags in the
struct perf_sample_data.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220908214104.3851807-1-namhyung@kernel.org
- revert a panic on swiotlb initialization failure (Yu Zhao)
- fix the lookup for partial syncs in dma-debug (Robin Murphy)
- fix a shift overflow in swiotlb (Chao Gao)
- fix a comment typo in swiotlb (Chao Gao)
- mark a function static now that all abusers are gone
(Christoph Hellwig)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAmMcNIsLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYNUXw/+JP3zHQ7yGEq4Kbzzb9v7JG4A325YwSH29IaQLZ+Q
Uz8ow81BcHOQPXYRM8wAEsrGXo9eYOhM6OxvAH2UO9buzzqACAOG6eYn4YfXtqeM
nmdK9+9fDXHyetjEPcZvShptqs2PC/e7REXMO3lIdDkVVvlv5vpzB/JgL0fNCTza
fwWHTQpxgNAShGr8yomafKiDKCtgHbCdzqqeU7zcvOLcTtQu0JOhhtQ1KUy2TOr8
1W1tVg1cPV1aEOId3FQsliL9hGx44FBaaDev5dFe/weFFxj4JgPhMljejM5tefyE
V/xvXFHj/DkuLbODg72hq+x6b+DjW5moCAwdUQ038zYIGVdKL+MFyqr5FzNJdXap
U3QJTgbXv0gPtCZYq1SRaKYVikcZGGTNTCH4dDZQJvZGjRjeJIQXClf3S+DlqgXm
UnM4jn6aRmQ8w70pgF0qVh33L4siVpQEK0KFIQ+qsjywfVplhKPwYGhkySW13Hye
S2objt5n8VO/PS5wVh6ICtRAcMB2WjpT4t9fMOYXVD3hJRXCFhUKPIsK+BINw3IE
kck8LtABdcKkT95ES5Y0jQvAyq07JtXba+mjDLdEXp7KHepprQSXb+BZyuWMSQPy
IXfiuzFX8s1aZicnp0MLXx65xeA7Q1gkOxiyZ0dR/IQFjZ4fGn6X1ixpHiKzYb53
/6w=
=n7sX
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-6.0-2022-09-10' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping fixes from Christoph Hellwig:
- revert a panic on swiotlb initialization failure (Yu Zhao)
- fix the lookup for partial syncs in dma-debug (Robin Murphy)
- fix a shift overflow in swiotlb (Chao Gao)
- fix a comment typo in swiotlb (Chao Gao)
- mark a function static now that all abusers are gone (Christoph
Hellwig)
* tag 'dma-mapping-6.0-2022-09-10' of git://git.infradead.org/users/hch/dma-mapping:
dma-mapping: mark dma_supported static
swiotlb: fix a typo
swiotlb: avoid potential left shift overflow
dma-debug: improve search for partial syncs
Revert "swiotlb: panic if nslabs is too small"
Here are some small driver core and debugfs fixes for 6.0-rc5.
Included in here are:
- multiple attempts to get the arch_topology code to work properly on
non-cluster SMT systems. First attempt caused build breakages in
linux-next and 0-day, second try worked.
- debugfs fixes for a long-suffering memory leak. The pattern of
debugfs_remove(debugfs_lookup(...)) turns out to leak dentries, so
add debugfs_lookup_and_remove() to fix this problem. Also fix up
the scheduler debug code that highlighted this problem. Fixes for
other subsystems will be trickling in over the next few months for
this same issue once the debugfs function is merged.
All of these have been in linux-next since Wednesday with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCYxuERw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ylPqwCgjU6xlN2y/80HH+66k+yyzlxocE8AoLPgnGrA
dJZIGWFXExzO26tvMT52
=zGHA
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core fixes from Greg KH:
"Here are some small driver core and debugfs fixes for 6.0-rc5.
Included in here are:
- multiple attempts to get the arch_topology code to work properly on
non-cluster SMT systems. First attempt caused build breakages in
linux-next and 0-day, second try worked.
- debugfs fixes for a long-suffering memory leak. The pattern of
debugfs_remove(debugfs_lookup(...)) turns out to leak dentries, so
add debugfs_lookup_and_remove() to fix this problem. Also fix up
the scheduler debug code that highlighted this problem. Fixes for
other subsystems will be trickling in over the next few months for
this same issue once the debugfs function is merged.
All of these have been in linux-next since Wednesday with no reported
problems"
* tag 'driver-core-6.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
arch_topology: Make cluster topology span at least SMT CPUs
sched/debug: fix dentry leak in update_sched_domain_debugfs
debugfs: add debugfs_lookup_and_remove()
driver core: fix driver_set_override() issue with empty strings
Revert "arch_topology: Make cluster topology span at least SMT CPUs"
arch_topology: Make cluster topology span at least SMT CPUs
Many bug fixes in several drivers:
- Fix misuse of the DMA API in rtrs
- Several irdma issues: hung task due to SQ flushing, incorrect capability
reporting to userspace, improper error handling for MW corners, touching
an uninitialized SGL for during invalidation.
- hns was using the wrong page size limits for the HW, an incorrect
calculation of wqe_shift causing WQE corruption, and mis computed
a timer id.
- Fix a crash in SRP triggered by blktests
- Fix compiler errors by calling virt_to_page() with the proper type in
siw
- Userspace triggerable deadlock in ODP
- mlx5 could use the wrong profile due to some driver loading races,
counters were not working in some device configurations, and a crash on
error unwind.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRRRCHOFoQz/8F5bUaFwuHvBreFYQUCYxtj4QAKCRCFwuHvBreF
YQNdAQDOAoXv3PCZikmyu4zmjzVdeUUXEig5RU3MgFdCimo99gEA8t+2/pHmnSTB
vn7cxuKMpJydAmLVFJPZxaOEuaBdegQ=
=/eYF
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull rdma fixes from Jason Gunthorpe:
"Many bug fixes in several drivers:
- Fix misuse of the DMA API in rtrs
- Several irdma issues: hung task due to SQ flushing, incorrect
capability reporting to userspace, improper error handling for MW
corners, touching an uninitialized SGL for during invalidation.
- hns was using the wrong page size limits for the HW, an incorrect
calculation of wqe_shift causing WQE corruption, and mis computed a
timer id.
- Fix a crash in SRP triggered by blktests
- Fix compiler errors by calling virt_to_page() with the proper type
in siw
- Userspace triggerable deadlock in ODP
- mlx5 could use the wrong profile due to some driver loading races,
counters were not working in some device configurations, and a
crash on error unwind"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma:
RDMA/irdma: Report RNR NAK generation in device caps
RDMA/irdma: Use s/g array in post send only when its valid
RDMA/irdma: Return correct WC error for bind operation failure
RDMA/irdma: Return error on MR deregister CQP failure
RDMA/irdma: Report the correct max cqes from query device
MAINTAINERS: Update maintainers of HiSilicon RoCE
RDMA/mlx5: Fix UMR cleanup on error flow of driver init
RDMA/mlx5: Set local port to one when accessing counters
RDMA/mlx5: Rely on RoCE fw cap instead of devlink when setting profile
IB/core: Fix a nested dead lock as part of ODP flow
RDMA/siw: Pass a pointer to virt_to_page()
RDMA/srp: Set scmnd->result only when scmnd is not NULL
RDMA/hns: Remove the num_qpc_timer variable
RDMA/hns: Fix wrong fixed value of qp->rq.wqe_shift
RDMA/hns: Fix supported page size
RDMA/cma: Fix arguments order in net device validation
RDMA/irdma: Fix drain SQ hang with no completion
RDMA/rtrs-srv: Pass the correct number of entries for dma mapped SGL
RDMA/rtrs-clt: Use the right sg_cnt after ib_dma_map_sg
While auditing 6b959ba22d ("perf/core: Fix reentry problem in
perf_output_read_group()") a few spots were found that wanted
assertions.
Notable for_each_sibling_event() relies on exclusion from
modification. This would normally be holding either ctx->lock or
ctx->mutex, however due to how things are constructed disabling IRQs
is a valid and sufficient substitute for ctx->lock.
Another possible site to add assertions would be the various
pmu::{add,del,read,..}() methods, but that's not trivially expressable
in C -- the best option is wrappers, but those are easy enough to
forget.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Besides the branch type filtering requests, 'event.attr.branch_sample_type'
also contains various flags indicating which additional information should
be captured, along with the base branch record. These flags help configure
the underlying hardware, and capture the branch records appropriately when
required e.g after PMU interrupt. But first, this moves an existing helper
perf_sample_save_hw_index() into the header before adding some more helpers
for other branch sample filter flags.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220906084414.396220-1-anshuman.khandual@arm.com
The second operand passed to slot_addr() is declared as int or unsigned int
in all call sites. The left-shift to get the offset of a slot can overflow
if swiotlb size is larger than 4G.
Convert the macro to an inline function and declare the second argument as
phys_addr_t to avoid the potential overflow.
Fixes: 26a7e09478 ("swiotlb: refactor swiotlb_tbl_map_single")
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
When bucket_find_contains() tries to find the original entry for a
partial sync, it manages to constrain its search in a way that is both
too restrictive and not restrictive enough. A driver which only uses
single mappings rather than scatterlists might not set max_seg_size, but
could still technically perform a partial sync at an offset of more than
64KB into a sufficiently large mapping, so we could stop searching too
early before reaching a legitimate entry. Conversely, if no valid entry
is present and max_range is large enough, we can pointlessly search
buckets that we've already searched, or that represent an impossible
wrapping around the bottom of the address space. At worst, the
(legitimate) case of max_seg_size == UINT_MAX can make the loop
infinite.
Replace the fragile and frankly hard-to-follow "range" logic with a
simple counted loop for the number of possible hash buckets below the
given address.
Reported-by: Yunfei Wang <yf.wang@mediatek.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Since the check_user_trigger() is called outside of RCU
read lock, this list_for_each_entry_rcu() caused a suspicious
RCU usage warning.
# echo hist:keys=pid > events/sched/sched_stat_runtime/trigger
# cat events/sched/sched_stat_runtime/trigger
[ 43.167032]
[ 43.167418] =============================
[ 43.167992] WARNING: suspicious RCU usage
[ 43.168567] 5.19.0-rc5-00029-g19ebe4651abf #59 Not tainted
[ 43.169283] -----------------------------
[ 43.169863] kernel/trace/trace_events_trigger.c:145 RCU-list traversed in non-reader section!!
...
However, this file->triggers list is safe when it is accessed
under event_mutex is held.
To fix this warning, adds a lockdep_is_held check to the
list_for_each_entry_rcu().
Link: https://lkml.kernel.org/r/166226474977.223837.1992182913048377113.stgit@devnote2
Cc: stable@vger.kernel.org
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Currently, The arguments passing to lockdep_hardirqs_{on,off} was fixed
in CALLER_ADDR0.
The function trace_hardirqs_on_caller should have been intended to use
caller_addr to represent the address that caller wants to be traced.
For example, lockdep log in riscv showing the last {enabled,disabled} at
__trace_hardirqs_{on,off} all the time(if called by):
[ 57.853175] hardirqs last enabled at (2519): __trace_hardirqs_on+0xc/0x14
[ 57.853848] hardirqs last disabled at (2520): __trace_hardirqs_off+0xc/0x14
After use trace_hardirqs_xx_caller, we can get more effective information:
[ 53.781428] hardirqs last enabled at (2595): restore_all+0xe/0x66
[ 53.782185] hardirqs last disabled at (2596): ret_from_exception+0xa/0x10
Link: https://lkml.kernel.org/r/20220901104515.135162-2-zouyipeng@huawei.com
Cc: stable@vger.kernel.org
Fixes: c3bc8fd637 ("tracing: Centralize preemptirq tracepoints and unify their usage")
Signed-off-by: Yipeng Zou <zouyipeng@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Commit 2852ca7fba ("panic: Taint kernel if tests are run")
introduced a new taint type, TAINT_TEST, to signal that an
in-kernel test module has been loaded.
TAINT_TEST taint type defaults into a 'bad_taint' list for
kernel tracing and blocks the creation of trace events. This
causes a problem for CXL testing where loading the cxl_test
module makes all CXL modules out-of-tree, blocking any trace
events.
Trace events are in development for CXL at the moment and this
issue was found in test with v6.0-rc1.
Link: https://lkml.kernel.org/r/20220829171048.263065-1-alison.schofield@intel.com
Fixes: 2852ca7fba ("panic: Taint kernel if tests are run")
Reported-by: Ira Weiny <ira.weiny@intel.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Gow <davidgow@google.com>
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Use the new sample_flags to indicate whether the txn field is filled by
the PMU driver.
Remove the txn field from the perf_sample_data_init() to minimize the
number of cache lines touched.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-7-kan.liang@linux.intel.com
Use the new sample_flags to indicate whether the data_src field is
filled by the PMU driver.
Remove the data_src field from the perf_sample_data_init() to minimize
the number of cache lines touched.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-6-kan.liang@linux.intel.com
Use the new sample_flags to indicate whether the weight field is filled
by the PMU driver.
Remove the weight field from the perf_sample_data_init() to minimize the
number of cache lines touched.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-5-kan.liang@linux.intel.com
Use the new sample_flags to indicate whether the branch stack is filled
by the PMU driver.
Remove the br_stack from the perf_sample_data_init() to minimize the number
of cache lines touched.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-4-kan.liang@linux.intel.com
On some platforms, some data e.g., timestamps, can be retrieved from
the PMU driver. Usually, the data from the PMU driver is more accurate.
The current perf kernel should output the PMU-filled sample data if
it's available.
To check the availability of the PMU-filled sample data, the current
perf kernel initializes the related fields in the
perf_sample_data_init(). When outputting a sample, the perf checks
whether the field is updated by the PMU driver. If yes, the updated
value will be output. If not, the perf uses an SW way to calculate the
value or just outputs the initialized value if an SW way is unavailable
either.
With more and more data being provided by the PMU driver, more fields
has to be initialized in the perf_sample_data_init(). That will
increase the number of cache lines touched in perf_sample_data_init()
and be harmful to the performance.
Add new "sample_flags" to indicate the PMU-filled sample data. The PMU
driver should set the corresponding PERF_SAMPLE_ flag when the field is
updated. The initialization of the corresponding field is not required
anymore. The following patches will make use of it and remove the
corresponding fields from the perf_sample_data_init(), which will
further minimize the number of cache lines touched.
Only clear the sample flags that have already been done by the PMU
driver in the perf_prepare_sample() for the PERF_RECORD_SAMPLE. For the
other PERF_RECORD_ event type, the sample data is not available.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-2-kan.liang@linux.intel.com
Fix a nested dead lock as part of ODP flow by using mmput_async().
From the below call trace [1] can see that calling mmput() once we have
the umem_odp->umem_mutex locked as required by
ib_umem_odp_map_dma_and_lock() might trigger in the same task the
exit_mmap()->__mmu_notifier_release()->mlx5_ib_invalidate_range() which
may dead lock when trying to lock the same mutex.
Moving to use mmput_async() will solve the problem as the above
exit_mmap() flow will be called in other task and will be executed once
the lock will be available.
[1]
[64843.077665] task:kworker/u133:2 state:D stack: 0 pid:80906 ppid:
2 flags:0x00004000
[64843.077672] Workqueue: mlx5_ib_page_fault mlx5_ib_eqe_pf_action [mlx5_ib]
[64843.077719] Call Trace:
[64843.077722] <TASK>
[64843.077724] __schedule+0x23d/0x590
[64843.077729] schedule+0x4e/0xb0
[64843.077735] schedule_preempt_disabled+0xe/0x10
[64843.077740] __mutex_lock.constprop.0+0x263/0x490
[64843.077747] __mutex_lock_slowpath+0x13/0x20
[64843.077752] mutex_lock+0x34/0x40
[64843.077758] mlx5_ib_invalidate_range+0x48/0x270 [mlx5_ib]
[64843.077808] __mmu_notifier_release+0x1a4/0x200
[64843.077816] exit_mmap+0x1bc/0x200
[64843.077822] ? walk_page_range+0x9c/0x120
[64843.077828] ? __cond_resched+0x1a/0x50
[64843.077833] ? mutex_lock+0x13/0x40
[64843.077839] ? uprobe_clear_state+0xac/0x120
[64843.077860] mmput+0x5f/0x140
[64843.077867] ib_umem_odp_map_dma_and_lock+0x21b/0x580 [ib_core]
[64843.077931] pagefault_real_mr+0x9a/0x140 [mlx5_ib]
[64843.077962] pagefault_mr+0xb4/0x550 [mlx5_ib]
[64843.077992] pagefault_single_data_segment.constprop.0+0x2ac/0x560
[mlx5_ib]
[64843.078022] mlx5_ib_eqe_pf_action+0x528/0x780 [mlx5_ib]
[64843.078051] process_one_work+0x22b/0x3d0
[64843.078059] worker_thread+0x53/0x410
[64843.078065] ? process_one_work+0x3d0/0x3d0
[64843.078073] kthread+0x12a/0x150
[64843.078079] ? set_kthread_struct+0x50/0x50
[64843.078085] ret_from_fork+0x22/0x30
[64843.078093] </TASK>
Fixes: 36f30e486d ("IB/core: Improve ODP to use hmm_range_fault()")
Reviewed-by: Maor Gottlieb <maorg@nvidia.com>
Signed-off-by: Yishai Hadas <yishaih@nvidia.com>
Link: https://lore.kernel.org/r/74d93541ea533ef7daec6f126deb1072500aeb16.1661251841.git.leonro@nvidia.com
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Kuyo reports that the pattern of using debugfs_remove(debugfs_lookup())
leaks a dentry and with a hotplug stress test, the machine eventually
runs out of memory.
Fix this up by using the newly created debugfs_lookup_and_remove() call
instead which properly handles the dentry reference counting logic.
Cc: Major Chen <major.chen@samsung.com>
Cc: stable <stable@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Reported-by: Kuyo Chang <kuyo.chang@mediatek.com>
Tested-by: Kuyo Chang <kuyo.chang@mediatek.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220902123107.109274-2-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We can still see that a majority of the time is spent hashing task pointers:
...
16.98% [kernel] [k] rhashtable_jhash2
...
Doing the bookkeeping in toggle_bp_slots() is currently O(#cpus),
calling task_bp_pinned() for each CPU, even if task_bp_pinned() is
CPU-independent. The reason for this is to update the per-CPU
'tsk_pinned' histogram.
To optimize the CPU-independent case to O(1), keep a separate
CPU-independent 'tsk_pinned_all' histogram.
The major source of complexity are transitions between "all
CPU-independent task breakpoints" and "mixed CPU-independent and
CPU-dependent task breakpoints". The code comments list all cases that
require handling.
After this optimization:
| $> perf bench -r 100 breakpoint thread -b 4 -p 128 -t 512
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 100 threads with 4 breakpoints and 128 parallelism
| Total time: 1.758 [sec]
|
| 34.336621 usecs/op
| 4395.087500 usecs/op/cpu
38.08% [kernel] [k] queued_spin_lock_slowpath
10.81% [kernel] [k] smp_cfm_core_cond
3.01% [kernel] [k] update_sg_lb_stats
2.58% [kernel] [k] osq_lock
2.57% [kernel] [k] llist_reverse_order
1.45% [kernel] [k] find_next_bit
1.21% [kernel] [k] flush_tlb_func_common
1.01% [kernel] [k] arch_install_hw_breakpoint
Showing that the time spent hashing keys has become insignificant.
With the given benchmark parameters, that's an improvement of 12%
compared with the old O(#cpus) version.
And finally, using the less aggressive parameters from the preceding
changes, we now observe:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.292187 usecs/op
| 2258.700000 usecs/op/cpu
Which is an improvement of 12% compared to without the histogram
optimizations (baseline is 40 usecs/op). This is now on par with the
theoretical ideal (constraints disabled), and only 12% slower than no
breakpoints at all.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-15-elver@google.com
Running the perf benchmark with (note: more aggressive parameters vs.
preceding changes, but same 256 CPUs host):
| $> perf bench -r 100 breakpoint thread -b 4 -p 128 -t 512
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 100 threads with 4 breakpoints and 128 parallelism
| Total time: 1.989 [sec]
|
| 38.854160 usecs/op
| 4973.332500 usecs/op/cpu
20.43% [kernel] [k] queued_spin_lock_slowpath
18.75% [kernel] [k] osq_lock
16.98% [kernel] [k] rhashtable_jhash2
8.34% [kernel] [k] task_bp_pinned
4.23% [kernel] [k] smp_cfm_core_cond
3.65% [kernel] [k] bcmp
2.83% [kernel] [k] toggle_bp_slot
1.87% [kernel] [k] find_next_bit
1.49% [kernel] [k] __reserve_bp_slot
We can see that a majority of the time is now spent hashing task
pointers to index into task_bps_ht in task_bp_pinned().
Obtaining the max_bp_pinned_slots() for CPU-independent task targets
currently is O(#cpus), and calls task_bp_pinned() for each CPU, even if
the result of task_bp_pinned() is CPU-independent.
The loop in max_bp_pinned_slots() wants to compute the maximum slots
across all CPUs. If task_bp_pinned() is CPU-independent, we can do so by
obtaining the max slots across all CPUs and adding task_bp_pinned().
To do so in O(1), use a bp_slots_histogram for CPU-pinned slots.
After this optimization:
| $> perf bench -r 100 breakpoint thread -b 4 -p 128 -t 512
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 100 threads with 4 breakpoints and 128 parallelism
| Total time: 1.930 [sec]
|
| 37.697832 usecs/op
| 4825.322500 usecs/op/cpu
19.13% [kernel] [k] queued_spin_lock_slowpath
18.21% [kernel] [k] rhashtable_jhash2
15.46% [kernel] [k] osq_lock
6.27% [kernel] [k] toggle_bp_slot
5.91% [kernel] [k] task_bp_pinned
5.05% [kernel] [k] smp_cfm_core_cond
1.78% [kernel] [k] update_sg_lb_stats
1.36% [kernel] [k] llist_reverse_order
1.34% [kernel] [k] find_next_bit
1.19% [kernel] [k] bcmp
Suggesting that time spent in task_bp_pinned() has been reduced.
However, we're still hashing too much, which will be addressed in the
subsequent change.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-14-elver@google.com
Factor out the existing `atomic_t count[N]` into its own struct called
'bp_slots_histogram', to generalize and make its intent clearer in
preparation of reusing elsewhere. The basic idea of bucketing "total
uses of N slots" resembles a histogram, so calling it such seems most
intuitive.
No functional change.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-13-elver@google.com
While optimizing task_bp_pinned()'s runtime complexity to O(1) on
average helps reduce time spent in the critical section, we still suffer
due to serializing everything via 'nr_bp_mutex'. Indeed, a profile shows
that now contention is the biggest issue:
95.93% [kernel] [k] osq_lock
0.70% [kernel] [k] mutex_spin_on_owner
0.22% [kernel] [k] smp_cfm_core_cond
0.18% [kernel] [k] task_bp_pinned
0.18% [kernel] [k] rhashtable_jhash2
0.15% [kernel] [k] queued_spin_lock_slowpath
when running the breakpoint benchmark with (system with 256 CPUs):
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.207 [sec]
|
| 108.267188 usecs/op
| 6929.100000 usecs/op/cpu
The main concern for synchronizing the breakpoint constraints data is
that a consistent snapshot of the per-CPU and per-task data is observed.
The access pattern is as follows:
1. If the target is a task: the task's pinned breakpoints are counted,
checked for space, and then appended to; only bp_cpuinfo::cpu_pinned
is used to check for conflicts with CPU-only breakpoints;
bp_cpuinfo::tsk_pinned are incremented/decremented, but otherwise
unused.
2. If the target is a CPU: bp_cpuinfo::cpu_pinned are counted, along
with bp_cpuinfo::tsk_pinned; after a successful check, cpu_pinned is
incremented. No per-task breakpoints are checked.
Since rhltable safely synchronizes insertions/deletions, we can allow
concurrency as follows:
1. If the target is a task: independent tasks may update and check the
constraints concurrently, but same-task target calls need to be
serialized; since bp_cpuinfo::tsk_pinned is only updated, but not
checked, these modifications can happen concurrently by switching
tsk_pinned to atomic_t.
2. If the target is a CPU: access to the per-CPU constraints needs to
be serialized with other CPU-target and task-target callers (to
stabilize the bp_cpuinfo::tsk_pinned snapshot).
We can allow the above concurrency by introducing a per-CPU constraints
data reader-writer lock (bp_cpuinfo_sem), and per-task mutexes (reuses
task_struct::perf_event_mutex):
1. If the target is a task: acquires perf_event_mutex, and acquires
bp_cpuinfo_sem as a reader. The choice of percpu-rwsem minimizes
contention in the presence of many read-lock but few write-lock
acquisitions: we assume many orders of magnitude more task target
breakpoints creations/destructions than CPU target breakpoints.
2. If the target is a CPU: acquires bp_cpuinfo_sem as a writer.
With these changes, contention with thousands of tasks is reduced to the
point where waiting on locking no longer dominates the profile:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.077 [sec]
|
| 40.201563 usecs/op
| 2572.900000 usecs/op/cpu
21.54% [kernel] [k] task_bp_pinned
20.18% [kernel] [k] rhashtable_jhash2
6.81% [kernel] [k] toggle_bp_slot
5.47% [kernel] [k] queued_spin_lock_slowpath
3.75% [kernel] [k] smp_cfm_core_cond
3.48% [kernel] [k] bcmp
On this particular setup that's a speedup of 2.7x.
We're also getting closer to the theoretical ideal performance through
optimizations in hw_breakpoint.c -- constraints accounting disabled:
| perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.067 [sec]
|
| 35.286458 usecs/op
| 2258.333333 usecs/op/cpu
Which means the current implementation is ~12% slower than the
theoretical ideal.
For reference, performance without any breakpoints:
| $> bench -r 30 breakpoint thread -b 0 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 0 breakpoints and 64 parallelism
| Total time: 0.060 [sec]
|
| 31.365625 usecs/op
| 2007.400000 usecs/op/cpu
On a system with 256 CPUs, the theoretical ideal is only ~12% slower
than no breakpoints at all; the current implementation is ~28% slower.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-12-elver@google.com
Flexible breakpoints have never been implemented, with
bp_cpuinfo::flexible always being 0. Unfortunately, they still occupy 4
bytes in each bp_cpuinfo and bp_busy_slots, as well as computing the max
flexible count in fetch_bp_busy_slots().
This again causes suboptimal code generation, when we always know that
`!!slots.flexible` will be 0.
Just get rid of the flexible "placeholder" and remove all real code
related to it. Make a note in the comment related to the constraints
algorithm but don't remove them from the algorithm, so that if in future
flexible breakpoints need supporting, it should be trivial to revive
them (along with reverting this change).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-9-elver@google.com
Due to being a __weak function, hw_breakpoint_weight() will cause the
compiler to always emit a call to it. This generates unnecessarily bad
code (register spills etc.) for no good reason; in fact it appears in
profiles of `perf bench -r 100 breakpoint thread -b 4 -p 128 -t 512`:
...
0.70% [kernel] [k] hw_breakpoint_weight
...
While a small percentage, no architecture defines its own
hw_breakpoint_weight() nor are there users outside hw_breakpoint.c,
which makes the fact it is currently __weak a poor choice.
Change hw_breakpoint_weight()'s definition to follow a similar protocol
to hw_breakpoint_slots(), such that if <asm/hw_breakpoint.h> defines
hw_breakpoint_weight(), we'll use it instead.
The result is that it is inlined and no longer shows up in profiles.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-8-elver@google.com
Optimize internal hw_breakpoint state if the architecture's number of
breakpoint slots is constant. This avoids several kmalloc() calls and
potentially unnecessary failures if the allocations fail, as well as
subtly improves code generation and cache locality.
The protocol is that if an architecture defines hw_breakpoint_slots via
the preprocessor, it must be constant and the same for all types.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-7-elver@google.com
Mark read-only data after initialization as __ro_after_init.
While we are here, turn 'constraints_initialized' into a bool.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-6-elver@google.com
On a machine with 256 CPUs, running the recently added perf breakpoint
benchmark results in:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 236.418 [sec]
|
| 123134.794271 usecs/op
| 7880626.833333 usecs/op/cpu
The benchmark tests inherited breakpoint perf events across many
threads.
Looking at a perf profile, we can see that the majority of the time is
spent in various hw_breakpoint.c functions, which execute within the
'nr_bp_mutex' critical sections which then results in contention on that
mutex as well:
37.27% [kernel] [k] osq_lock
34.92% [kernel] [k] mutex_spin_on_owner
12.15% [kernel] [k] toggle_bp_slot
11.90% [kernel] [k] __reserve_bp_slot
The culprit here is task_bp_pinned(), which has a runtime complexity of
O(#tasks) due to storing all task breakpoints in the same list and
iterating through that list looking for a matching task. Clearly, this
does not scale to thousands of tasks.
Instead, make use of the "rhashtable" variant "rhltable" which stores
multiple items with the same key in a list. This results in average
runtime complexity of O(1) for task_bp_pinned().
With the optimization, the benchmark shows:
| $> perf bench -r 30 breakpoint thread -b 4 -p 64 -t 64
| # Running 'breakpoint/thread' benchmark:
| # Created/joined 30 threads with 4 breakpoints and 64 parallelism
| Total time: 0.208 [sec]
|
| 108.422396 usecs/op
| 6939.033333 usecs/op/cpu
On this particular setup that's a speedup of ~1135x.
While one option would be to make task_struct a breakpoint list node,
this would only further bloat task_struct for infrequently used data.
Furthermore, after all optimizations in this series, there's no evidence
it would result in better performance: later optimizations make the time
spent looking up entries in the hash table negligible (we'll reach the
theoretical ideal performance i.e. no constraints).
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-5-elver@google.com
Clean up headers:
- Remove unused <linux/kallsyms.h>
- Remove unused <linux/kprobes.h>
- Remove unused <linux/module.h>
- Remove unused <linux/smp.h>
- Add <linux/export.h> for EXPORT_SYMBOL_GPL().
- Add <linux/mutex.h> for mutex.
- Sort alphabetically.
- Move <linux/hw_breakpoint.h> to top to test it compiles on its own.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-4-elver@google.com
Provide hw_breakpoint_is_used() to check if breakpoints are in use on
the system.
Use it in the KUnit test to verify the global state before and after a
test case.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-3-elver@google.com
Add KUnit test for hw_breakpoint constraints accounting, with various
interesting mixes of breakpoint targets (some care was taken to catch
interesting corner cases via bug-injection).
The test cannot be built as a module because it requires access to
hw_breakpoint_slots(), which is not inlinable or exported on all
architectures.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Ian Rogers <irogers@google.com>
Link: https://lore.kernel.org/r/20220829124719.675715-2-elver@google.com