21ef9e1120
19421 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
David Hildenbrand
|
cc647e05db |
mm/userfaultfd: fix uffd-wp handling for THP migration entries
commit 24bf08c4376be417f16ceb609188b16f461b0443 upstream.
Looks like what we fixed for hugetlb in commit 44f86392bdd1 ("mm/hugetlb:
fix uffd-wp handling for migration entries in
hugetlb_change_protection()") similarly applies to THP.
Setting/clearing uffd-wp on THP migration entries is not implemented
properly. Further, while removing migration PMDs considers the uffd-wp
bit, inserting migration PMDs does not consider the uffd-wp bit.
We have to set/clear independently of the migration entry type in
change_huge_pmd() and properly copy the uffd-wp bit in
set_pmd_migration_entry().
Verified using a simple reproducer that triggers migration of a THP, that
the set_pmd_migration_entry() no longer loses the uffd-wp bit.
Link: https://lkml.kernel.org/r/20230405160236.587705-2-david@redhat.com
Fixes:
|
||
Baokun Li
|
3e6bd2653f |
writeback, cgroup: fix null-ptr-deref write in bdi_split_work_to_wbs
commit 1ba1199ec5747f475538c0d25a32804e5ba1dfde upstream. KASAN report null-ptr-deref: ================================================================== BUG: KASAN: null-ptr-deref in bdi_split_work_to_wbs+0x5c5/0x7b0 Write of size 8 at addr 0000000000000000 by task sync/943 CPU: 5 PID: 943 Comm: sync Tainted: 6.3.0-rc5-next-20230406-dirty #461 Call Trace: <TASK> dump_stack_lvl+0x7f/0xc0 print_report+0x2ba/0x340 kasan_report+0xc4/0x120 kasan_check_range+0x1b7/0x2e0 __kasan_check_write+0x24/0x40 bdi_split_work_to_wbs+0x5c5/0x7b0 sync_inodes_sb+0x195/0x630 sync_inodes_one_sb+0x3a/0x50 iterate_supers+0x106/0x1b0 ksys_sync+0x98/0x160 [...] ================================================================== The race that causes the above issue is as follows: cpu1 cpu2 -------------------------|------------------------- inode_switch_wbs INIT_WORK(&isw->work, inode_switch_wbs_work_fn) queue_rcu_work(isw_wq, &isw->work) // queue_work async inode_switch_wbs_work_fn wb_put_many(old_wb, nr_switched) percpu_ref_put_many ref->data->release(ref) cgwb_release queue_work(cgwb_release_wq, &wb->release_work) // queue_work async &wb->release_work cgwb_release_workfn ksys_sync iterate_supers sync_inodes_one_sb sync_inodes_sb bdi_split_work_to_wbs kmalloc(sizeof(*work), GFP_ATOMIC) // alloc memory failed percpu_ref_exit ref->data = NULL kfree(data) wb_get(wb) percpu_ref_get(&wb->refcnt) percpu_ref_get_many(ref, 1) atomic_long_add(nr, &ref->data->count) atomic64_add(i, v) // trigger null-ptr-deref bdi_split_work_to_wbs() traverses &bdi->wb_list to split work into all wbs. If the allocation of new work fails, the on-stack fallback will be used and the reference count of the current wb is increased afterwards. If cgroup writeback membership switches occur before getting the reference count and the current wb is released as old_wd, then calling wb_get() or wb_put() will trigger the null pointer dereference above. This issue was introduced in v4.3-rc7 (see fix tag1). Both sync_inodes_sb() and __writeback_inodes_sb_nr() calls to bdi_split_work_to_wbs() can trigger this issue. For scenarios called via sync_inodes_sb(), originally commit |
||
Liam R. Howlett
|
1c87a6f82a |
mm: enable maple tree RCU mode by default.
commit 3dd4432549415f3c65dd52d5c687629efbf4ece1 upstream.
Use the maple tree in RCU mode for VMA tracking.
The maple tree tracks the stack and is able to update the pivot
(lower/upper boundary) in-place to allow the page fault handler to write
to the tree while holding just the mmap read lock. This is safe as the
writes to the stack have a guard VMA which ensures there will always be
a NULL in the direction of the growth and thus will only update a pivot.
It is possible, but not recommended, to have VMAs that grow up/down
without guard VMAs. syzbot has constructed a testcase which sets up a
VMA to grow and consume the empty space. Overwriting the entire NULL
entry causes the tree to be altered in a way that is not safe for
concurrent readers; the readers may see a node being rewritten or one
that does not match the maple state they are using.
Enabling RCU mode allows the concurrent readers to see a stable node and
will return the expected result.
Link: https://lkml.kernel.org/r/20230227173632.3292573-9-surenb@google.com
Cc: stable@vger.kernel.org
Fixes:
|
||
Alistair Popple
|
0b73b8ac30 |
mm: take a page reference when removing device exclusive entries
commit 7c7b962938ddda6a9cd095de557ee5250706ea88 upstream.
Device exclusive page table entries are used to prevent CPU access to a
page whilst it is being accessed from a device. Typically this is used to
implement atomic operations when the underlying bus does not support
atomic access. When a CPU thread encounters a device exclusive entry it
locks the page and restores the original entry after calling mmu notifiers
to signal drivers that exclusive access is no longer available.
The device exclusive entry holds a reference to the page making it safe to
access the struct page whilst the entry is present. However the fault
handling code does not hold the PTL when taking the page lock. This means
if there are multiple threads faulting concurrently on the device
exclusive entry one will remove the entry whilst others will wait on the
page lock without holding a reference.
This can lead to threads locking or waiting on a folio with a zero
refcount. Whilst mmap_lock prevents the pages getting freed via munmap()
they may still be freed by a migration. This leads to warnings such as
PAGE_FLAGS_CHECK_AT_FREE due to the page being locked when the refcount
drops to zero.
Fix this by trying to take a reference on the folio before locking it.
The code already checks the PTE under the PTL and aborts if the entry is
no longer there. It is also possible the folio has been unmapped, freed
and re-allocated allowing a reference to be taken on an unrelated folio.
This case is also detected by the PTE check and the folio is unlocked
without further changes.
Link: https://lkml.kernel.org/r/20230330012519.804116-1-apopple@nvidia.com
Fixes:
|
||
Peter Xu
|
f042ee354c |
mm/hugetlb: fix uffd wr-protection for CoW optimization path
commit 60d5b473d61be61ac315e544fcd6a8234a79500e upstream.
This patch fixes an issue that a hugetlb uffd-wr-protected mapping can be
writable even with uffd-wp bit set. It only happens with hugetlb private
mappings, when someone firstly wr-protects a missing pte (which will
install a pte marker), then a write to the same page without any prior
access to the page.
Userfaultfd-wp trap for hugetlb was implemented in hugetlb_fault() before
reaching hugetlb_wp() to avoid taking more locks that userfault won't
need. However there's one CoW optimization path that can trigger
hugetlb_wp() inside hugetlb_no_page(), which will bypass the trap.
This patch skips hugetlb_wp() for CoW and retries the fault if uffd-wp bit
is detected. The new path will only trigger in the CoW optimization path
because generic hugetlb_fault() (e.g. when a present pte was
wr-protected) will resolve the uffd-wp bit already. Also make sure
anonymous UNSHARE won't be affected and can still be resolved, IOW only
skip CoW not CoR.
This patch will be needed for v5.19+ hence copy stable.
[peterx@redhat.com: v2]
Link: https://lkml.kernel.org/r/ZBzOqwF2wrHgBVZb@x1n
[peterx@redhat.com: v3]
Link: https://lkml.kernel.org/r/20230324142620.2344140-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230321191840.1897940-1-peterx@redhat.com
Fixes:
|
||
Rongwei Wang
|
85cc118ce6 |
mm/swap: fix swap_info_struct race between swapoff and get_swap_pages()
commit 6fe7d6b992113719e96744d974212df3fcddc76c upstream.
The si->lock must be held when deleting the si from the available list.
Otherwise, another thread can re-add the si to the available list, which
can lead to memory corruption. The only place we have found where this
happens is in the swapoff path. This case can be described as below:
core 0 core 1
swapoff
del_from_avail_list(si) waiting
try lock si->lock acquire swap_avail_lock
and re-add si into
swap_avail_head
acquire si->lock but missing si already being added again, and continuing
to clear SWP_WRITEOK, etc.
It can be easily found that a massive warning messages can be triggered
inside get_swap_pages() by some special cases, for example, we call
madvise(MADV_PAGEOUT) on blocks of touched memory concurrently, meanwhile,
run much swapon-swapoff operations (e.g. stress-ng-swap).
However, in the worst case, panic can be caused by the above scene. In
swapoff(), the memory used by si could be kept in swap_info[] after
turning off a swap. This means memory corruption will not be caused
immediately until allocated and reset for a new swap in the swapon path.
A panic message caused: (with CONFIG_PLIST_DEBUG enabled)
------------[ cut here ]------------
top: 00000000e58a3003, n: 0000000013e75cda, p: 000000008cd4451a
prev: 0000000035b1e58a, n: 000000008cd4451a, p: 000000002150ee8d
next: 000000008cd4451a, n: 000000008cd4451a, p: 000000008cd4451a
WARNING: CPU: 21 PID: 1843 at lib/plist.c:60 plist_check_prev_next_node+0x50/0x70
Modules linked in: rfkill(E) crct10dif_ce(E)...
CPU: 21 PID: 1843 Comm: stress-ng Kdump: ... 5.10.134+
Hardware name: Alibaba Cloud ECS, BIOS 0.0.0 02/06/2015
pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--)
pc : plist_check_prev_next_node+0x50/0x70
lr : plist_check_prev_next_node+0x50/0x70
sp : ffff0018009d3c30
x29: ffff0018009d3c40 x28: ffff800011b32a98
x27: 0000000000000000 x26: ffff001803908000
x25: ffff8000128ea088 x24: ffff800011b32a48
x23: 0000000000000028 x22: ffff001800875c00
x21: ffff800010f9e520 x20: ffff001800875c00
x19: ffff001800fdc6e0 x18: 0000000000000030
x17: 0000000000000000 x16: 0000000000000000
x15: 0736076307640766 x14: 0730073007380731
x13: 0736076307640766 x12: 0730073007380731
x11: 000000000004058d x10: 0000000085a85b76
x9 : ffff8000101436e4 x8 : ffff800011c8ce08
x7 : 0000000000000000 x6 : 0000000000000001
x5 : ffff0017df9ed338 x4 : 0000000000000001
x3 : ffff8017ce62a000 x2 : ffff0017df9ed340
x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
plist_check_prev_next_node+0x50/0x70
plist_check_head+0x80/0xf0
plist_add+0x28/0x140
add_to_avail_list+0x9c/0xf0
_enable_swap_info+0x78/0xb4
__do_sys_swapon+0x918/0xa10
__arm64_sys_swapon+0x20/0x30
el0_svc_common+0x8c/0x220
do_el0_svc+0x2c/0x90
el0_svc+0x1c/0x30
el0_sync_handler+0xa8/0xb0
el0_sync+0x148/0x180
irq event stamp: 2082270
Now, si->lock locked before calling 'del_from_avail_list()' to make sure
other thread see the si had been deleted and SWP_WRITEOK cleared together,
will not reinsert again.
This problem exists in versions after stable 5.10.y.
Link: https://lkml.kernel.org/r/20230404154716.23058-1-rongwei.wang@linux.alibaba.com
Fixes:
|
||
Yafang Shao
|
ef6bd8f64c |
mm: vmalloc: avoid warn_alloc noise caused by fatal signal
commit f349b15e183d6956f1b63d6ff57849ff10c7edd5 upstream. There're some suspicious warn_alloc on my test serer, for example, [13366.518837] warn_alloc: 81 callbacks suppressed [13366.518841] test_verifier: vmalloc error: size 4096, page order 0, failed to allocate pages, mode:0x500dc2(GFP_HIGHUSER|__GFP_ZERO|__GFP_ACCOUNT), nodemask=(null),cpuset=/,mems_allowed=0-1 [13366.522240] CPU: 30 PID: 722463 Comm: test_verifier Kdump: loaded Tainted: G W O 6.2.0+ #638 [13366.524216] Call Trace: [13366.524702] <TASK> [13366.525148] dump_stack_lvl+0x6c/0x80 [13366.525712] dump_stack+0x10/0x20 [13366.526239] warn_alloc+0x119/0x190 [13366.526783] ? alloc_pages_bulk_array_mempolicy+0x9e/0x2a0 [13366.527470] __vmalloc_area_node+0x546/0x5b0 [13366.528066] __vmalloc_node_range+0xc2/0x210 [13366.528660] __vmalloc_node+0x42/0x50 [13366.529186] ? bpf_prog_realloc+0x53/0xc0 [13366.529743] __vmalloc+0x1e/0x30 [13366.530235] bpf_prog_realloc+0x53/0xc0 [13366.530771] bpf_patch_insn_single+0x80/0x1b0 [13366.531351] bpf_jit_blind_constants+0xe9/0x1c0 [13366.531932] ? __free_pages+0xee/0x100 [13366.532457] ? free_large_kmalloc+0x58/0xb0 [13366.533002] bpf_int_jit_compile+0x8c/0x5e0 [13366.533546] bpf_prog_select_runtime+0xb4/0x100 [13366.534108] bpf_prog_load+0x6b1/0xa50 [13366.534610] ? perf_event_task_tick+0x96/0xb0 [13366.535151] ? security_capable+0x3a/0x60 [13366.535663] __sys_bpf+0xb38/0x2190 [13366.536120] ? kvm_clock_get_cycles+0x9/0x10 [13366.536643] __x64_sys_bpf+0x1c/0x30 [13366.537094] do_syscall_64+0x38/0x90 [13366.537554] entry_SYSCALL_64_after_hwframe+0x72/0xdc [13366.538107] RIP: 0033:0x7f78310f8e29 [13366.538561] Code: 01 00 48 81 c4 80 00 00 00 e9 f1 fe ff ff 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 17 e0 2c 00 f7 d8 64 89 01 48 [13366.540286] RSP: 002b:00007ffe2a61fff8 EFLAGS: 00000206 ORIG_RAX: 0000000000000141 [13366.541031] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f78310f8e29 [13366.541749] RDX: 0000000000000080 RSI: 00007ffe2a6200b0 RDI: 0000000000000005 [13366.542470] RBP: 00007ffe2a620010 R08: 00007ffe2a6202a0 R09: 00007ffe2a6200b0 [13366.543183] R10: 00000000000f423e R11: 0000000000000206 R12: 0000000000407800 [13366.543900] R13: 00007ffe2a620540 R14: 0000000000000000 R15: 0000000000000000 [13366.544623] </TASK> [13366.545260] Mem-Info: [13366.546121] active_anon:81319 inactive_anon:20733 isolated_anon:0 active_file:69450 inactive_file:5624 isolated_file:0 unevictable:0 dirty:10 writeback:0 slab_reclaimable:69649 slab_unreclaimable:48930 mapped:27400 shmem:12868 pagetables:4929 sec_pagetables:0 bounce:0 kernel_misc_reclaimable:0 free:15870308 free_pcp:142935 free_cma:0 [13366.551886] Node 0 active_anon:224836kB inactive_anon:33528kB active_file:175692kB inactive_file:13752kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:59248kB dirty:32kB writeback:0kB shmem:18252kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB kernel_stack:4616kB pagetables:10664kB sec_pagetables:0kB all_unreclaimable? no [13366.555184] Node 1 active_anon:100440kB inactive_anon:49404kB active_file:102108kB inactive_file:8744kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:50352kB dirty:8kB writeback:0kB shmem:33220kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB kernel_stack:3896kB pagetables:9052kB sec_pagetables:0kB all_unreclaimable? no [13366.558262] Node 0 DMA free:15360kB boost:0kB min:304kB low:380kB high:456kB reserved_highatomic:0KB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15360kB mlocked:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB [13366.560821] lowmem_reserve[]: 0 2735 31873 31873 31873 [13366.561981] Node 0 DMA32 free:2790904kB boost:0kB min:56028kB low:70032kB high:84036kB reserved_highatomic:0KB active_anon:1936kB inactive_anon:20kB active_file:396kB inactive_file:344kB unevictable:0kB writepending:0kB present:3129200kB managed:2801520kB mlocked:0kB bounce:0kB free_pcp:5188kB local_pcp:0kB free_cma:0kB [13366.565148] lowmem_reserve[]: 0 0 29137 29137 29137 [13366.566168] Node 0 Normal free:28533824kB boost:0kB min:596740kB low:745924kB high:895108kB reserved_highatomic:28672KB active_anon:222900kB inactive_anon:33508kB active_file:175296kB inactive_file:13408kB unevictable:0kB writepending:32kB present:30408704kB managed:29837172kB mlocked:0kB bounce:0kB free_pcp:295724kB local_pcp:0kB free_cma:0kB [13366.569485] lowmem_reserve[]: 0 0 0 0 0 [13366.570416] Node 1 Normal free:32141144kB boost:0kB min:660504kB low:825628kB high:990752kB reserved_highatomic:69632KB active_anon:100440kB inactive_anon:49404kB active_file:102108kB inactive_file:8744kB unevictable:0kB writepending:8kB present:33554432kB managed:33025372kB mlocked:0kB bounce:0kB free_pcp:270880kB local_pcp:46860kB free_cma:0kB [13366.573403] lowmem_reserve[]: 0 0 0 0 0 [13366.574015] Node 0 DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 1*1024kB (U) 1*2048kB (M) 3*4096kB (M) = 15360kB [13366.575474] Node 0 DMA32: 782*4kB (UME) 756*8kB (UME) 736*16kB (UME) 745*32kB (UME) 694*64kB (UME) 653*128kB (UME) 595*256kB (UME) 552*512kB (UME) 454*1024kB (UME) 347*2048kB (UME) 246*4096kB (UME) = 2790904kB [13366.577442] Node 0 Normal: 33856*4kB (UMEH) 51815*8kB (UMEH) 42418*16kB (UMEH) 36272*32kB (UMEH) 22195*64kB (UMEH) 10296*128kB (UMEH) 7238*256kB (UMEH) 5638*512kB (UEH) 5337*1024kB (UMEH) 3506*2048kB (UMEH) 1470*4096kB (UME) = 28533784kB [13366.580460] Node 1 Normal: 15776*4kB (UMEH) 37485*8kB (UMEH) 29509*16kB (UMEH) 21420*32kB (UMEH) 14818*64kB (UMEH) 13051*128kB (UMEH) 9918*256kB (UMEH) 7374*512kB (UMEH) 5397*1024kB (UMEH) 3887*2048kB (UMEH) 2002*4096kB (UME) = 32141240kB [13366.583027] Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=1048576kB [13366.584380] Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB [13366.585702] Node 1 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=1048576kB [13366.587042] Node 1 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB [13366.588372] 87386 total pagecache pages [13366.589266] 0 pages in swap cache [13366.590327] Free swap = 0kB [13366.591227] Total swap = 0kB [13366.592142] 16777082 pages RAM [13366.593057] 0 pages HighMem/MovableOnly [13366.594037] 357226 pages reserved [13366.594979] 0 pages hwpoisoned This failure really confuse me as there're still lots of available pages. Finally I figured out it was caused by a fatal signal. When a process is allocating memory via vm_area_alloc_pages(), it will break directly even if it hasn't allocated the requested pages when it receives a fatal signal. In that case, we shouldn't show this warn_alloc, as it is useless. We only need to show this warning when there're really no enough pages. Link: https://lkml.kernel.org/r/20230330162625.13604-1-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Muchun Song
|
54df8e39ce |
mm: kfence: fix handling discontiguous page
commit 1f2803b2660f4b04d48d065072c0ae0c9ca255fd upstream.
The struct pages could be discontiguous when the kfence pool is allocated
via alloc_contig_pages() with CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP.
This may result in setting PG_slab and memcg_data to a arbitrary
address (may be not used as a struct page), which in the worst case
might corrupt the kernel.
So the iteration should use nth_page().
Link: https://lkml.kernel.org/r/20230323025003.94447-1-songmuchun@bytedance.com
Fixes:
|
||
Muchun Song
|
476699a8a7 |
mm: kfence: fix PG_slab and memcg_data clearing
commit 3ee2d7471fa4963a2ced0a84f0653ce88b43c5b2 upstream.
It does not reset PG_slab and memcg_data when KFENCE fails to initialize
kfence pool at runtime. It is reporting a "Bad page state" message when
kfence pool is freed to buddy. The checking of whether it is a compound
head page seems unnecessary since we already guarantee this when
allocating kfence pool. Remove the check to simplify the code.
Link: https://lkml.kernel.org/r/20230320030059.20189-1-songmuchun@bytedance.com
Fixes:
|
||
Liam R. Howlett
|
286b0cab31 |
mm/ksm: fix race with VMA iteration and mm_struct teardown
commit 6db504ce55bdbc575723938fc480713c9183f6a2 upstream.
exit_mmap() will tear down the VMAs and maple tree with the mmap_lock held
in write mode. Ensure that the maple tree is still valid by checking
ksm_test_exit() after taking the mmap_lock in read mode, but before the
for_each_vma() iterator dereferences a destroyed maple tree.
Since the maple tree is destroyed, the flags telling lockdep to check an
external lock has been cleared. Skip the for_each_vma() iterator to avoid
dereferencing a maple tree without the external lock flag, which would
create a lockdep warning.
Link: https://lkml.kernel.org/r/20230308220310.3119196-1-Liam.Howlett@oracle.com
Fixes:
|
||
Peter Collingbourne
|
450317033f |
Revert "kasan: drop skip_kasan_poison variable in free_pages_prepare"
commit f446883d12b8bfa486f7c98d403054d61d38c989 upstream. This reverts commit |
||
Marco Elver
|
1c00030a59 |
kfence: avoid passing -g for test
commit 2e08ca1802441224f5b7cc6bffbb687f7406de95 upstream.
Nathan reported that when building with GNU as and a version of clang that
defaults to DWARF5:
$ make -skj"$(nproc)" ARCH=riscv CROSS_COMPILE=riscv64-linux-gnu- \
LLVM=1 LLVM_IAS=0 O=build \
mrproper allmodconfig mm/kfence/kfence_test.o
/tmp/kfence_test-08a0a0.s: Assembler messages:
/tmp/kfence_test-08a0a0.s:14627: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14628: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14632: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14633: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14639: Error: non-constant .uleb128 is not supported
...
This is because `-g` defaults to the compiler debug info default. If the
assembler does not support some of the directives used, the above errors
occur. To fix, remove the explicit passing of `-g`.
All the test wants is that stack traces print valid function names, and
debug info is not required for that. (I currently cannot recall why I
added the explicit `-g`.)
Link: https://lkml.kernel.org/r/20230316224705.709984-1-elver@google.com
Fixes:
|
||
Muchun Song
|
f2a4304e9f |
mm: kfence: fix using kfence_metadata without initialization in show_object()
commit 1c86a188e03156223a34d09ce290b49bd4dd0403 upstream.
The variable kfence_metadata is initialized in kfence_init_pool(), then,
it is not initialized if kfence is disabled after booting. In this case,
kfence_metadata will be used (e.g. ->lock and ->state fields) without
initialization when reading /sys/kernel/debug/kfence/objects. There will
be a warning if you enable CONFIG_DEBUG_SPINLOCK. Fix it by creating
debugfs files when necessary.
Link: https://lkml.kernel.org/r/20230315034441.44321-1-songmuchun@bytedance.com
Fixes:
|
||
Geert Uytterhoeven
|
f311869d72 |
mm/slab: Fix undefined init_cache_node_node() for NUMA and !SMP
commit 66a1c22b709178e7b823d44465d0c2e5ed7492fb upstream.
sh/migor_defconfig:
mm/slab.c: In function ‘slab_memory_callback’:
mm/slab.c:1127:23: error: implicit declaration of function ‘init_cache_node_node’; did you mean ‘drain_cache_node_node’? [-Werror=implicit-function-declaration]
1127 | ret = init_cache_node_node(nid);
| ^~~~~~~~~~~~~~~~~~~~
| drain_cache_node_node
The #ifdef condition protecting the definition of init_cache_node_node()
no longer matches the conditions protecting the (multiple) users.
Fix this by syncing the conditions.
Fixes:
|
||
James Houghton
|
aff80fb99b |
mm: teach mincore_hugetlb about pte markers
commit 63cf584203f3367c8b073d417c8e5cbbfc450506 upstream.
By checking huge_pte_none(), we incorrectly classify PTE markers as
"present". Instead, check huge_pte_none_mostly(), classifying PTE markers
the same as if the PTE were completely blank.
PTE markers, unlike other kinds of swap entries, don't reference any
physical page and don't indicate that a physical page was mapped
previously. As such, treat them as non-present for the sake of mincore().
Link: https://lkml.kernel.org/r/20230302222404.175303-1-jthoughton@google.com
Fixes:
|
||
David Hildenbrand
|
b8388048b5 |
mm/userfaultfd: propagate uffd-wp bit when PTE-mapping the huge zeropage
commit 42b2af2c9b7eede8ef21d0943f84d135e21a32a3 upstream.
Currently, we'd lose the userfaultfd-wp marker when PTE-mapping a huge
zeropage, resulting in the next write faults in the PMD range not
triggering uffd-wp events.
Various actions (partial MADV_DONTNEED, partial mremap, partial munmap,
partial mprotect) could trigger this. However, most importantly,
un-protecting a single sub-page from the userfaultfd-wp handler when
processing a uffd-wp event will PTE-map the shared huge zeropage and lose
the uffd-wp bit for the remainder of the PMD.
Let's properly propagate the uffd-wp bit to the PMDs.
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <inttypes.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <poll.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/ioctl.h>
#include <linux/userfaultfd.h>
static size_t pagesize;
static int uffd;
static volatile bool uffd_triggered;
#define barrier() __asm__ __volatile__("": : :"memory")
static void uffd_wp_range(char *start, size_t size, bool wp)
{
struct uffdio_writeprotect uffd_writeprotect;
uffd_writeprotect.range.start = (unsigned long) start;
uffd_writeprotect.range.len = size;
if (wp) {
uffd_writeprotect.mode = UFFDIO_WRITEPROTECT_MODE_WP;
} else {
uffd_writeprotect.mode = 0;
}
if (ioctl(uffd, UFFDIO_WRITEPROTECT, &uffd_writeprotect)) {
fprintf(stderr, "UFFDIO_WRITEPROTECT failed: %d\n", errno);
exit(1);
}
}
static void *uffd_thread_fn(void *arg)
{
static struct uffd_msg msg;
ssize_t nread;
while (1) {
struct pollfd pollfd;
int nready;
pollfd.fd = uffd;
pollfd.events = POLLIN;
nready = poll(&pollfd, 1, -1);
if (nready == -1) {
fprintf(stderr, "poll() failed: %d\n", errno);
exit(1);
}
nread = read(uffd, &msg, sizeof(msg));
if (nread <= 0)
continue;
if (msg.event != UFFD_EVENT_PAGEFAULT ||
!(msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WP)) {
printf("FAIL: wrong uffd-wp event fired\n");
exit(1);
}
/* un-protect the single page. */
uffd_triggered = true;
uffd_wp_range((char *)(uintptr_t)msg.arg.pagefault.address,
pagesize, false);
}
return arg;
}
static int setup_uffd(char *map, size_t size)
{
struct uffdio_api uffdio_api;
struct uffdio_register uffdio_register;
pthread_t thread;
uffd = syscall(__NR_userfaultfd,
O_CLOEXEC | O_NONBLOCK | UFFD_USER_MODE_ONLY);
if (uffd < 0) {
fprintf(stderr, "syscall() failed: %d\n", errno);
return -errno;
}
uffdio_api.api = UFFD_API;
uffdio_api.features = UFFD_FEATURE_PAGEFAULT_FLAG_WP;
if (ioctl(uffd, UFFDIO_API, &uffdio_api) < 0) {
fprintf(stderr, "UFFDIO_API failed: %d\n", errno);
return -errno;
}
if (!(uffdio_api.features & UFFD_FEATURE_PAGEFAULT_FLAG_WP)) {
fprintf(stderr, "UFFD_FEATURE_WRITEPROTECT missing\n");
return -ENOSYS;
}
uffdio_register.range.start = (unsigned long) map;
uffdio_register.range.len = size;
uffdio_register.mode = UFFDIO_REGISTER_MODE_WP;
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) < 0) {
fprintf(stderr, "UFFDIO_REGISTER failed: %d\n", errno);
return -errno;
}
pthread_create(&thread, NULL, uffd_thread_fn, NULL);
return 0;
}
int main(void)
{
const size_t size = 4 * 1024 * 1024ull;
char *map, *cur;
pagesize = getpagesize();
map = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
if (map == MAP_FAILED) {
fprintf(stderr, "mmap() failed\n");
return -errno;
}
if (madvise(map, size, MADV_HUGEPAGE)) {
fprintf(stderr, "MADV_HUGEPAGE failed\n");
return -errno;
}
if (setup_uffd(map, size))
return 1;
/* Read the whole range, populating zeropages. */
madvise(map, size, MADV_POPULATE_READ);
/* Write-protect the whole range. */
uffd_wp_range(map, size, true);
/* Make sure uffd-wp triggers on each page. */
for (cur = map; cur < map + size; cur += pagesize) {
uffd_triggered = false;
barrier();
/* Trigger a write fault. */
*cur = 1;
barrier();
if (!uffd_triggered) {
printf("FAIL: uffd-wp did not trigger\n");
return 1;
}
}
printf("PASS: uffd-wp triggered\n");
return 0;
}
Link: https://lkml.kernel.org/r/20230302175423.589164-1-david@redhat.com
Fixes:
|
||
Tong Tiangen
|
313b18c774 |
memory tier: release the new_memtier in find_create_memory_tier()
commit 93419139fa14124c1c507d804f2b28866ebee28d upstream.
In find_create_memory_tier(), if failed to register device, then we should
release new_memtier from the tier list and put device instead of memtier.
Link: https://lkml.kernel.org/r/20230129040651.1329208-1-tongtiangen@huawei.com
Fixes:
|
||
Yin Fengwei
|
71946389a7 |
mm/thp: check and bail out if page in deferred queue already
commit 81e506bec9be1eceaf5a2c654e28ba5176ef48d8 upstream. Kernel build regression with LLVM was reported here: https://lore.kernel.org/all/Y1GCYXGtEVZbcv%2F5@dev-arch.thelio-3990X/ with commit |
||
Johannes Weiner
|
f65d6ee1d1 |
mm: memcontrol: deprecate charge moving
commit da34a8484d162585e22ed8c1e4114aa2f60e3567 upstream. Charge moving mode in cgroup1 allows memory to follow tasks as they migrate between cgroups. This is, and always has been, a questionable thing to do - for several reasons. First, it's expensive. Pages need to be identified, locked and isolated from various MM operations, and reassigned, one by one. Second, it's unreliable. Once pages are charged to a cgroup, there isn't always a clear owner task anymore. Cache isn't moved at all, for example. Mapped memory is moved - but if trylocking or isolating a page fails, it's arbitrarily left behind. Frequent moving between domains may leave a task's memory scattered all over the place. Third, it isn't really needed. Launcher tasks can kick off workload tasks directly in their target cgroup. Using dedicated per-workload groups allows fine-grained policy adjustments - no need to move tasks and their physical pages between control domains. The feature was never forward-ported to cgroup2, and it hasn't been missed. Despite it being a niche usecase, the maintenance overhead of supporting it is enormous. Because pages are moved while they are live and subject to various MM operations, the synchronization rules are complicated. There are lock_page_memcg() in MM and FS code, which non-cgroup people don't understand. In some cases we've been able to shift code and cgroup API calls around such that we can rely on native locking as much as possible. But that's fragile, and sometimes we need to hold MM locks for longer than we otherwise would (pte lock e.g.). Mark the feature deprecated. Hopefully we can remove it soon. And backport into -stable kernels so that people who develop against earlier kernels are warned about this deprecation as early as possible. [akpm@linux-foundation.org: fix memory.rst underlining] Link: https://lkml.kernel.org/r/Y5COd+qXwk/S+n8N@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Naoya Horiguchi
|
deab8114fb |
mm/hwpoison: convert TTU_IGNORE_HWPOISON to TTU_HWPOISON
commit 6da6b1d4a7df8c35770186b53ef65d388398e139 upstream.
After a memory error happens on a clean folio, a process unexpectedly
receives SIGBUS when it accesses the error page. This SIGBUS killing is
pointless and simply degrades the level of RAS of the system, because the
clean folio can be dropped without any data lost on memory error handling
as we do for a clean pagecache.
When memory_failure() is called on a clean folio, try_to_unmap() is called
twice (one from split_huge_page() and one from hwpoison_user_mappings()).
The root cause of the issue is that pte conversion to hwpoisoned entry is
now done in the first call of try_to_unmap() because PageHWPoison is
already set at this point, while it's actually expected to be done in the
second call. This behavior disturbs the error handling operation like
removing pagecache, which results in the malfunction described above.
So convert TTU_IGNORE_HWPOISON into TTU_HWPOISON and set TTU_HWPOISON only
when we really intend to convert pte to hwpoison entry. This can prevent
other callers of try_to_unmap() from accidentally converting to hwpoison
entries.
Link: https://lkml.kernel.org/r/20230221085905.1465385-1-naoya.horiguchi@linux.dev
Fixes:
|
||
andrew.yang
|
daa5a586e4 |
mm/damon/paddr: fix missing folio_put()
commit 3f98c9a62c338bbe06a215c9491e6166ea39bf82 upstream.
damon_get_folio() would always increase folio _refcount and
folio_isolate_lru() would increase folio _refcount if the folio's lru flag
is set.
If an unevictable folio isolated successfully, there will be two more
_refcount. The one from folio_isolate_lru() will be decreased in
folio_puback_lru(), but the other one from damon_get_folio() will be left
behind. This causes a pin page.
Whatever the case, the _refcount from damon_get_folio() should be
decreased.
Link: https://lkml.kernel.org/r/20230222064223.6735-1-andrew.yang@mediatek.com
Fixes:
|
||
Kuan-Ying Lee
|
eaba8521fd |
mm/gup: add folio to list when folio_isolate_lru() succeed
commit aa1e6a932ca652a50a5df458399724a80459f521 upstream.
If we call folio_isolate_lru() successfully, we will get return value 0.
We need to add this folio to the movable_pages_list.
Link: https://lkml.kernel.org/r/20230131063206.28820-1-Kuan-Ying.Lee@mediatek.com
Fixes:
|
||
Aaron Thompson
|
2578123d5b |
Revert "mm: Always release pages to the buddy allocator in memblock_free_late()."
commit 647037adcad00f2bab8828d3d41cd0553d41f3bd upstream. This reverts commit 115d9d77bb0f9152c60b6e8646369fa7f6167593. The pages being freed by memblock_free_late() have already been initialized, but if they are in the deferred init range, __free_one_page() might access nearby uninitialized pages when trying to coalesce buddies. This can, for example, trigger this BUG: BUG: unable to handle page fault for address: ffffe964c02580c8 RIP: 0010:__list_del_entry_valid+0x3f/0x70 <TASK> __free_one_page+0x139/0x410 __free_pages_ok+0x21d/0x450 memblock_free_late+0x8c/0xb9 efi_free_boot_services+0x16b/0x25c efi_enter_virtual_mode+0x403/0x446 start_kernel+0x678/0x714 secondary_startup_64_no_verify+0xd2/0xdb </TASK> A proper fix will be more involved so revert this change for the time being. Fixes: 115d9d77bb0f ("mm: Always release pages to the buddy allocator in memblock_free_late().") Signed-off-by: Aaron Thompson <dev@aaront.org> Link: https://lore.kernel.org/r/20230207082151.1303-1-dev@aaront.org Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Peter Xu
|
54806cb751 |
mm/migrate: fix wrongly apply write bit after mkdirty on sparc64
commit 96a9c287e25d690fd9623b5133703b8e310fbed1 upstream.
Nick Bowler reported another sparc64 breakage after the young/dirty
persistent work for page migration (per "Link:" below). That's after a
similar report [2].
It turns out page migration was overlooked, and it wasn't failing before
because page migration was not enabled in the initial report test
environment.
David proposed another way [2] to fix this from sparc64 side, but that
patch didn't land somehow. Neither did I check whether there's any other
arch that has similar issues.
Let's fix it for now as simple as moving the write bit handling to be
after dirty, like what we did before.
Note: this is based on mm-unstable, because the breakage was since 6.1 and
we're at a very late stage of 6.2 (-rc8), so I assume for this specific
case we should target this at 6.3.
[1] https://lore.kernel.org/all/20221021160603.GA23307@u164.east.ru/
[2] https://lore.kernel.org/all/20221212130213.136267-1-david@redhat.com/
Link: https://lkml.kernel.org/r/20230216153059.256739-1-peterx@redhat.com
Fixes:
|
||
Qian Yingjin
|
d4d9bdc694 |
mm/filemap: fix page end in filemap_get_read_batch
commit 5956592ce337330cdff0399a6f8b6a5aea397a8e upstream.
I was running traces of the read code against an RAID storage system to
understand why read requests were being misaligned against the underlying
RAID strips. I found that the page end offset calculation in
filemap_get_read_batch() was off by one.
When a read is submitted with end offset 1048575, then it calculates the
end page for read of 256 when it should be 255. "last_index" is the index
of the page beyond the end of the read and it should be skipped when get a
batch of pages for read in @filemap_get_read_batch().
The below simple patch fixes the problem. This code was introduced in
kernel 5.12.
Link: https://lkml.kernel.org/r/20230208022400.28962-1-coolqyj@163.com
Fixes:
|
||
Zach O'Keefe
|
fd71c8d3b0 |
mm/MADV_COLLAPSE: set EAGAIN on unexpected page refcount
commit ae63c898f4004bbc7d212f4adcb3bb14852c30d6 upstream.
During collapse, in a few places we check to see if a given small page has
any unaccounted references. If the refcount on the page doesn't match our
expectations, it must be there is an unknown user concurrently interested
in the page, and so it's not safe to move the contents elsewhere.
However, the unaccounted pins are likely an ephemeral state.
In this situation, MADV_COLLAPSE returns -EINVAL when it should return
-EAGAIN. This could cause userspace to conclude that the syscall
failed, when it in fact could succeed by retrying.
Link: https://lkml.kernel.org/r/20230125015738.912924-1-zokeefe@google.com
Fixes:
|
||
Qi Zheng
|
86e3baf6a6 |
mm: shrinkers: fix deadlock in shrinker debugfs
commit badc28d4924bfed73efc93f716a0c3aa3afbdf6f upstream.
The debugfs_remove_recursive() is invoked by unregister_shrinker(), which
is holding the write lock of shrinker_rwsem. It will waits for the
handler of debugfs file complete. The handler also needs to hold the read
lock of shrinker_rwsem to do something. So it may cause the following
deadlock:
CPU0 CPU1
debugfs_file_get()
shrinker_debugfs_count_show()/shrinker_debugfs_scan_write()
unregister_shrinker()
--> down_write(&shrinker_rwsem);
debugfs_remove_recursive()
// wait for (A)
--> wait_for_completion();
// wait for (B)
--> down_read_killable(&shrinker_rwsem)
debugfs_file_put() -- (A)
up_write() -- (B)
The down_read_killable() can be killed, so that the above deadlock can be
recovered. But it still requires an extra kill action, otherwise it will
block all subsequent shrinker-related operations, so it's better to fix
it.
[akpm@linux-foundation.org: fix CONFIG_SHRINKER_DEBUG=n stub]
Link: https://lkml.kernel.org/r/20230202105612.64641-1-zhengqi.arch@bytedance.com
Fixes:
|
||
Christophe Leroy
|
b184caaf62 |
kasan: fix Oops due to missing calls to kasan_arch_is_ready()
commit 55d77bae73426237b3c74c1757a894b056550dff upstream.
On powerpc64, you can build a kernel with KASAN as soon as you build it
with RADIX MMU support. However if the CPU doesn't have RADIX MMU, KASAN
isn't enabled at init and the following Oops is encountered.
[ 0.000000][ T0] KASAN not enabled as it requires radix!
[ 4.484295][ T26] BUG: Unable to handle kernel data access at 0xc00e000000804a04
[ 4.485270][ T26] Faulting instruction address: 0xc00000000062ec6c
[ 4.485748][ T26] Oops: Kernel access of bad area, sig: 11 [#1]
[ 4.485920][ T26] BE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
[ 4.486259][ T26] Modules linked in:
[ 4.486637][ T26] CPU: 0 PID: 26 Comm: kworker/u2:2 Not tainted 6.2.0-rc3-02590-gf8a023b0a805 #249
[ 4.486907][ T26] Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1200 0xf000005 of:SLOF,HEAD pSeries
[ 4.487445][ T26] Workqueue: eval_map_wq .tracer_init_tracefs_work_func
[ 4.488744][ T26] NIP: c00000000062ec6c LR: c00000000062bb84 CTR: c0000000002ebcd0
[ 4.488867][ T26] REGS: c0000000049175c0 TRAP: 0380 Not tainted (6.2.0-rc3-02590-gf8a023b0a805)
[ 4.489028][ T26] MSR: 8000000002009032 <SF,VEC,EE,ME,IR,DR,RI> CR: 44002808 XER: 00000000
[ 4.489584][ T26] CFAR: c00000000062bb80 IRQMASK: 0
[ 4.489584][ T26] GPR00: c0000000005624d4 c000000004917860 c000000001cfc000 1800000000804a04
[ 4.489584][ T26] GPR04: c0000000003a2650 0000000000000cc0 c00000000000d3d8 c00000000000d3d8
[ 4.489584][ T26] GPR08: c0000000049175b0 a80e000000000000 0000000000000000 0000000017d78400
[ 4.489584][ T26] GPR12: 0000000044002204 c000000003790000 c00000000435003c c0000000043f1c40
[ 4.489584][ T26] GPR16: c0000000043f1c68 c0000000043501a0 c000000002106138 c0000000043f1c08
[ 4.489584][ T26] GPR20: c0000000043f1c10 c0000000043f1c20 c000000004146c40 c000000002fdb7f8
[ 4.489584][ T26] GPR24: c000000002fdb834 c000000003685e00 c000000004025030 c000000003522e90
[ 4.489584][ T26] GPR28: 0000000000000cc0 c0000000003a2650 c000000004025020 c000000004025020
[ 4.491201][ T26] NIP [c00000000062ec6c] .kasan_byte_accessible+0xc/0x20
[ 4.491430][ T26] LR [c00000000062bb84] .__kasan_check_byte+0x24/0x90
[ 4.491767][ T26] Call Trace:
[ 4.491941][ T26] [c000000004917860] [c00000000062ae70] .__kasan_kmalloc+0xc0/0x110 (unreliable)
[ 4.492270][ T26] [c0000000049178f0] [c0000000005624d4] .krealloc+0x54/0x1c0
[ 4.492453][ T26] [c000000004917990] [c0000000003a2650] .create_trace_option_files+0x280/0x530
[ 4.492613][ T26] [c000000004917a90] [c000000002050d90] .tracer_init_tracefs_work_func+0x274/0x2c0
[ 4.492771][ T26] [c000000004917b40] [c0000000001f9948] .process_one_work+0x578/0x9f0
[ 4.492927][ T26] [c000000004917c30] [c0000000001f9ebc] .worker_thread+0xfc/0x950
[ 4.493084][ T26] [c000000004917d60] [c00000000020be84] .kthread+0x1a4/0x1b0
[ 4.493232][ T26] [c000000004917e10] [c00000000000d3d8] .ret_from_kernel_thread+0x58/0x60
[ 4.495642][ T26] Code: 60000000 7cc802a6 38a00000 4bfffc78 60000000 7cc802a6 38a00001 4bfffc68 60000000 3d20a80e 7863e8c2 792907c6 <7c6348ae> 20630007 78630fe0 68630001
[ 4.496704][ T26] ---[ end trace 0000000000000000 ]---
The Oops is due to kasan_byte_accessible() not checking the readiness of
KASAN. Add missing call to kasan_arch_is_ready() and bail out when not
ready. The same problem is observed with ____kasan_kfree_large() so fix
it the same.
Also, as KASAN is not available and no shadow area is allocated for linear
memory mapping, there is no point in allocating shadow mem for vmalloc
memory as shown below in /sys/kernel/debug/kernel_page_tables
---[ kasan shadow mem start ]---
0xc00f000000000000-0xc00f00000006ffff 0x00000000040f0000 448K r w pte valid present dirty accessed
0xc00f000000860000-0xc00f00000086ffff 0x000000000ac10000 64K r w pte valid present dirty accessed
0xc00f3ffffffe0000-0xc00f3fffffffffff 0x0000000004d10000 128K r w pte valid present dirty accessed
---[ kasan shadow mem end ]---
So, also verify KASAN readiness before allocating and poisoning
shadow mem for VMAs.
Link: https://lkml.kernel.org/r/150768c55722311699fdcf8f5379e8256749f47d.1674716617.git.christophe.leroy@csgroup.eu
Fixes:
|
||
David Chen
|
3b4c045a98 |
Fix page corruption caused by racy check in __free_pages
commit 462a8e08e0e6287e5ce13187257edbf24213ed03 upstream. When we upgraded our kernel, we started seeing some page corruption like the following consistently: BUG: Bad page state in process ganesha.nfsd pfn:1304ca page:0000000022261c55 refcount:0 mapcount:-128 mapping:0000000000000000 index:0x0 pfn:0x1304ca flags: 0x17ffffc0000000() raw: 0017ffffc0000000 ffff8a513ffd4c98 ffffeee24b35ec08 0000000000000000 raw: 0000000000000000 0000000000000001 00000000ffffff7f 0000000000000000 page dumped because: nonzero mapcount CPU: 0 PID: 15567 Comm: ganesha.nfsd Kdump: loaded Tainted: P B O 5.10.158-1.nutanix.20221209.el7.x86_64 #1 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/05/2016 Call Trace: dump_stack+0x74/0x96 bad_page.cold+0x63/0x94 check_new_page_bad+0x6d/0x80 rmqueue+0x46e/0x970 get_page_from_freelist+0xcb/0x3f0 ? _cond_resched+0x19/0x40 __alloc_pages_nodemask+0x164/0x300 alloc_pages_current+0x87/0xf0 skb_page_frag_refill+0x84/0x110 ... Sometimes, it would also show up as corruption in the free list pointer and cause crashes. After bisecting the issue, we found the issue started from commit |
||
Mike Kravetz
|
d8b46cc1cf |
migrate: hugetlb: check for hugetlb shared PMD in node migration
commit 73bdf65ea74857d7fb2ec3067a3cec0e261b1462 upstream.
migrate_pages/mempolicy semantics state that CAP_SYS_NICE is required to
move pages shared with another process to a different node. page_mapcount
> 1 is being used to determine if a hugetlb page is shared. However, a
hugetlb page will have a mapcount of 1 if mapped by multiple processes via
a shared PMD. As a result, hugetlb pages shared by multiple processes and
mapped with a shared PMD can be moved by a process without CAP_SYS_NICE.
To fix, check for a shared PMD if mapcount is 1. If a shared PMD is found
consider the page shared.
Link: https://lkml.kernel.org/r/20230126222721.222195-3-mike.kravetz@oracle.com
Fixes:
|
||
Zach O'Keefe
|
96aaaf8666 |
mm/MADV_COLLAPSE: catch !none !huge !bad pmd lookups
commit edb5d0cf5525357652aff6eacd9850b8ced07143 upstream. In commit |
||
Vlastimil Babka
|
97f17a7372 |
mm, mremap: fix mremap() expanding for vma's with vm_ops->close()
commit d014cd7c1c358edc3ea82ebf327a036a42ed0164 upstream. Fabian has reported another regression in 6.1 due to |
||
Jann Horn
|
acb08187b5 |
mm/khugepaged: fix ->anon_vma race
commit 023f47a8250c6bdb4aebe744db4bf7f73414028b upstream.
If an ->anon_vma is attached to the VMA, collapse_and_free_pmd() requires
it to be locked.
Page table traversal is allowed under any one of the mmap lock, the
anon_vma lock (if the VMA is associated with an anon_vma), and the
mapping lock (if the VMA is associated with a mapping); and so to be
able to remove page tables, we must hold all three of them.
retract_page_tables() bails out if an ->anon_vma is attached, but does
this check before holding the mmap lock (as the comment above the check
explains).
If we racily merged an existing ->anon_vma (shared with a child
process) from a neighboring VMA, subsequent rmap traversals on pages
belonging to the child will be able to see the page tables that we are
concurrently removing while assuming that nothing else can access them.
Repeat the ->anon_vma check once we hold the mmap lock to ensure that
there really is no concurrent page table access.
Hitting this bug causes a lockdep warning in collapse_and_free_pmd(),
in the line "lockdep_assert_held_write(&vma->anon_vma->root->rwsem)".
It can also lead to use-after-free access.
Link: https://lore.kernel.org/linux-mm/CAG48ez3434wZBKFFbdx4M9j6eUwSUVPd4dxhzW_k_POneSDF+A@mail.gmail.com/
Link: https://lkml.kernel.org/r/20230111133351.807024-1-jannh@google.com
Fixes:
|
||
Longlong Xia
|
49178d4d61 |
mm/swapfile: add cond_resched() in get_swap_pages()
commit 7717fc1a12f88701573f9ed897cc4f6699c661e3 upstream. The softlockup still occurs in get_swap_pages() under memory pressure. 64 CPU cores, 64GB memory, and 28 zram devices, the disksize of each zram device is 50MB with same priority as si. Use the stress-ng tool to increase memory pressure, causing the system to oom frequently. The plist_for_each_entry_safe() loops in get_swap_pages() could reach tens of thousands of times to find available space (extreme case: cond_resched() is not called in scan_swap_map_slots()). Let's add cond_resched() into get_swap_pages() when failed to find available space to avoid softlockup. Link: https://lkml.kernel.org/r/20230128094757.1060525-1-xialonglong1@huawei.com Signed-off-by: Longlong Xia <xialonglong1@huawei.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Chen Wandun <chenwandun@huawei.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Nanyong Sun <sunnanyong@huawei.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Peter Xu
|
2d11727655 |
mm/uffd: fix pte marker when fork() without fork event
commit 49d6d7fb631345b0f2957a7c4be24ad63903150f upstream.
Patch series "mm: Fixes on pte markers".
Patch 1 resolves the syzkiller report from Pengfei.
Patch 2 further harden pte markers when used with the recent swapin error
markers. The major case is we should persist a swapin error marker after
fork(), so child shouldn't read a corrupted page.
This patch (of 2):
When fork(), dst_vma is not guaranteed to have VM_UFFD_WP even if src may
have it and has pte marker installed. The warning is improper along with
the comment. The right thing is to inherit the pte marker when needed, or
keep the dst pte empty.
A vague guess is this happened by an accident when there's the prior patch
to introduce src/dst vma into this helper during the uffd-wp feature got
developed and I probably messed up in the rebase, since if we replace
dst_vma with src_vma the warning & comment it all makes sense too.
Hugetlb did exactly the right here (copy_hugetlb_page_range()). Fix the
general path.
Reproducer:
https://github.com/xupengfe/syzkaller_logs/blob/main/221208_115556_copy_page_range/repro.c
Bugzilla report: https://bugzilla.kernel.org/show_bug.cgi?id=216808
Link: https://lkml.kernel.org/r/20221214200453.1772655-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20221214200453.1772655-2-peterx@redhat.com
Fixes:
|
||
Yu Zhao
|
0444802231 |
mm: multi-gen LRU: fix crash during cgroup migration
commit de08eaa6156405f2e9369f06ba5afae0e4ab3b62 upstream.
lru_gen_migrate_mm() assumes lru_gen_add_mm() runs prior to itself. This
isn't true for the following scenario:
CPU 1 CPU 2
clone()
cgroup_can_fork()
cgroup_procs_write()
cgroup_post_fork()
task_lock()
lru_gen_migrate_mm()
task_unlock()
task_lock()
lru_gen_add_mm()
task_unlock()
And when the above happens, kernel crashes because of linked list
corruption (mm_struct->lru_gen.list).
Link: https://lore.kernel.org/r/20230115134651.30028-1-msizanoen@qtmlabs.xyz/
Link: https://lkml.kernel.org/r/20230116034405.2960276-1-yuzhao@google.com
Fixes:
|
||
Al Viro
|
5a19095103 |
use less confusing names for iov_iter direction initializers
[ Upstream commit de4eda9de2d957ef2d6a8365a01e26a435e958cb ] READ/WRITE proved to be actively confusing - the meanings are "data destination, as used with read(2)" and "data source, as used with write(2)", but people keep interpreting those as "we read data from it" and "we write data to it", i.e. exactly the wrong way. Call them ITER_DEST and ITER_SOURCE - at least that is harder to misinterpret... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Stable-dep-of: 6dd88fd59da8 ("vhost-scsi: unbreak any layout for response") Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Vlastimil Babka
|
e1275a6b2d |
Revert "mm/compaction: fix set skip in fast_find_migrateblock"
commit 95e7a450b8190673675836bfef236262ceff084a upstream. This reverts commit |
||
Kees Cook
|
13aa82f007 |
panic: Consolidate open-coded panic_on_warn checks
commit 79cc1ba7badf9e7a12af99695a557e9ce27ee967 upstream. Several run-time checkers (KASAN, UBSAN, KFENCE, KCSAN, sched) roll their own warnings, and each check "panic_on_warn". Consolidate this into a single function so that future instrumentation can be added in a single location. Cc: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Segall <bsegall@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: David Gow <davidgow@google.com> Cc: tangmeng <tangmeng@uniontech.com> Cc: Jann Horn <jannh@google.com> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Petr Mladek <pmladek@suse.com> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com> Cc: Tiezhu Yang <yangtiezhu@loongson.cn> Cc: kasan-dev@googlegroups.com Cc: linux-mm@kvack.org Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Link: https://lore.kernel.org/r/20221117234328.594699-4-keescook@chromium.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Zach O'Keefe
|
f2f52dd4f5 |
mm/MADV_COLLAPSE: don't expand collapse when vm_end is past requested end
commit 52dc031088f00e323140ece4004e70c33153c6dd upstream.
MADV_COLLAPSE acts on one hugepage-aligned/sized region at a time, until
it has collapsed all eligible memory contained within the bounds supplied
by the user.
At the top of each hugepage iteration we (re)lock mmap_lock and
(re)validate the VMA for eligibility and update variables that might have
changed while mmap_lock was dropped. One thing that might occur is that
the VMA could be resized, and as such, we refetch vma->vm_end to make sure
we don't collapse past the end of the VMA's new end.
However, it's possible that when refetching vma->vm_end that we expand the
region acted on by MADV_COLLAPSE if vma->vm_end is greater than size+len
supplied by the user.
The consequence here is that we may attempt to collapse more memory than
requested, possibly yielding either "too much success" or "false failure"
user-visible results. An example of the former is if we MADV_COLLAPSE the
first 4MiB of a 2TiB mmap()'d file, the incorrect refetch would cause the
operation to block for much longer than anticipated as we attempt to
collapse the entire TiB region. An example of the latter is that applying
MADV_COLLPSE to a 4MiB file mapped to the start of a 6MiB VMA will
successfully collapse the first 4MiB, then incorrectly attempt to collapse
the last hugepage-aligned/sized region -- fail (since readahead/page cache
lookup will fail) -- and report a failure to the user.
I don't believe there is a kernel stability concern here as we always
(re)validate the VMA / region accordingly. Also as Hugh mentions, the
user-visible effects are: we try to collapse more memory than requested
by the user, and/or failing an operation that should have otherwise
succeeded. An example is trying to collapse a 4MiB file contained
within a 12MiB VMA.
Don't expand the acted-on region when refetching vma->vm_end.
Link: https://lkml.kernel.org/r/20221224082035.3197140-1-zokeefe@google.com
Fixes:
|
||
David Hildenbrand
|
bcde505af1 |
mm/userfaultfd: enable writenotify while userfaultfd-wp is enabled for a VMA
commit 51d3d5eb74ff53b92dcff48b30ae2ed8edd85a32 upstream.
Currently, we don't enable writenotify when enabling userfaultfd-wp on a
shared writable mapping (for now only shmem and hugetlb). The consequence
is that vma->vm_page_prot will still include write permissions, to be set
as default for all PTEs that get remapped (e.g., mprotect(), NUMA hinting,
page migration, ...).
So far, vma->vm_page_prot is assumed to be a safe default, meaning that we
only add permissions (e.g., mkwrite) but not remove permissions (e.g.,
wrprotect). For example, when enabling softdirty tracking, we enable
writenotify. With uffd-wp on shared mappings, that changed. More details
on vma->vm_page_prot semantics were summarized in [1].
This is problematic for uffd-wp: we'd have to manually check for a uffd-wp
PTEs/PMDs and manually write-protect PTEs/PMDs, which is error prone.
Prone to such issues is any code that uses vma->vm_page_prot to set PTE
permissions: primarily pte_modify() and mk_pte().
Instead, let's enable writenotify such that PTEs/PMDs/... will be mapped
write-protected as default and we will only allow selected PTEs that are
definitely safe to be mapped without write-protection (see
can_change_pte_writable()) to be writable. In the future, we might want
to enable write-bit recovery -- e.g., can_change_pte_writable() -- at more
locations, for example, also when removing uffd-wp protection.
This fixes two known cases:
(a) remove_migration_pte() mapping uffd-wp'ed PTEs writable, resulting
in uffd-wp not triggering on write access.
(b) do_numa_page() / do_huge_pmd_numa_page() mapping uffd-wp'ed PTEs/PMDs
writable, resulting in uffd-wp not triggering on write access.
Note that do_numa_page() / do_huge_pmd_numa_page() can be reached even
without NUMA hinting (which currently doesn't seem to be applicable to
shmem), for example, by using uffd-wp with a PROT_WRITE shmem VMA. On
such a VMA, userfaultfd-wp is currently non-functional.
Note that when enabling userfaultfd-wp, there is no need to walk page
tables to enforce the new default protection for the PTEs: we know that
they cannot be uffd-wp'ed yet, because that can only happen after enabling
uffd-wp for the VMA in general.
Also note that this makes mprotect() on ranges with uffd-wp'ed PTEs not
accidentally set the write bit -- which would result in uffd-wp not
triggering on later write access. This commit makes uffd-wp on shmem
behave just like uffd-wp on anonymous memory in that regard, even though,
mixing mprotect with uffd-wp is controversial.
[1] https://lkml.kernel.org/r/92173bad-caa3-6b43-9d1e-9a471fdbc184@redhat.com
Link: https://lkml.kernel.org/r/20221209080912.7968-1-david@redhat.com
Fixes:
|
||
Peter Xu
|
3b8ede6665 |
mm/hugetlb: pre-allocate pgtable pages for uffd wr-protects
commit fed15f1345dc8a7fc8baa81e8b55c3ba010d7f4b upstream.
Userfaultfd-wp uses pte markers to mark wr-protected pages for both shmem
and hugetlb. Shmem has pre-allocation ready for markers, but hugetlb path
was overlooked.
Doing so by calling huge_pte_alloc() if the initial pgtable walk fails to
find the huge ptep. It's possible that huge_pte_alloc() can fail with
high memory pressure, in that case stop the loop immediately and fail
silently. This is not the most ideal solution but it matches with what we
do with shmem meanwhile it avoids the splat in dmesg.
Link: https://lkml.kernel.org/r/20230104225207.1066932-2-peterx@redhat.com
Fixes:
|
||
David Hildenbrand
|
8d6a675cd7 |
mm/hugetlb: fix uffd-wp handling for migration entries in hugetlb_change_protection()
commit 44f86392bdd165da7e43d3c772aeb1e128ffd6c8 upstream.
We have to update the uffd-wp SWP PTE bit independent of the type of
migration entry. Currently, if we're unlucky and we want to install/clear
the uffd-wp bit just while we're migrating a read-only mapped hugetlb
page, we would miss to set/clear the uffd-wp bit.
Further, if we're processing a readable-exclusive migration entry and
neither want to set or clear the uffd-wp bit, we could currently end up
losing the uffd-wp bit. Note that the same would hold for writable
migrating entries, however, having a writable migration entry with the
uffd-wp bit set would already mean that something went wrong.
Note that the change from !is_readable_migration_entry ->
writable_migration_entry is harmless and actually cleaner, as raised by
Miaohe Lin and discussed in [1].
[1] https://lkml.kernel.org/r/90dd6a93-4500-e0de-2bf0-bf522c311b0c@huawei.com
Link: https://lkml.kernel.org/r/20221222205511.675832-3-david@redhat.com
Fixes:
|
||
David Hildenbrand
|
6062c992e9 |
mm/hugetlb: fix PTE marker handling in hugetlb_change_protection()
commit 0e678153f5be7e6c8d28835f5a678618da4b7a9c upstream.
Patch series "mm/hugetlb: uffd-wp fixes for hugetlb_change_protection()".
Playing with virtio-mem and background snapshots (using uffd-wp) on
hugetlb in QEMU, I managed to trigger a VM_BUG_ON(). Looking into the
details, hugetlb_change_protection() seems to not handle uffd-wp correctly
in all cases.
Patch #1 fixes my test case. I don't have reproducers for patch #2, as it
requires running into migration entries.
I did not yet check in detail yet if !hugetlb code requires similar care.
This patch (of 2):
There are two problematic cases when stumbling over a PTE marker in
hugetlb_change_protection():
(1) We protect an uffd-wp PTE marker a second time using uffd-wp: we will
end up in the "!huge_pte_none(pte)" case and mess up the PTE marker.
(2) We unprotect a uffd-wp PTE marker: we will similarly end up in the
"!huge_pte_none(pte)" case even though we cleared the PTE, because
the "pte" variable is stale. We'll mess up the PTE marker.
For example, if we later stumble over such a "wrongly modified" PTE marker,
we'll treat it like a present PTE that maps some garbage page.
This can, for example, be triggered by mapping a memfd backed by huge
pages, registering uffd-wp, uffd-wp'ing an unmapped page and (a)
uffd-wp'ing it a second time; or (b) uffd-unprotecting it; or (c)
unregistering uffd-wp. Then, ff we trigger fallocate(FALLOC_FL_PUNCH_HOLE)
on that file range, we will run into a VM_BUG_ON:
[ 195.039560] page:00000000ba1f2987 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x0
[ 195.039565] flags: 0x7ffffc0001000(reserved|node=0|zone=0|lastcpupid=0x1fffff)
[ 195.039568] raw: 0007ffffc0001000 ffffe742c0000008 ffffe742c0000008 0000000000000000
[ 195.039569] raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
[ 195.039569] page dumped because: VM_BUG_ON_PAGE(compound && !PageHead(page))
[ 195.039573] ------------[ cut here ]------------
[ 195.039574] kernel BUG at mm/rmap.c:1346!
[ 195.039579] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 195.039581] CPU: 7 PID: 4777 Comm: qemu-system-x86 Not tainted 6.0.12-200.fc36.x86_64 #1
[ 195.039583] Hardware name: LENOVO 20WNS1F81N/20WNS1F81N, BIOS N35ET50W (1.50 ) 09/15/2022
[ 195.039584] RIP: 0010:page_remove_rmap+0x45b/0x550
[ 195.039588] Code: [...]
[ 195.039589] RSP: 0018:ffffbc03c3633ba8 EFLAGS: 00010292
[ 195.039591] RAX: 0000000000000040 RBX: ffffe742c0000000 RCX: 0000000000000000
[ 195.039592] RDX: 0000000000000002 RSI: ffffffff8e7aac1a RDI: 00000000ffffffff
[ 195.039592] RBP: 0000000000000001 R08: 0000000000000000 R09: ffffbc03c3633a08
[ 195.039593] R10: 0000000000000003 R11: ffffffff8f146328 R12: ffff9b04c42754b0
[ 195.039594] R13: ffffffff8fcc6328 R14: ffffbc03c3633c80 R15: ffff9b0484ab9100
[ 195.039595] FS: 00007fc7aaf68640(0000) GS:ffff9b0bbf7c0000(0000) knlGS:0000000000000000
[ 195.039596] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 195.039597] CR2: 000055d402c49110 CR3: 0000000159392003 CR4: 0000000000772ee0
[ 195.039598] PKRU: 55555554
[ 195.039599] Call Trace:
[ 195.039600] <TASK>
[ 195.039602] __unmap_hugepage_range+0x33b/0x7d0
[ 195.039605] unmap_hugepage_range+0x55/0x70
[ 195.039608] hugetlb_vmdelete_list+0x77/0xa0
[ 195.039611] hugetlbfs_fallocate+0x410/0x550
[ 195.039612] ? _raw_spin_unlock_irqrestore+0x23/0x40
[ 195.039616] vfs_fallocate+0x12e/0x360
[ 195.039618] __x64_sys_fallocate+0x40/0x70
[ 195.039620] do_syscall_64+0x58/0x80
[ 195.039623] ? syscall_exit_to_user_mode+0x17/0x40
[ 195.039624] ? do_syscall_64+0x67/0x80
[ 195.039626] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 195.039628] RIP: 0033:0x7fc7b590651f
[ 195.039653] Code: [...]
[ 195.039654] RSP: 002b:00007fc7aaf66e70 EFLAGS: 00000293 ORIG_RAX: 000000000000011d
[ 195.039655] RAX: ffffffffffffffda RBX: 0000558ef4b7f370 RCX: 00007fc7b590651f
[ 195.039656] RDX: 0000000018000000 RSI: 0000000000000003 RDI: 000000000000000c
[ 195.039657] RBP: 0000000008000000 R08: 0000000000000000 R09: 0000000000000073
[ 195.039658] R10: 0000000008000000 R11: 0000000000000293 R12: 0000000018000000
[ 195.039658] R13: 00007fb8bbe00000 R14: 000000000000000c R15: 0000000000001000
[ 195.039661] </TASK>
Fix it by not going into the "!huge_pte_none(pte)" case if we stumble over
an exclusive marker. spin_unlock() + continue would get the job done.
However, instead, make it clearer that there are no fall-through
statements: we process each case (hwpoison, migration, marker, !none,
none) and then unlock the page table to continue with the next PTE. Let's
avoid "continue" statements and use a single spin_unlock() at the end.
Link: https://lkml.kernel.org/r/20221222205511.675832-1-david@redhat.com
Link: https://lkml.kernel.org/r/20221222205511.675832-2-david@redhat.com
Fixes:
|
||
Hugh Dickins
|
48b94e4998 |
mm/khugepaged: fix collapse_pte_mapped_thp() to allow anon_vma
commit ab0c3f1251b4670978fde0bd54161795a139b060 upstream. uprobe_write_opcode() uses collapse_pte_mapped_thp() to restore huge pmd, when removing a breakpoint from hugepage text: vma->anon_vma is always set in that case, so undo the prohibition. And MADV_COLLAPSE ought to be able to collapse some page tables in a vma which happens to have anon_vma set from CoWing elsewhere. Is anon_vma lock required? Almost not: if any page other than expected subpage of the non-anon huge page is found in the page table, collapse is aborted without making any change. However, it is possible that an anon page was CoWed from this extent in another mm or vma, in which case a concurrent lookup might look here: so keep it away while clearing pmd (but perhaps we shall go back to using pmd_lock() there in future). Note that collapse_pte_mapped_thp() is exceptional in freeing a page table without having cleared its ptes: I'm uneasy about that, and had thought pte_clear()ing appropriate; but exclusive i_mmap lock does fix the problem, and we would have to move the mmu_notification if clearing those ptes. What this fixes is not a dangerous instability. But I suggest Cc stable because uprobes "healing" has regressed in that way, so this should follow |
||
James Houghton
|
63f71b8609 |
hugetlb: unshare some PMDs when splitting VMAs
commit b30c14cd61025eeea2f2e8569606cd167ba9ad2d upstream.
PMD sharing can only be done in PUD_SIZE-aligned pieces of VMAs; however,
it is possible that HugeTLB VMAs are split without unsharing the PMDs
first.
Without this fix, it is possible to hit the uffd-wp-related WARN_ON_ONCE
in hugetlb_change_protection [1]. The key there is that
hugetlb_unshare_all_pmds will not attempt to unshare PMDs in
non-PUD_SIZE-aligned sections of the VMA.
It might seem ideal to unshare in hugetlb_vm_op_open, but we need to
unshare in both the new and old VMAs, so unsharing in hugetlb_vm_op_split
seems natural.
[1]: https://lore.kernel.org/linux-mm/CADrL8HVeOkj0QH5VZZbRzybNE8CG-tEGFshnA+bG9nMgcWtBSg@mail.gmail.com/
Link: https://lkml.kernel.org/r/20230104231910.1464197-1-jthoughton@google.com
Fixes:
|
||
Zach O'Keefe
|
1cb76f5669 |
mm/shmem: restore SHMEM_HUGE_DENY precedence over MADV_COLLAPSE
commit 3de0c269adc6c2fac0bb1fb11965f0de699dc32b upstream.
SHMEM_HUGE_DENY is for emergency use by the admin, to disable allocation
of shmem huge pages if, for example, a dangerous bug is found in their
usage: see "deny" in Documentation/mm/transhuge.rst. An app using
madvise(,,MADV_COLLAPSE) should not be allowed to override it: restore its
precedence over shmem_huge_force.
Restore SHMEM_HUGE_DENY precedence over MADV_COLLAPSE.
Link: https://lkml.kernel.org/r/20221224082035.3197140-2-zokeefe@google.com
Fixes:
|
||
Liam Howlett
|
e733121383 |
nommu: fix split_vma() map_count error
commit fd9edbdbdcde6b489ce59f326755ef16a2ffadd7 upstream.
During the maple tree conversion of nommu, an error in counting the VMAs
was introduced by counting the existing VMA again. The counting used to
be decremented by one and incremented by two, but now it only increments
by two. Fix the counting error by moving the increment outside the
setup_vma_to_mm() function to the callers.
Link: https://lkml.kernel.org/r/20230109205809.956325-1-Liam.Howlett@oracle.com
Fixes:
|
||
Liam Howlett
|
6447569f4f |
nommu: fix do_munmap() error path
commit 80be727ec87225797771a39f3e6801baf291faaf upstream.
When removing a VMA from the tree fails due to no memory, do not free the
VMA since a reference still exists.
Link: https://lkml.kernel.org/r/20230109205708.956103-1-Liam.Howlett@oracle.com
Fixes:
|
||
Liam Howlett
|
1442d51026 |
nommu: fix memory leak in do_mmap() error path
commit 7f31cced5724e6d414fe750aa1cd7e7b578ec22f upstream.
The preallocation of the maple tree nodes may leak if the error path to
"error_just_free" is taken. Fix this by moving the freeing of the maple
tree nodes to a shared location for all error paths.
Link: https://lkml.kernel.org/r/20230109205507.955577-1-Liam.Howlett@oracle.com
Fixes:
|
||
Aaron Thompson
|
68a6f7dbf8 |
mm: Always release pages to the buddy allocator in memblock_free_late().
commit 115d9d77bb0f9152c60b6e8646369fa7f6167593 upstream.
If CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, memblock_free_pages()
only releases pages to the buddy allocator if they are not in the
deferred range. This is correct for free pages (as defined by
for_each_free_mem_pfn_range_in_zone()) because free pages in the
deferred range will be initialized and released as part of the deferred
init process. memblock_free_pages() is called by memblock_free_late(),
which is used to free reserved ranges after memblock_free_all() has
run. All pages in reserved ranges have been initialized at that point,
and accordingly, those pages are not touched by the deferred init
process. This means that currently, if the pages that
memblock_free_late() intends to release are in the deferred range, they
will never be released to the buddy allocator. They will forever be
reserved.
In addition, memblock_free_pages() calls kmsan_memblock_free_pages(),
which is also correct for free pages but is not correct for reserved
pages. KMSAN metadata for reserved pages is initialized by
kmsan_init_shadow(), which runs shortly before memblock_free_all().
For both of these reasons, memblock_free_pages() should only be called
for free pages, and memblock_free_late() should call __free_pages_core()
directly instead.
One case where this issue can occur in the wild is EFI boot on
x86_64. The x86 EFI code reserves all EFI boot services memory ranges
via memblock_reserve() and frees them later via memblock_free_late()
(efi_reserve_boot_services() and efi_free_boot_services(),
respectively). If any of those ranges happens to fall within the
deferred init range, the pages will not be released and that memory will
be unavailable.
For example, on an Amazon EC2 t3.micro VM (1 GB) booting via EFI:
v6.2-rc2:
# grep -E 'Node|spanned|present|managed' /proc/zoneinfo
Node 0, zone DMA
spanned 4095
present 3999
managed 3840
Node 0, zone DMA32
spanned 246652
present 245868
managed 178867
v6.2-rc2 + patch:
# grep -E 'Node|spanned|present|managed' /proc/zoneinfo
Node 0, zone DMA
spanned 4095
present 3999
managed 3840
Node 0, zone DMA32
spanned 246652
present 245868
managed 222816 # +43,949 pages
Fixes:
|
||
Mike Kravetz
|
17183187dc |
hugetlb: really allocate vma lock for all sharable vmas
commit e700898fa075c69b3ae02b702ab57fb75e1a82ec upstream. Commit |
||
NARIBAYASHI Akira
|
b3b3212725 |
mm, compaction: fix fast_isolate_around() to stay within boundaries
commit be21b32afe470c5ae98e27e49201158a47032942 upstream. Depending on the memory configuration, isolate_freepages_block() may scan pages out of the target range and causes panic. Panic can occur on systems with multiple zones in a single pageblock. The reason it is rare is that it only happens in special configurations. Depending on how many similar systems there are, it may be a good idea to fix this problem for older kernels as well. The problem is that pfn as argument of fast_isolate_around() could be out of the target range. Therefore we should consider the case where pfn < start_pfn, and also the case where end_pfn < pfn. This problem should have been addressd by the commit |
||
Arnd Bergmann
|
2cec280c49 |
kmsan: include linux/vmalloc.h
commit aaa746ad8b30f38ef89a301faf339ef1c19cf33a upstream.
This is needed for the vmap/vunmap declarations:
mm/kmsan/kmsan_test.c:316:9: error: implicit declaration of function 'vmap' is invalid in C99 [-Werror,-Wimplicit-function-declaration]
vbuf = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
^
mm/kmsan/kmsan_test.c:316:29: error: use of undeclared identifier 'VM_MAP'
vbuf = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
^
mm/kmsan/kmsan_test.c:322:3: error: implicit declaration of function 'vunmap' is invalid in C99 [-Werror,-Wimplicit-function-declaration]
vunmap(vbuf);
^
Link: https://lkml.kernel.org/r/20221215163046.4079767-1-arnd@kernel.org
Fixes:
|
||
Arnd Bergmann
|
dace33a189 |
kmsan: export kmsan_handle_urb
commit 7ba594d700998bafa96a75360d2e060aa39156d2 upstream.
USB support can be in a loadable module, and this causes a link failure
with KMSAN:
ERROR: modpost: "kmsan_handle_urb" [drivers/usb/core/usbcore.ko] undefined!
Export the symbol so it can be used by this module.
Link: https://lkml.kernel.org/r/20221215162710.3802378-1-arnd@kernel.org
Fixes:
|
||
Mathieu Desnoyers
|
0ce4cc6d26 |
mm/mempolicy: fix memory leak in set_mempolicy_home_node system call
commit 38ce7c9bdfc228c14d7621ba36d3eebedd9d4f76 upstream.
When encountering any vma in the range with policy other than MPOL_BIND or
MPOL_PREFERRED_MANY, an error is returned without issuing a mpol_put on
the policy just allocated with mpol_dup().
This allows arbitrary users to leak kernel memory.
Link: https://lkml.kernel.org/r/20221215194621.202816-1-mathieu.desnoyers@efficios.com
Fixes:
|
||
Vlastimil Babka
|
4d528dab40 |
mm, mremap: fix mremap() expanding vma with addr inside vma
commit 6f12be792fde994ed934168f93c2a0d2a0cf0bc5 upstream. Since 6.1 we have noticed random rpm install failures that were tracked to mremap() returning -ENOMEM and to commit |
||
David Hildenbrand
|
5cfb9a60ed |
mm/gup: disallow FOLL_FORCE|FOLL_WRITE on hugetlb mappings
commit f347454d034184b4f0a2caf6e14daf7848cea01c upstream. hugetlb does not support fake write-faults (write faults without write permissions). However, we are currently able to trigger a FAULT_FLAG_WRITE fault on a VMA without VM_WRITE. If we'd ever want to support FOLL_FORCE|FOLL_WRITE, we'd have to teach hugetlb to: (1) Leave the page mapped R/O after the fake write-fault, like maybe_mkwrite() does. (2) Allow writing to an exclusive anon page that's mapped R/O when FOLL_FORCE is set, like can_follow_write_pte(). E.g., __follow_hugetlb_must_fault() needs adjustment. For now, it's not clear if that added complexity is really required. History tolds us that FOLL_FORCE is dangerous and that we better limit its use to a bare minimum. -------------------------------------------------------------------------- #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <unistd.h> #include <errno.h> #include <stdint.h> #include <sys/mman.h> #include <linux/mman.h> int main(int argc, char **argv) { char *map; int mem_fd; map = mmap(NULL, 2 * 1024 * 1024u, PROT_READ, MAP_PRIVATE|MAP_ANON|MAP_HUGETLB|MAP_HUGE_2MB, -1, 0); if (map == MAP_FAILED) { fprintf(stderr, "mmap() failed: %d\n", errno); return 1; } mem_fd = open("/proc/self/mem", O_RDWR); if (mem_fd < 0) { fprintf(stderr, "open(/proc/self/mem) failed: %d\n", errno); return 1; } if (pwrite(mem_fd, "0", 1, (uintptr_t) map) == 1) { fprintf(stderr, "write() succeeded, which is unexpected\n"); return 1; } printf("write() failed as expected: %d\n", errno); return 0; } -------------------------------------------------------------------------- Fortunately, we have a sanity check in hugetlb_wp() in place ever since commit |
||
Linus Torvalds
|
4cee37b3a4 |
9 hotfixes. 6 for MM, 3 for other areas. Four of these patches address
post-6.0 issues. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5Ur2AAKCRDdBJ7gKXxA jsGmAQDWSq6z9fVgk30XpMr/X7t5c6NTPw5GocVpdwG8iqch3gEAjEs5/Kcd/mx4 d1dLaJFu1u3syessp8nJrNr1HANIog8= =L8zu -----END PGP SIGNATURE----- Merge tag 'mm-hotfixes-stable-2022-12-10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc fixes from Andrew Morton: "Nine hotfixes. Six for MM, three for other areas. Four of these patches address post-6.0 issues" * tag 'mm-hotfixes-stable-2022-12-10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: memcg: fix possible use-after-free in memcg_write_event_control() MAINTAINERS: update Muchun Song's email mm/gup: fix gup_pud_range() for dax mmap: fix do_brk_flags() modifying obviously incorrect VMAs mm/swap: fix SWP_PFN_BITS with CONFIG_PHYS_ADDR_T_64BIT on 32bit tmpfs: fix data loss from failed fallocate kselftests: cgroup: update kmem test precision tolerance mm: do not BUG_ON missing brk mapping, because userspace can unmap it mailmap: update Matti Vaittinen's email address |
||
Tejun Heo
|
4a7ba45b1a |
memcg: fix possible use-after-free in memcg_write_event_control()
memcg_write_event_control() accesses the dentry->d_name of the specified control fd to route the write call. As a cgroup interface file can't be renamed, it's safe to access d_name as long as the specified file is a regular cgroup file. Also, as these cgroup interface files can't be removed before the directory, it's safe to access the parent too. Prior to |
||
John Starks
|
fcd0ccd836 |
mm/gup: fix gup_pud_range() for dax
For dax pud, pud_huge() returns true on x86. So the function works as long as hugetlb is configured. However, dax doesn't depend on hugetlb. Commit |
||
Liam Howlett
|
6c28ca6485 |
mmap: fix do_brk_flags() modifying obviously incorrect VMAs
Add more sanity checks to the VMA that do_brk_flags() will expand. Ensure
the VMA matches basic merge requirements within the function before
calling can_vma_merge_after().
Drop the duplicate checks from vm_brk_flags() since they will be enforced
later.
The old code would expand file VMAs on brk(), which is functionally
wrong and also dangerous in terms of locking because the brk() path
isn't designed for file VMAs and therefore doesn't lock the file
mapping. Checking can_vma_merge_after() ensures that new anonymous
VMAs can't be merged into file VMAs.
See https://lore.kernel.org/linux-mm/CAG48ez1tJZTOjS_FjRZhvtDA-STFmdw8PEizPDwMGFd_ui0Nrw@mail.gmail.com/
Link: https://lkml.kernel.org/r/20221205192304.1957418-1-Liam.Howlett@oracle.com
Fixes:
|
||
Hugh Dickins
|
44bcabd70c |
tmpfs: fix data loss from failed fallocate
Fix tmpfs data loss when the fallocate system call is interrupted by a
signal, or fails for some other reason. The partial folio handling in
shmem_undo_range() forgot to consider this unfalloc case, and was liable
to erase or truncate out data which had already been committed earlier.
It turns out that none of the partial folio handling there is appropriate
for the unfalloc case, which just wants to proceed to removal of whole
folios: which find_get_entries() provides, even when partially covered.
Original patch by Rui Wang.
Link: https://lore.kernel.org/linux-mm/33b85d82.7764.1842e9ab207.Coremail.chenguoqic@163.com/
Link: https://lkml.kernel.org/r/a5dac112-cf4b-7af-a33-f386e347fd38@google.com
Fixes:
|
||
Jason A. Donenfeld
|
f5ad508340 |
mm: do not BUG_ON missing brk mapping, because userspace can unmap it
The following program will trigger the BUG_ON that this patch removes,
because the user can munmap() mm->brk:
#include <sys/syscall.h>
#include <sys/mman.h>
#include <assert.h>
#include <unistd.h>
static void *brk_now(void)
{
return (void *)syscall(SYS_brk, 0);
}
static void brk_set(void *b)
{
assert(syscall(SYS_brk, b) != -1);
}
int main(int argc, char *argv[])
{
void *b = brk_now();
brk_set(b + 4096);
assert(munmap(b - 4096, 4096 * 2) == 0);
brk_set(b);
return 0;
}
Compile that with musl, since glibc actually uses brk(), and then
execute it, and it'll hit this splat:
kernel BUG at mm/mmap.c:229!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 12 PID: 1379 Comm: a.out Tainted: G S U 6.1.0-rc7+ #419
RIP: 0010:__do_sys_brk+0x2fc/0x340
Code: 00 00 4c 89 ef e8 04 d3 fe ff eb 9a be 01 00 00 00 4c 89 ff e8 35 e0 fe ff e9 6e ff ff ff 4d 89 a7 20>
RSP: 0018:ffff888140bc7eb0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000007e7000 RCX: ffff8881020fe000
RDX: ffff8881020fe001 RSI: ffff8881955c9b00 RDI: ffff8881955c9b08
RBP: 0000000000000000 R08: ffff8881955c9b00 R09: 00007ffc77844000
R10: 0000000000000000 R11: 0000000000000001 R12: 00000000007e8000
R13: 00000000007e8000 R14: 00000000007e7000 R15: ffff8881020fe000
FS: 0000000000604298(0000) GS:ffff88901f700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000603fe0 CR3: 000000015ba9a005 CR4: 0000000000770ee0
PKRU: 55555554
Call Trace:
<TASK>
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x400678
Code: 10 4c 8d 41 08 4c 89 44 24 10 4c 8b 01 8b 4c 24 08 83 f9 2f 77 0a 4c 8d 4c 24 20 4c 01 c9 eb 05 48 8b>
RSP: 002b:00007ffc77863890 EFLAGS: 00000212 ORIG_RAX: 000000000000000c
RAX: ffffffffffffffda RBX: 000000000040031b RCX: 0000000000400678
RDX: 00000000004006a1 RSI: 00000000007e6000 RDI: 00000000007e7000
RBP: 00007ffc77863900 R08: 0000000000000000 R09: 00000000007e6000
R10: 00007ffc77863930 R11: 0000000000000212 R12: 00007ffc77863978
R13: 00007ffc77863988 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Instead, just return the old brk value if the original mapping has been
removed.
[akpm@linux-foundation.org: fix changelog, per Liam]
Link: https://lkml.kernel.org/r/20221202162724.2009-1-Jason@zx2c4.com
Fixes:
|
||
Tejun Heo
|
fbf8321238 |
memcg: Fix possible use-after-free in memcg_write_event_control()
memcg_write_event_control() accesses the dentry->d_name of the specified control fd to route the write call. As a cgroup interface file can't be renamed, it's safe to access d_name as long as the specified file is a regular cgroup file. Also, as these cgroup interface files can't be removed before the directory, it's safe to access the parent too. Prior to |
||
Linus Torvalds
|
0ba09b1733 |
Revert "mm: align larger anonymous mappings on THP boundaries"
This reverts commit
|
||
Linus Torvalds
|
bdaa78c6aa |
15 hotfixes. 11 marked cc:stable. Only three or four of the latter
address post-6.0 issues, which is hopefully a sign that things are converging. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY4pQpQAKCRDdBJ7gKXxA jquxAP9Lqif7CGDgdq8uWY2hHS/Ujc3k7Ohgyzs37olnCuU8KwEA6/J7SpjsBgtY OfzvnwxpCTh8Kfzu/oNckIHo/EEiIA8= =o6qT -----END PGP SIGNATURE----- Merge tag 'mm-hotfixes-stable-2022-12-02' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc hotfixes from Andrew Morton: "15 hotfixes, 11 marked cc:stable. Only three or four of the latter address post-6.0 issues, which is hopefully a sign that things are converging" * tag 'mm-hotfixes-stable-2022-12-02' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: revert "kbuild: fix -Wimplicit-function-declaration in license_is_gpl_compatible" Kconfig.debug: provide a little extra FRAME_WARN leeway when KASAN is enabled drm/amdgpu: temporarily disable broken Clang builds due to blown stack-frame mm/khugepaged: invoke MMU notifiers in shmem/file collapse paths mm/khugepaged: fix GUP-fast interaction by sending IPI mm/khugepaged: take the right locks for page table retraction mm: migrate: fix THP's mapcount on isolation mm: introduce arch_has_hw_nonleaf_pmd_young() mm: add dummy pmd_young() for architectures not having it mm/damon/sysfs: fix wrong empty schemes assumption under online tuning in damon_sysfs_set_schemes() tools/vm/slabinfo-gnuplot: use "grep -E" instead of "egrep" nilfs2: fix NULL pointer dereference in nilfs_palloc_commit_free_entry() hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing madvise: use zap_page_range_single for madvise dontneed mm: replace VM_WARN_ON to pr_warn if the node is offline with __GFP_THISNODE |
||
Jann Horn
|
f268f6cf87 |
mm/khugepaged: invoke MMU notifiers in shmem/file collapse paths
Any codepath that zaps page table entries must invoke MMU notifiers to ensure that secondary MMUs (like KVM) don't keep accessing pages which aren't mapped anymore. Secondary MMUs don't hold their own references to pages that are mirrored over, so failing to notify them can lead to page use-after-free. I'm marking this as addressing an issue introduced in commit |
||
Jann Horn
|
2ba99c5e08 |
mm/khugepaged: fix GUP-fast interaction by sending IPI
Since commit |
||
Jann Horn
|
8d3c106e19 |
mm/khugepaged: take the right locks for page table retraction
pagetable walks on address ranges mapped by VMAs can be done under the
mmap lock, the lock of an anon_vma attached to the VMA, or the lock of the
VMA's address_space. Only one of these needs to be held, and it does not
need to be held in exclusive mode.
Under those circumstances, the rules for concurrent access to page table
entries are:
- Terminal page table entries (entries that don't point to another page
table) can be arbitrarily changed under the page table lock, with the
exception that they always need to be consistent for
hardware page table walks and lockless_pages_from_mm().
This includes that they can be changed into non-terminal entries.
- Non-terminal page table entries (which point to another page table)
can not be modified; readers are allowed to READ_ONCE() an entry, verify
that it is non-terminal, and then assume that its value will stay as-is.
Retracting a page table involves modifying a non-terminal entry, so
page-table-level locks are insufficient to protect against concurrent page
table traversal; it requires taking all the higher-level locks under which
it is possible to start a page walk in the relevant range in exclusive
mode.
The collapse_huge_page() path for anonymous THP already follows this rule,
but the shmem/file THP path was getting it wrong, making it possible for
concurrent rmap-based operations to cause corruption.
Link: https://lkml.kernel.org/r/20221129154730.2274278-1-jannh@google.com
Link: https://lkml.kernel.org/r/20221128180252.1684965-1-jannh@google.com
Link: https://lkml.kernel.org/r/20221125213714.4115729-1-jannh@google.com
Fixes:
|
||
Gavin Shan
|
829ae0f81c |
mm: migrate: fix THP's mapcount on isolation
The issue is reported when removing memory through virtio_mem device. The
transparent huge page, experienced copy-on-write fault, is wrongly
regarded as pinned. The transparent huge page is escaped from being
isolated in isolate_migratepages_block(). The transparent huge page can't
be migrated and the corresponding memory block can't be put into offline
state.
Fix it by replacing page_mapcount() with total_mapcount(). With this, the
transparent huge page can be isolated and migrated, and the memory block
can be put into offline state. Besides, The page's refcount is increased
a bit earlier to avoid the page is released when the check is executed.
Link: https://lkml.kernel.org/r/20221124095523.31061-1-gshan@redhat.com
Fixes:
|
||
Juergen Gross
|
4aaf269c76 |
mm: introduce arch_has_hw_nonleaf_pmd_young()
When running as a Xen PV guests commit |
||
SeongJae Park
|
95bc35f9be |
mm/damon/sysfs: fix wrong empty schemes assumption under online tuning in damon_sysfs_set_schemes()
Commit |
||
Mike Kravetz
|
04ada095dc |
hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing
madvise(MADV_DONTNEED) ends up calling zap_page_range() to clear page
tables associated with the address range. For hugetlb vmas,
zap_page_range will call __unmap_hugepage_range_final. However,
__unmap_hugepage_range_final assumes the passed vma is about to be removed
and deletes the vma_lock to prevent pmd sharing as the vma is on the way
out. In the case of madvise(MADV_DONTNEED) the vma remains, but the
missing vma_lock prevents pmd sharing and could potentially lead to issues
with truncation/fault races.
This issue was originally reported here [1] as a BUG triggered in
page_try_dup_anon_rmap. Prior to the introduction of the hugetlb
vma_lock, __unmap_hugepage_range_final cleared the VM_MAYSHARE flag to
prevent pmd sharing. Subsequent faults on this vma were confused as
VM_MAYSHARE indicates a sharable vma, but was not set so page_mapping was
not set in new pages added to the page table. This resulted in pages that
appeared anonymous in a VM_SHARED vma and triggered the BUG.
Address issue by adding a new zap flag ZAP_FLAG_UNMAP to indicate an unmap
call from unmap_vmas(). This is used to indicate the 'final' unmapping of
a hugetlb vma. When called via MADV_DONTNEED, this flag is not set and
the vm_lock is not deleted.
[1] https://lore.kernel.org/lkml/CAO4mrfdLMXsao9RF4fUE8-Wfde8xmjsKrTNMNC9wjUb6JudD0g@mail.gmail.com/
Link: https://lkml.kernel.org/r/20221114235507.294320-3-mike.kravetz@oracle.com
Fixes:
|
||
Mike Kravetz
|
21b85b0952 |
madvise: use zap_page_range_single for madvise dontneed
This series addresses the issue first reported in [1], and fully described
in patch 2. Patches 1 and 2 address the user visible issue and are tagged
for stable backports.
While exploring solutions to this issue, related problems with mmu
notification calls were discovered. This is addressed in the patch
"hugetlb: remove duplicate mmu notifications:". Since there are no user
visible effects, this third is not tagged for stable backports.
Previous discussions suggested further cleanup by removing the
routine zap_page_range. This is possible because zap_page_range_single
is now exported, and all callers of zap_page_range pass ranges entirely
within a single vma. This work will be done in a later patch so as not
to distract from this bug fix.
[1] https://lore.kernel.org/lkml/CAO4mrfdLMXsao9RF4fUE8-Wfde8xmjsKrTNMNC9wjUb6JudD0g@mail.gmail.com/
This patch (of 2):
Expose the routine zap_page_range_single to zap a range within a single
vma. The madvise routine madvise_dontneed_single_vma can use this routine
as it explicitly operates on a single vma. Also, update the mmu
notification range in zap_page_range_single to take hugetlb pmd sharing
into account. This is required as MADV_DONTNEED supports hugetlb vmas.
Link: https://lkml.kernel.org/r/20221114235507.294320-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20221114235507.294320-2-mike.kravetz@oracle.com
Fixes:
|
||
Linus Torvalds
|
0b1dcc2cf5 |
24 hotfixes. 8 marked cc:stable and 16 for post-6.0 issues.
There have been a lot of hotfixes this cycle, and this is quite a large batch given how far we are into the -rc cycle. Presumably a reflection of the unusually large amount of MM material which went into 6.1-rc1. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY4Bd6gAKCRDdBJ7gKXxA jvX6AQCsG1ld24kMpdD+70XXUyC29g/6/jribgtZApHyDYjxSwD/WmLNpPlUPRax WB071Y5w65vjSTUKvwU0OLGbHwyxgAw= =swD5 -----END PGP SIGNATURE----- Merge tag 'mm-hotfixes-stable-2022-11-24' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull hotfixes from Andrew Morton: "24 MM and non-MM hotfixes. 8 marked cc:stable and 16 for post-6.0 issues. There have been a lot of hotfixes this cycle, and this is quite a large batch given how far we are into the -rc cycle. Presumably a reflection of the unusually large amount of MM material which went into 6.1-rc1" * tag 'mm-hotfixes-stable-2022-11-24' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (24 commits) test_kprobes: fix implicit declaration error of test_kprobes nilfs2: fix nilfs_sufile_mark_dirty() not set segment usage as dirty mm/cgroup/reclaim: fix dirty pages throttling on cgroup v1 mm: fix unexpected changes to {failslab|fail_page_alloc}.attr swapfile: fix soft lockup in scan_swap_map_slots hugetlb: fix __prep_compound_gigantic_page page flag setting kfence: fix stack trace pruning proc/meminfo: fix spacing in SecPageTables mm: multi-gen LRU: retry folios written back while isolated mailmap: update email address for Satya Priya mm/migrate_device: return number of migrating pages in args->cpages kbuild: fix -Wimplicit-function-declaration in license_is_gpl_compatible MAINTAINERS: update Alex Hung's email address mailmap: update Alex Hung's email address mm: mmap: fix documentation for vma_mas_szero mm/damon/sysfs-schemes: skip stats update if the scheme directory is removed mm/memory: return vm_fault_t result from migrate_to_ram() callback mm: correctly charge compressed memory to its memcg ipc/shm: call underlying open/close vm_ops gcov: clang: fix the buffer overflow issue ... |
||
Aneesh Kumar K.V
|
81a70c21d9 |
mm/cgroup/reclaim: fix dirty pages throttling on cgroup v1
balance_dirty_pages doesn't do the required dirty throttling on cgroupv1.
See commit
|
||
Qi Zheng
|
ea4452de2a |
mm: fix unexpected changes to {failslab|fail_page_alloc}.attr
When we specify __GFP_NOWARN, we only expect that no warnings will be
issued for current caller. But in the __should_failslab() and
__should_fail_alloc_page(), the local GFP flags alter the global
{failslab|fail_page_alloc}.attr, which is persistent and shared by all
tasks. This is not what we expected, let's fix it.
[akpm@linux-foundation.org: unexport should_fail_ex()]
Link: https://lkml.kernel.org/r/20221118100011.2634-1-zhengqi.arch@bytedance.com
Fixes:
|
||
Chen Wandun
|
de1ccfb648 |
swapfile: fix soft lockup in scan_swap_map_slots
A softlockup occurs in scan free swap slot under huge memory pressure.
The test scenario is: 64 CPU cores, 64GB memory, and 28 zram devices, the
disksize of each zram device is 50MB.
LATENCY_LIMIT is used to prevent softlockups in scan_swap_map_slots(), but
the real loop number would more than LATENCY_LIMIT because of "goto checks
and goto scan" repeatly without decreasing latency limit.
In order to fix it, decrease latency_ration in advance.
There is also a suspicious place that will cause softlockups in
get_swap_pages(). In this function, the "goto start_over" may result in
continuous scanning of the swap partition. If there is no cond_sched in
scan_swap_map_slots(), it would cause a softlockup (I am not sure about
this).
WARN: soft lockup - CPU#11 stuck for 11s! [kswapd0:466]
CPU: 11 PID: 466 Comm: kswapd@ Kdump: loaded Tainted: G
dump backtrace+0x0/0x1le4
show stack+0x20/@x2c
dump_stack+0xd8/0x140
watchdog print_info+0x48/0x54
watchdog_process_before_softlockup+0x98/0xa0
watchdog_timer_fn+0xlac/0x2d0
hrtimer_rum_queues+0xb0/0x130
hrtimer_interrupt+0x13c/0x3c0
arch_timer_handler_virt+0x3c/0x50
handLe_percpu_devid_irq+0x90/0x1f4
handle domain irq+0x84/0x100
gic_handle_irq+0x88/0x2b0
e11 ira+0xhB/Bx140
scan_swap_map_slots+0x678/0x890
get_swap_pages+0x29c/0x440
get_swap_page+0x120/0x2e0
add_to_swap+UX2U/0XyC
shrink_page_list+0x5d0/0x152c
shrink_inactive_list+0xl6c/Bx500
shrink_lruvec+0x270/0x304
WARN: soft lockup - CPU#32 stuck for 11s! [stress-ng:309915]
watchdog_timer_fn+0x1ac/0x2d0
__run_hrtimer+0x98/0x2a0
__hrtimer_run_queues+0xb0/0x130
hrtimer_interrupt+0x13c/0x3c0
arch_timer_handler_virt+0x3c/0x50
handle_percpu_devid_irq+0x90/0x1f4
__handle_domain_irq+0x84/0x100
gic_handle_irq+0x88/0x2b0
el1_irq+0xb8/0x140
get_swap_pages+0x1e8/0x440
get_swap_page+0x1c8/0x2e0
add_to_swap+0x20/0x9c
shrink_page_list+0x5d0/0x152c
reclaim_pages+0x160/0x310
madvise_cold_or_pageout_pte_range+0x7bc/0xe3c
walk_pmd_range.isra.0+0xac/0x22c
walk_pud_range+0xfc/0x1c0
walk_pgd_range+0x158/0x1b0
__walk_page_range+0x64/0x100
walk_page_range+0x104/0x150
Link: https://lkml.kernel.org/r/20221118133850.3360369-1-chenwandun@huawei.com
Fixes:
|
||
Mike Kravetz
|
7fb0728a9b |
hugetlb: fix __prep_compound_gigantic_page page flag setting
Commit |
||
Marco Elver
|
747c0f35f2 |
kfence: fix stack trace pruning
Commit |
||
Yu Zhao
|
359a5e1416 |
mm: multi-gen LRU: retry folios written back while isolated
The page reclaim isolates a batch of folios from the tail of one of the
LRU lists and works on those folios one by one. For a suitable
swap-backed folio, if the swap device is async, it queues that folio for
writeback. After the page reclaim finishes an entire batch, it puts back
the folios it queued for writeback to the head of the original LRU list.
In the meantime, the page writeback flushes the queued folios also by
batches. Its batching logic is independent from that of the page reclaim.
For each of the folios it writes back, the page writeback calls
folio_rotate_reclaimable() which tries to rotate a folio to the tail.
folio_rotate_reclaimable() only works for a folio after the page reclaim
has put it back. If an async swap device is fast enough, the page
writeback can finish with that folio while the page reclaim is still
working on the rest of the batch containing it. In this case, that folio
will remain at the head and the page reclaim will not retry it before
reaching there.
This patch adds a retry to evict_folios(). After evict_folios() has
finished an entire batch and before it puts back folios it cannot free
immediately, it retries those that may have missed the rotation.
Before this patch, ~60% of folios swapped to an Intel Optane missed
folio_rotate_reclaimable(). After this patch, ~99% of missed folios were
reclaimed upon retry.
This problem affects relatively slow async swap devices like Samsung 980
Pro much less and does not affect sync swap devices like zram or zswap at
all.
Link: https://lkml.kernel.org/r/20221116013808.3995280-1-yuzhao@google.com
Fixes:
|
||
Alistair Popple
|
44af0b45d5 |
mm/migrate_device: return number of migrating pages in args->cpages
migrate_vma->cpages originally contained a count of the number of pages migrating including non-present pages which can be populated directly on the target. Commit |
||
Ian Cowan
|
4a42344081 |
mm: mmap: fix documentation for vma_mas_szero
When the struct_mm input, mm, was changed to a struct ma_state, mas, the documentation for the function was never updated. This updates that documentation reference. Link: https://lkml.kernel.org/r/20221114003349.41235-1-ian@linux.cowan.aero Signed-off-by: Ian Cowan <ian@linux.cowan.aero> Acked-by: David Hildenbrand <david@redhat.com> Cc: Liam Howlett <liam.howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
SeongJae Park
|
8468b48661 |
mm/damon/sysfs-schemes: skip stats update if the scheme directory is removed
A DAMON sysfs interface user can start DAMON with a scheme, remove the
sysfs directory for the scheme, and then ask update of the scheme's stats.
Because the schemes stats update logic isn't aware of the situation, it
results in an invalid memory access. Fix the bug by checking if the
scheme sysfs directory exists.
Link: https://lkml.kernel.org/r/20221114175552.1951-1-sj@kernel.org
Fixes:
|
||
Alistair Popple
|
4a955bed88 |
mm/memory: return vm_fault_t result from migrate_to_ram() callback
The migrate_to_ram() callback should always succeed, but in rare cases can fail usually returning VM_FAULT_SIGBUS. Commit |
||
Li Liguang
|
cd08d80ecd |
mm: correctly charge compressed memory to its memcg
Kswapd will reclaim memory when memory pressure is high, the annonymous
memory will be compressed and stored in the zpool if zswap is enabled.
The memcg_kmem_bypass() in get_obj_cgroup_from_page() will bypass the
kernel thread and cause the compressed memory not be charged to its memory
cgroup.
Remove the memcg_kmem_bypass() call and properly charge compressed memory
to its corresponding memory cgroup.
Link: https://lore.kernel.org/linux-mm/CALvZod4nnn8BHYqAM4xtcR0Ddo2-Wr8uKm9h_CHWUaXw7g_DCg@mail.gmail.com/
Link: https://lkml.kernel.org/r/20221114194828.100822-1-hannes@cmpxchg.org
Fixes:
|
||
Gautam Menghani
|
045634ff1e |
mm/khugepaged: refactor mm_khugepaged_scan_file tracepoint to remove filename from function call
Refactor the mm_khugepaged_scan_file tracepoint to move filename
dereference to the tracepoint definition, to maintain consistency with
other tracepoints[1].
[1]:lore.kernel.org/lkml/20221024111621.3ba17e2c@gandalf.local.home/
Link: https://lkml.kernel.org/r/20221026044524.54793-1-gautammenghani201@gmail.com
Fixes:
|
||
Charan Teja Kalla
|
ed86b74874 |
mm/page_exit: fix kernel doc warning in page_ext_put()
Fix the below compiler warnings reported with 'make W=1 mm/'.
mm/page_ext.c:178: warning: Function parameter or member 'page_ext' not
described in 'page_ext_put'.
[quic_pkondeti@quicinc.com: better patch title]
Link: https://lkml.kernel.org/r/1667884582-2465-1-git-send-email-quic_charante@quicinc.com
Fixes:
|
||
Yang Shi
|
e031ff96b3 |
mm: khugepaged: allow page allocation fallback to eligible nodes
Syzbot reported the below splat: WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 __alloc_pages_node include/linux/gfp.h:221 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] WARNING: CPU: 1 PID: 3646 at include/linux/gfp.h:221 alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Modules linked in: CPU: 1 PID: 3646 Comm: syz-executor210 Not tainted 6.1.0-rc1-syzkaller-00454-ga70385240892 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 RIP: 0010:__alloc_pages_node include/linux/gfp.h:221 [inline] RIP: 0010:hpage_collapse_alloc_page mm/khugepaged.c:807 [inline] RIP: 0010:alloc_charge_hpage+0x802/0xaa0 mm/khugepaged.c:963 Code: e5 01 4c 89 ee e8 6e f9 ae ff 4d 85 ed 0f 84 28 fc ff ff e8 70 fc ae ff 48 8d 6b ff 4c 8d 63 07 e9 16 fc ff ff e8 5e fc ae ff <0f> 0b e9 96 fa ff ff 41 bc 1a 00 00 00 e9 86 fd ff ff e8 47 fc ae RSP: 0018:ffffc90003fdf7d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff888077f457c0 RSI: ffffffff81cd8f42 RDI: 0000000000000001 RBP: ffff888079388c0c R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f6b48ccf700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6b48a819f0 CR3: 00000000171e7000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> collapse_file+0x1ca/0x5780 mm/khugepaged.c:1715 hpage_collapse_scan_file+0xd6c/0x17a0 mm/khugepaged.c:2156 madvise_collapse+0x53a/0xb40 mm/khugepaged.c:2611 madvise_vma_behavior+0xd0a/0x1cc0 mm/madvise.c:1066 madvise_walk_vmas+0x1c7/0x2b0 mm/madvise.c:1240 do_madvise.part.0+0x24a/0x340 mm/madvise.c:1419 do_madvise mm/madvise.c:1432 [inline] __do_sys_madvise mm/madvise.c:1432 [inline] __se_sys_madvise mm/madvise.c:1430 [inline] __x64_sys_madvise+0x113/0x150 mm/madvise.c:1430 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6b48a4eef9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f6b48ccf318 EFLAGS: 00000246 ORIG_RAX: 000000000000001c RAX: ffffffffffffffda RBX: 00007f6b48af0048 RCX: 00007f6b48a4eef9 RDX: 0000000000000019 RSI: 0000000000600003 RDI: 0000000020000000 RBP: 00007f6b48af0040 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6b48aa53a4 R13: 00007f6b48bffcbf R14: 00007f6b48ccf400 R15: 0000000000022000 </TASK> The khugepaged code would pick up the node with the most hit as the preferred node, and also tries to do some balance if several nodes have the same hit record. Basically it does conceptually: * If the target_node <= last_target_node, then iterate from last_target_node + 1 to MAX_NUMNODES (1024 on default config) * If the max_value == node_load[nid], then target_node = nid But there is a corner case, paritucularly for MADV_COLLAPSE, that the non-existing node may be returned as preferred node. Assuming the system has 2 nodes, the target_node is 0 and the last_target_node is 1, if MADV_COLLAPSE path is hit, the max_value may be 0, then it may return 2 for target_node, but it is actually not existing (offline), so the warn is triggered. The node balance was introduced by commit |
||
Johannes Weiner
|
f53af4285d |
mm: vmscan: fix extreme overreclaim and swap floods
During proactive reclaim, we sometimes observe severe overreclaim, with several thousand times more pages reclaimed than requested. This trace was obtained from shrink_lruvec() during such an instance: prio:0 anon_cost:1141521 file_cost:7767 nr_reclaimed:4387406 nr_to_reclaim:1047 (or_factor:4190) nr=[7161123 345 578 1111] While he reclaimer requested 4M, vmscan reclaimed close to 16G, most of it by swapping. These requests take over a minute, during which the write() to memory.reclaim is unkillably stuck inside the kernel. Digging into the source, this is caused by the proportional reclaim bailout logic. This code tries to resolve a fundamental conflict: to reclaim roughly what was requested, while also aging all LRUs fairly and in accordance to their size, swappiness, refault rates etc. The way it attempts fairness is that once the reclaim goal has been reached, it stops scanning the LRUs with the smaller remaining scan targets, and adjusts the remainder of the bigger LRUs according to how much of the smaller LRUs was scanned. It then finishes scanning that remainder regardless of the reclaim goal. This works fine if priority levels are low and the LRU lists are comparable in size. However, in this instance, the cgroup that is targeted by proactive reclaim has almost no files left - they've already been squeezed out by proactive reclaim earlier - and the remaining anon pages are hot. Anon rotations cause the priority level to drop to 0, which results in reclaim targeting all of anon (a lot) and all of file (almost nothing). By the time reclaim decides to bail, it has scanned most or all of the file target, and therefor must also scan most or all of the enormous anon target. This target is thousands of times larger than the reclaim goal, thus causing the overreclaim. The bailout code hasn't changed in years, why is this failing now? The most likely explanations are two other recent changes in anon reclaim: 1. Before the series starting with commit |
||
Linus Torvalds
|
847ccab8fd |
Networking fixes for 6.1-rc6, including fixes from bpf
Current release - regressions: - tls: fix memory leak in tls_enc_skb() and tls_sw_fallback_init() Previous releases - regressions: - bridge: fix memory leaks when changing VLAN protocol - dsa: make dsa_master_ioctl() see through port_hwtstamp_get() shims - dsa: don't leak tagger-owned storage on switch driver unbind - eth: mlxsw: avoid warnings when not offloaded FDB entry with IPv6 is removed - eth: stmmac: ensure tx function is not running in stmmac_xdp_release() - eth: hns3: fix return value check bug of rx copybreak Previous releases - always broken: - kcm: close race conditions on sk_receive_queue - bpf: fix alignment problem in bpf_prog_test_run_skb() - bpf: fix writing offset in case of fault in strncpy_from_kernel_nofault - eth: macvlan: use built-in RCU list checking - eth: marvell: add sleep time after enabling the loopback bit - eth: octeon_ep: fix potential memory leak in octep_device_setup() Misc: - tcp: configurable source port perturb table size - bpf: Convert BPF_DISPATCHER to use static_call() (not ftrace) Signed-off-by: Paolo Abeni <pabeni@redhat.com> -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmN2FlMSHHBhYmVuaUBy ZWRoYXQuY29tAAoJECkkeY3MjxOkWAwQAJcV7XEB7bEssgabFkEmC4uvS/sFlyHC uSwFRn5ojaB2c56T1CnNYmitg9Wr4arC6Vca28iai6BgqB6t4qLRI/WWTsZiEPhi mt/pjNN2u9JMyaafHFHYfXnbSDWRF7kPMpNw4l3uL0vkGyjSI7LGAOP4Qh8C1h/d tNVSDZnj4Laj/3JtDf7Rk6ydCqPYnNdWxFfoZ/SQkjYZKD3Ze9tml7WJykAzCTLp yUiPC6TvHOnWIZYbB04sVVOQD4V+95TSOgEhB6wzs/CXB7iBEY+N+oCedjP9Xrfw n3ea4anBoTleDnJXJI57LhdJBkyoXncfbpbYLwXljyIgosr7XVTALvOG8XUhg/DW FzN5DWQ54jzTsx2eXFJzjQQcDIgyxazk9EdoHdqF8byCasP+fofq1JvzyqtvNSyh h8Ps6jdMZrWpXuFDVApXUhP32A/+9q+dFSYHJO681m6mf4CIaUXdm4aB1dkxDAvg PSlk797U94RQCzJgqxhrgsq1PGQPBb+qadZrAiD3aQi26g0NWCTg7uFpCeCEK2ZF fLwc2XxrwLQm1q7xQVoEg4UxPIIf0mUesvOD9sLDYop0rFIw8x0v7jdYM4kyhN3o 6FWAXKxBe3LJ9jTTsVTbZbfHYpTnS8Q2KSclBN+/dZNHwwsUPHjy17Z2Ct3o3Jlm lNbiiD30BgsD =vVJk -----END PGP SIGNATURE----- Merge tag 'net-6.1-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net Pull networking fixes from Paolo Abeni: "Including fixes from bpf. Current release - regressions: - tls: fix memory leak in tls_enc_skb() and tls_sw_fallback_init() Previous releases - regressions: - bridge: fix memory leaks when changing VLAN protocol - dsa: make dsa_master_ioctl() see through port_hwtstamp_get() shims - dsa: don't leak tagger-owned storage on switch driver unbind - eth: mlxsw: avoid warnings when not offloaded FDB entry with IPv6 is removed - eth: stmmac: ensure tx function is not running in stmmac_xdp_release() - eth: hns3: fix return value check bug of rx copybreak Previous releases - always broken: - kcm: close race conditions on sk_receive_queue - bpf: fix alignment problem in bpf_prog_test_run_skb() - bpf: fix writing offset in case of fault in strncpy_from_kernel_nofault - eth: macvlan: use built-in RCU list checking - eth: marvell: add sleep time after enabling the loopback bit - eth: octeon_ep: fix potential memory leak in octep_device_setup() Misc: - tcp: configurable source port perturb table size - bpf: Convert BPF_DISPATCHER to use static_call() (not ftrace)" * tag 'net-6.1-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (51 commits) net: use struct_group to copy ip/ipv6 header addresses net: usb: smsc95xx: fix external PHY reset net: usb: qmi_wwan: add Telit 0x103a composition netdevsim: Fix memory leak of nsim_dev->fa_cookie tcp: configurable source port perturb table size l2tp: Serialize access to sk_user_data with sk_callback_lock net: thunderbolt: Fix error handling in tbnet_init() net: microchip: sparx5: Fix potential null-ptr-deref in sparx_stats_init() and sparx5_start() net: lan966x: Fix potential null-ptr-deref in lan966x_stats_init() net: dsa: don't leak tagger-owned storage on switch driver unbind net/x25: Fix skb leak in x25_lapb_receive_frame() net: ag71xx: call phylink_disconnect_phy if ag71xx_hw_enable() fail in ag71xx_open() bridge: switchdev: Fix memory leaks when changing VLAN protocol net: hns3: fix setting incorrect phy link ksettings for firmware in resetting process net: hns3: fix return value check bug of rx copybreak net: hns3: fix incorrect hw rss hash type of rx packet net: phy: marvell: add sleep time after enabling the loopback bit net: ena: Fix error handling in ena_init() kcm: close race conditions on sk_receive_queue net: ionic: Fix error handling in ionic_init_module() ... |
||
Jakub Kicinski
|
c1754bf019 |
Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Andrii Nakryiko says: ==================== bpf 2022-11-11 We've added 11 non-merge commits during the last 8 day(s) which contain a total of 11 files changed, 83 insertions(+), 74 deletions(-). The main changes are: 1) Fix strncpy_from_kernel_nofault() to prevent out-of-bounds writes, from Alban Crequy. 2) Fix for bpf_prog_test_run_skb() to prevent wrong alignment, from Baisong Zhong. 3) Switch BPF_DISPATCHER to static_call() instead of ftrace infra, with a small build fix on top, from Peter Zijlstra and Nathan Chancellor. 4) Fix memory leak in BPF verifier in some error cases, from Wang Yufen. 5) 32-bit compilation error fixes for BPF selftests, from Pu Lehui and Yang Jihong. 6) Ensure even distribution of per-CPU free list elements, from Xu Kuohai. 7) Fix copy_map_value() to track special zeroed out areas properly, from Xu Kuohai. * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf: bpf: Fix offset calculation error in __copy_map_value and zero_map_value bpf: Initialize same number of free nodes for each pcpu_freelist selftests: bpf: Add a test when bpf_probe_read_kernel_str() returns EFAULT maccess: Fix writing offset in case of fault in strncpy_from_kernel_nofault() selftests/bpf: Fix test_progs compilation failure in 32-bit arch selftests/bpf: Fix casting error when cross-compiling test_verifier for 32-bit platforms bpf: Fix memory leaks in __check_func_call bpf: Add explicit cast to 'void *' for __BPF_DISPATCHER_UPDATE() bpf: Convert BPF_DISPATCHER to use static_call() (not ftrace) bpf: Revert ("Fix dispatcher patchable function entry to 5 bytes nop") bpf, test_run: Fix alignment problem in bpf_prog_test_run_skb() ==================== Link: https://lore.kernel.org/r/20221111231624.938829-1-andrii@kernel.org Signed-off-by: Jakub Kicinski <kuba@kernel.org> |
||
Linus Torvalds
|
d7c2b1f64e |
22 hotfixes. 8 are cc:stable and the remainder address issues which were
introduced post-6.0 or which aren't considered serious enough to justify a -stable backport. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY27xPAAKCRDdBJ7gKXxA juFXAP4tSmfNDrT6khFhV0l4cS43bluErVNLh32RfXBqse8GYgEA5EPvZkOssLqY 86ejRXFgAArxYC4caiNURUQL+IASvQo= =YVOx -----END PGP SIGNATURE----- Merge tag 'mm-hotfixes-stable-2022-11-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc hotfixes from Andrew Morton: "22 hotfixes. Eight are cc:stable and the remainder address issues which were introduced post-6.0 or which aren't considered serious enough to justify a -stable backport" * tag 'mm-hotfixes-stable-2022-11-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (22 commits) docs: kmsan: fix formatting of "Example report" mm/damon/dbgfs: check if rm_contexts input is for a real context maple_tree: don't set a new maximum on the node when not reusing nodes maple_tree: fix depth tracking in maple_state arch/x86/mm/hugetlbpage.c: pud_huge() returns 0 when using 2-level paging fs: fix leaked psi pressure state nilfs2: fix use-after-free bug of ns_writer on remount x86/traps: avoid KMSAN bugs originating from handle_bug() kmsan: make sure PREEMPT_RT is off Kconfig.debug: ensure early check for KMSAN in CONFIG_KMSAN_WARN x86/uaccess: instrument copy_from_user_nmi() kmsan: core: kmsan_in_runtime() should return true in NMI context mm: hugetlb_vmemmap: include missing linux/moduleparam.h mm/shmem: use page_mapping() to detect page cache for uffd continue mm/memremap.c: map FS_DAX device memory as decrypted Partly revert "mm/thp: carry over dirty bit when thp splits on pmd" nilfs2: fix deadlock in nilfs_count_free_blocks() mm/mmap: fix memory leak in mmap_region() hugetlbfs: don't delete error page from pagecache maple_tree: reorganize testing to restore module testing ... |
||
Alban Crequy
|
8678ea0685 |
maccess: Fix writing offset in case of fault in strncpy_from_kernel_nofault()
If a page fault occurs while copying the first byte, this function resets one
byte before dst.
As a consequence, an address could be modified and leaded to kernel crashes if
case the modified address was accessed later.
Fixes:
|
||
Linus Torvalds
|
f67dd6ce07 |
slab fixes for 6.1-rc4
-----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEjUuTAak14xi+SF7M4CHKc/GJqRAFAmNrulwACgkQ4CHKc/GJ qRDGWwf/bqkCffS+Eg8p3wrGEbhWb1pOWnshcPl9EttSlclIfwaby5+kHTjeKpGR r3nt2cRAtWH3gUbU32352TJJ97oobasFHk3aE7xorHYTQ5HVAycwiHi+6BqcEcNH MyH7rcOAnKV1GeE1NnX99CeOtCA0wOaO/kCAn9y1QvSifoxKaiixBodoov4CHuSt PPXcJU3Rgyo8pDzFya3BAScayTTNkr1MU18iacJwndhAyjWolL4tlVqoLgVsi/TA wHb80Moj0iPyEioxHW7OHLkoapCYr4mfB3AUUY2t91ZciFQEKfihmki2KJw2VOg5 XBU1iNezxMJhteNJc6JqXr90nsriAw== =p9yC -----END PGP SIGNATURE----- Merge tag 'slab-for-6.1-rc4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab Pull slab fixes from Vlastimil Babka: "Most are small fixups as described below. The !CONFIG_TRACING fix is a bit bigger and would normally be done in the next merge window as part of upcoming hardening changes. But we realized it can make the kmalloc waste tracking introduced in this window inaccurate, so decided to go with it now. Summary: - Remove !CONFIG_TRACING kmalloc() wrappers intended to save a function call, due to incompatilibity with recently introduced wasted space tracking and planned hardening changes. - A tracing parameter regression fix, by Kees Cook. - Two kernel-doc warning fixups, by Lukas Bulwahn and myself * tag 'slab-for-6.1-rc4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: mm, slab: remove duplicate kernel-doc comment for ksize() mm/slab_common: Restore passing "caller" for tracing mm/slab: remove !CONFIG_TRACING variants of kmalloc_[node_]trace() mm/slab_common: repair kernel-doc for __ksize() |
||
SeongJae Park
|
1de09a7281 |
mm/damon/dbgfs: check if rm_contexts input is for a real context
A user could write a name of a file under 'damon/' debugfs directory,
which is not a user-created context, to 'rm_contexts' file. In the case,
'dbgfs_rm_context()' just assumes it's the valid DAMON context directory
only if a file of the name exist. As a result, invalid memory access
could happen as below. Fix the bug by checking if the given input is for
a directory. This check can filter out non-context inputs because
directories under 'damon/' debugfs directory can be created via only
'mk_contexts' file.
This bug has found by syzbot[1].
[1] https://lore.kernel.org/damon/000000000000ede3ac05ec4abf8e@google.com/
Link: https://lkml.kernel.org/r/20221107165001.5717-2-sj@kernel.org
Fixes:
|
||
Alexander Potapenko
|
cbadaf71f7 |
kmsan: core: kmsan_in_runtime() should return true in NMI context
Without that, every call to __msan_poison_alloca() in NMI may end up allocating memory, which is NMI-unsafe. Link: https://lkml.kernel.org/r/20221102110611.1085175-1-glider@google.com Link: https://lore.kernel.org/lkml/20221025221755.3810809-1-glider@google.com/ Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Vasily Gorbik
|
db5e8d8431 |
mm: hugetlb_vmemmap: include missing linux/moduleparam.h
The kernel test robot reported build failures with a 'randconfig' on s390:
>> mm/hugetlb_vmemmap.c:421:11: error: a function declaration without a
prototype is deprecated in all versions of C [-Werror,-Wstrict-prototypes]
core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
^
Link: https://lore.kernel.org/linux-mm/202210300751.rG3UDsuc-lkp@intel.com/
Link: https://lkml.kernel.org/r/patch.git-296b83ca939b.your-ad-here.call-01667411912-ext-5073@work.hours
Fixes:
|
||
Peter Xu
|
93b0d91787 |
mm/shmem: use page_mapping() to detect page cache for uffd continue
mfill_atomic_install_pte() checks page->mapping to detect whether one page
is used in the page cache. However as pointed out by Matthew, the page
can logically be a tail page rather than always the head in the case of
uffd minor mode with UFFDIO_CONTINUE. It means we could wrongly install
one pte with shmem thp tail page assuming it's an anonymous page.
It's not that clear even for anonymous page, since normally anonymous
pages also have page->mapping being setup with the anon vma. It's safe
here only because the only such caller to mfill_atomic_install_pte() is
always passing in a newly allocated page (mcopy_atomic_pte()), whose
page->mapping is not yet setup. However that's not extremely obvious
either.
For either of above, use page_mapping() instead.
Link: https://lkml.kernel.org/r/Y2K+y7wnhC4vbnP2@x1n
Fixes:
|