Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6: slub: pack objects denser slub: Calculate min_objects based on number of processors. slub: Drop DEFAULT_MAX_ORDER / DEFAULT_MIN_OBJECTS slub: Simplify any_slab_object checks slub: Make the order configurable for each slab cache slub: Drop fallback to page allocator method slub: Fallback to minimal order during slab page allocation slub: Update statistics handling for variable order slabs slub: Add kmem_cache_order_objects struct slub: for_each_object must be passed the number of objects in a slab slub: Store max number of objects in the page struct. slub: Dump list of objects not freed on kmem_cache_close() slub: free_list() cleanup slub: improve kmem_cache_destroy() error message slob: fix bug - when slob allocates "struct kmem_cache", it does not force alignment.
This commit is contained in:
commit
e97e386b12
@ -31,7 +31,7 @@ struct slabinfo {
|
||||
int hwcache_align, object_size, objs_per_slab;
|
||||
int sanity_checks, slab_size, store_user, trace;
|
||||
int order, poison, reclaim_account, red_zone;
|
||||
unsigned long partial, objects, slabs;
|
||||
unsigned long partial, objects, slabs, objects_partial, objects_total;
|
||||
unsigned long alloc_fastpath, alloc_slowpath;
|
||||
unsigned long free_fastpath, free_slowpath;
|
||||
unsigned long free_frozen, free_add_partial, free_remove_partial;
|
||||
@ -540,7 +540,8 @@ void slabcache(struct slabinfo *s)
|
||||
return;
|
||||
|
||||
store_size(size_str, slab_size(s));
|
||||
snprintf(dist_str, 40, "%lu/%lu/%d", s->slabs, s->partial, s->cpu_slabs);
|
||||
snprintf(dist_str, 40, "%lu/%lu/%d", s->slabs - s->cpu_slabs,
|
||||
s->partial, s->cpu_slabs);
|
||||
|
||||
if (!line++)
|
||||
first_line();
|
||||
@ -776,7 +777,6 @@ void totals(void)
|
||||
unsigned long used;
|
||||
unsigned long long wasted;
|
||||
unsigned long long objwaste;
|
||||
long long objects_in_partial_slabs;
|
||||
unsigned long percentage_partial_slabs;
|
||||
unsigned long percentage_partial_objs;
|
||||
|
||||
@ -790,18 +790,11 @@ void totals(void)
|
||||
wasted = size - used;
|
||||
objwaste = s->slab_size - s->object_size;
|
||||
|
||||
objects_in_partial_slabs = s->objects -
|
||||
(s->slabs - s->partial - s ->cpu_slabs) *
|
||||
s->objs_per_slab;
|
||||
|
||||
if (objects_in_partial_slabs < 0)
|
||||
objects_in_partial_slabs = 0;
|
||||
|
||||
percentage_partial_slabs = s->partial * 100 / s->slabs;
|
||||
if (percentage_partial_slabs > 100)
|
||||
percentage_partial_slabs = 100;
|
||||
|
||||
percentage_partial_objs = objects_in_partial_slabs * 100
|
||||
percentage_partial_objs = s->objects_partial * 100
|
||||
/ s->objects;
|
||||
|
||||
if (percentage_partial_objs > 100)
|
||||
@ -823,8 +816,8 @@ void totals(void)
|
||||
min_objects = s->objects;
|
||||
if (used < min_used)
|
||||
min_used = used;
|
||||
if (objects_in_partial_slabs < min_partobj)
|
||||
min_partobj = objects_in_partial_slabs;
|
||||
if (s->objects_partial < min_partobj)
|
||||
min_partobj = s->objects_partial;
|
||||
if (percentage_partial_slabs < min_ppart)
|
||||
min_ppart = percentage_partial_slabs;
|
||||
if (percentage_partial_objs < min_ppartobj)
|
||||
@ -848,8 +841,8 @@ void totals(void)
|
||||
max_objects = s->objects;
|
||||
if (used > max_used)
|
||||
max_used = used;
|
||||
if (objects_in_partial_slabs > max_partobj)
|
||||
max_partobj = objects_in_partial_slabs;
|
||||
if (s->objects_partial > max_partobj)
|
||||
max_partobj = s->objects_partial;
|
||||
if (percentage_partial_slabs > max_ppart)
|
||||
max_ppart = percentage_partial_slabs;
|
||||
if (percentage_partial_objs > max_ppartobj)
|
||||
@ -864,7 +857,7 @@ void totals(void)
|
||||
|
||||
total_objects += s->objects;
|
||||
total_used += used;
|
||||
total_partobj += objects_in_partial_slabs;
|
||||
total_partobj += s->objects_partial;
|
||||
total_ppart += percentage_partial_slabs;
|
||||
total_ppartobj += percentage_partial_objs;
|
||||
|
||||
@ -1160,6 +1153,8 @@ void read_slab_dir(void)
|
||||
slab->hwcache_align = get_obj("hwcache_align");
|
||||
slab->object_size = get_obj("object_size");
|
||||
slab->objects = get_obj("objects");
|
||||
slab->objects_partial = get_obj("objects_partial");
|
||||
slab->objects_total = get_obj("objects_total");
|
||||
slab->objs_per_slab = get_obj("objs_per_slab");
|
||||
slab->order = get_obj("order");
|
||||
slab->partial = get_obj("partial");
|
||||
|
@ -42,7 +42,10 @@ struct page {
|
||||
* to show when page is mapped
|
||||
* & limit reverse map searches.
|
||||
*/
|
||||
unsigned int inuse; /* SLUB: Nr of objects */
|
||||
struct { /* SLUB */
|
||||
u16 inuse;
|
||||
u16 objects;
|
||||
};
|
||||
};
|
||||
union {
|
||||
struct {
|
||||
|
@ -29,6 +29,7 @@ enum stat_item {
|
||||
DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
|
||||
DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
|
||||
DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
|
||||
ORDER_FALLBACK, /* Number of times fallback was necessary */
|
||||
NR_SLUB_STAT_ITEMS };
|
||||
|
||||
struct kmem_cache_cpu {
|
||||
@ -48,10 +49,20 @@ struct kmem_cache_node {
|
||||
struct list_head partial;
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
atomic_long_t nr_slabs;
|
||||
atomic_long_t total_objects;
|
||||
struct list_head full;
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
* Word size structure that can be atomically updated or read and that
|
||||
* contains both the order and the number of objects that a slab of the
|
||||
* given order would contain.
|
||||
*/
|
||||
struct kmem_cache_order_objects {
|
||||
unsigned long x;
|
||||
};
|
||||
|
||||
/*
|
||||
* Slab cache management.
|
||||
*/
|
||||
@ -61,7 +72,7 @@ struct kmem_cache {
|
||||
int size; /* The size of an object including meta data */
|
||||
int objsize; /* The size of an object without meta data */
|
||||
int offset; /* Free pointer offset. */
|
||||
int order; /* Current preferred allocation order */
|
||||
struct kmem_cache_order_objects oo;
|
||||
|
||||
/*
|
||||
* Avoid an extra cache line for UP, SMP and for the node local to
|
||||
@ -70,7 +81,8 @@ struct kmem_cache {
|
||||
struct kmem_cache_node local_node;
|
||||
|
||||
/* Allocation and freeing of slabs */
|
||||
int objects; /* Number of objects in slab */
|
||||
struct kmem_cache_order_objects max;
|
||||
struct kmem_cache_order_objects min;
|
||||
gfp_t allocflags; /* gfp flags to use on each alloc */
|
||||
int refcount; /* Refcount for slab cache destroy */
|
||||
void (*ctor)(struct kmem_cache *, void *);
|
||||
|
@ -533,7 +533,8 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
|
||||
{
|
||||
struct kmem_cache *c;
|
||||
|
||||
c = slob_alloc(sizeof(struct kmem_cache), flags, 0, -1);
|
||||
c = slob_alloc(sizeof(struct kmem_cache),
|
||||
flags, ARCH_KMALLOC_MINALIGN, -1);
|
||||
|
||||
if (c) {
|
||||
c->name = name;
|
||||
|
495
mm/slub.c
495
mm/slub.c
@ -149,25 +149,6 @@ static inline void ClearSlabDebug(struct page *page)
|
||||
/* Enable to test recovery from slab corruption on boot */
|
||||
#undef SLUB_RESILIENCY_TEST
|
||||
|
||||
#if PAGE_SHIFT <= 12
|
||||
|
||||
/*
|
||||
* Small page size. Make sure that we do not fragment memory
|
||||
*/
|
||||
#define DEFAULT_MAX_ORDER 1
|
||||
#define DEFAULT_MIN_OBJECTS 4
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* Large page machines are customarily able to handle larger
|
||||
* page orders.
|
||||
*/
|
||||
#define DEFAULT_MAX_ORDER 2
|
||||
#define DEFAULT_MIN_OBJECTS 8
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Mininum number of partial slabs. These will be left on the partial
|
||||
* lists even if they are empty. kmem_cache_shrink may reclaim them.
|
||||
@ -204,8 +185,6 @@ static inline void ClearSlabDebug(struct page *page)
|
||||
/* Internal SLUB flags */
|
||||
#define __OBJECT_POISON 0x80000000 /* Poison object */
|
||||
#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
|
||||
#define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
|
||||
#define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
|
||||
|
||||
static int kmem_size = sizeof(struct kmem_cache);
|
||||
|
||||
@ -296,7 +275,7 @@ static inline int check_valid_pointer(struct kmem_cache *s,
|
||||
return 1;
|
||||
|
||||
base = page_address(page);
|
||||
if (object < base || object >= base + s->objects * s->size ||
|
||||
if (object < base || object >= base + page->objects * s->size ||
|
||||
(object - base) % s->size) {
|
||||
return 0;
|
||||
}
|
||||
@ -322,8 +301,8 @@ static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
|
||||
}
|
||||
|
||||
/* Loop over all objects in a slab */
|
||||
#define for_each_object(__p, __s, __addr) \
|
||||
for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
|
||||
#define for_each_object(__p, __s, __addr, __objects) \
|
||||
for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
|
||||
__p += (__s)->size)
|
||||
|
||||
/* Scan freelist */
|
||||
@ -336,6 +315,26 @@ static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
|
||||
return (p - addr) / s->size;
|
||||
}
|
||||
|
||||
static inline struct kmem_cache_order_objects oo_make(int order,
|
||||
unsigned long size)
|
||||
{
|
||||
struct kmem_cache_order_objects x = {
|
||||
(order << 16) + (PAGE_SIZE << order) / size
|
||||
};
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
static inline int oo_order(struct kmem_cache_order_objects x)
|
||||
{
|
||||
return x.x >> 16;
|
||||
}
|
||||
|
||||
static inline int oo_objects(struct kmem_cache_order_objects x)
|
||||
{
|
||||
return x.x & ((1 << 16) - 1);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
/*
|
||||
* Debug settings:
|
||||
@ -446,8 +445,8 @@ static void print_tracking(struct kmem_cache *s, void *object)
|
||||
|
||||
static void print_page_info(struct page *page)
|
||||
{
|
||||
printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
|
||||
page, page->inuse, page->freelist, page->flags);
|
||||
printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
|
||||
page, page->objects, page->inuse, page->freelist, page->flags);
|
||||
|
||||
}
|
||||
|
||||
@ -647,6 +646,7 @@ static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
|
||||
p + off, POISON_INUSE, s->size - off);
|
||||
}
|
||||
|
||||
/* Check the pad bytes at the end of a slab page */
|
||||
static int slab_pad_check(struct kmem_cache *s, struct page *page)
|
||||
{
|
||||
u8 *start;
|
||||
@ -659,20 +659,20 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
|
||||
return 1;
|
||||
|
||||
start = page_address(page);
|
||||
end = start + (PAGE_SIZE << s->order);
|
||||
length = s->objects * s->size;
|
||||
remainder = end - (start + length);
|
||||
length = (PAGE_SIZE << compound_order(page));
|
||||
end = start + length;
|
||||
remainder = length % s->size;
|
||||
if (!remainder)
|
||||
return 1;
|
||||
|
||||
fault = check_bytes(start + length, POISON_INUSE, remainder);
|
||||
fault = check_bytes(end - remainder, POISON_INUSE, remainder);
|
||||
if (!fault)
|
||||
return 1;
|
||||
while (end > fault && end[-1] == POISON_INUSE)
|
||||
end--;
|
||||
|
||||
slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
|
||||
print_section("Padding", start, length);
|
||||
print_section("Padding", end - remainder, remainder);
|
||||
|
||||
restore_bytes(s, "slab padding", POISON_INUSE, start, end);
|
||||
return 0;
|
||||
@ -734,15 +734,24 @@ static int check_object(struct kmem_cache *s, struct page *page,
|
||||
|
||||
static int check_slab(struct kmem_cache *s, struct page *page)
|
||||
{
|
||||
int maxobj;
|
||||
|
||||
VM_BUG_ON(!irqs_disabled());
|
||||
|
||||
if (!PageSlab(page)) {
|
||||
slab_err(s, page, "Not a valid slab page");
|
||||
return 0;
|
||||
}
|
||||
if (page->inuse > s->objects) {
|
||||
|
||||
maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
|
||||
if (page->objects > maxobj) {
|
||||
slab_err(s, page, "objects %u > max %u",
|
||||
s->name, page->objects, maxobj);
|
||||
return 0;
|
||||
}
|
||||
if (page->inuse > page->objects) {
|
||||
slab_err(s, page, "inuse %u > max %u",
|
||||
s->name, page->inuse, s->objects);
|
||||
s->name, page->inuse, page->objects);
|
||||
return 0;
|
||||
}
|
||||
/* Slab_pad_check fixes things up after itself */
|
||||
@ -759,8 +768,9 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
|
||||
int nr = 0;
|
||||
void *fp = page->freelist;
|
||||
void *object = NULL;
|
||||
unsigned long max_objects;
|
||||
|
||||
while (fp && nr <= s->objects) {
|
||||
while (fp && nr <= page->objects) {
|
||||
if (fp == search)
|
||||
return 1;
|
||||
if (!check_valid_pointer(s, page, fp)) {
|
||||
@ -772,7 +782,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
|
||||
} else {
|
||||
slab_err(s, page, "Freepointer corrupt");
|
||||
page->freelist = NULL;
|
||||
page->inuse = s->objects;
|
||||
page->inuse = page->objects;
|
||||
slab_fix(s, "Freelist cleared");
|
||||
return 0;
|
||||
}
|
||||
@ -783,10 +793,20 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
|
||||
nr++;
|
||||
}
|
||||
|
||||
if (page->inuse != s->objects - nr) {
|
||||
max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
|
||||
if (max_objects > 65535)
|
||||
max_objects = 65535;
|
||||
|
||||
if (page->objects != max_objects) {
|
||||
slab_err(s, page, "Wrong number of objects. Found %d but "
|
||||
"should be %d", page->objects, max_objects);
|
||||
page->objects = max_objects;
|
||||
slab_fix(s, "Number of objects adjusted.");
|
||||
}
|
||||
if (page->inuse != page->objects - nr) {
|
||||
slab_err(s, page, "Wrong object count. Counter is %d but "
|
||||
"counted were %d", page->inuse, s->objects - nr);
|
||||
page->inuse = s->objects - nr;
|
||||
"counted were %d", page->inuse, page->objects - nr);
|
||||
page->inuse = page->objects - nr;
|
||||
slab_fix(s, "Object count adjusted.");
|
||||
}
|
||||
return search == NULL;
|
||||
@ -840,7 +860,7 @@ static inline unsigned long slabs_node(struct kmem_cache *s, int node)
|
||||
return atomic_long_read(&n->nr_slabs);
|
||||
}
|
||||
|
||||
static inline void inc_slabs_node(struct kmem_cache *s, int node)
|
||||
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
|
||||
{
|
||||
struct kmem_cache_node *n = get_node(s, node);
|
||||
|
||||
@ -850,14 +870,17 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node)
|
||||
* dilemma by deferring the increment of the count during
|
||||
* bootstrap (see early_kmem_cache_node_alloc).
|
||||
*/
|
||||
if (!NUMA_BUILD || n)
|
||||
if (!NUMA_BUILD || n) {
|
||||
atomic_long_inc(&n->nr_slabs);
|
||||
atomic_long_add(objects, &n->total_objects);
|
||||
}
|
||||
}
|
||||
static inline void dec_slabs_node(struct kmem_cache *s, int node)
|
||||
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
|
||||
{
|
||||
struct kmem_cache_node *n = get_node(s, node);
|
||||
|
||||
atomic_long_dec(&n->nr_slabs);
|
||||
atomic_long_sub(objects, &n->total_objects);
|
||||
}
|
||||
|
||||
/* Object debug checks for alloc/free paths */
|
||||
@ -905,7 +928,7 @@ static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
|
||||
* as used avoids touching the remaining objects.
|
||||
*/
|
||||
slab_fix(s, "Marking all objects used");
|
||||
page->inuse = s->objects;
|
||||
page->inuse = page->objects;
|
||||
page->freelist = NULL;
|
||||
}
|
||||
return 0;
|
||||
@ -1055,31 +1078,52 @@ static inline unsigned long kmem_cache_flags(unsigned long objsize,
|
||||
|
||||
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
|
||||
{ return 0; }
|
||||
static inline void inc_slabs_node(struct kmem_cache *s, int node) {}
|
||||
static inline void dec_slabs_node(struct kmem_cache *s, int node) {}
|
||||
static inline void inc_slabs_node(struct kmem_cache *s, int node,
|
||||
int objects) {}
|
||||
static inline void dec_slabs_node(struct kmem_cache *s, int node,
|
||||
int objects) {}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Slab allocation and freeing
|
||||
*/
|
||||
static inline struct page *alloc_slab_page(gfp_t flags, int node,
|
||||
struct kmem_cache_order_objects oo)
|
||||
{
|
||||
int order = oo_order(oo);
|
||||
|
||||
if (node == -1)
|
||||
return alloc_pages(flags, order);
|
||||
else
|
||||
return alloc_pages_node(node, flags, order);
|
||||
}
|
||||
|
||||
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
|
||||
{
|
||||
struct page *page;
|
||||
int pages = 1 << s->order;
|
||||
struct kmem_cache_order_objects oo = s->oo;
|
||||
|
||||
flags |= s->allocflags;
|
||||
|
||||
if (node == -1)
|
||||
page = alloc_pages(flags, s->order);
|
||||
else
|
||||
page = alloc_pages_node(node, flags, s->order);
|
||||
|
||||
if (!page)
|
||||
return NULL;
|
||||
page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
|
||||
oo);
|
||||
if (unlikely(!page)) {
|
||||
oo = s->min;
|
||||
/*
|
||||
* Allocation may have failed due to fragmentation.
|
||||
* Try a lower order alloc if possible
|
||||
*/
|
||||
page = alloc_slab_page(flags, node, oo);
|
||||
if (!page)
|
||||
return NULL;
|
||||
|
||||
stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
|
||||
}
|
||||
page->objects = oo_objects(oo);
|
||||
mod_zone_page_state(page_zone(page),
|
||||
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
|
||||
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
|
||||
pages);
|
||||
1 << oo_order(oo));
|
||||
|
||||
return page;
|
||||
}
|
||||
@ -1106,7 +1150,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
|
||||
if (!page)
|
||||
goto out;
|
||||
|
||||
inc_slabs_node(s, page_to_nid(page));
|
||||
inc_slabs_node(s, page_to_nid(page), page->objects);
|
||||
page->slab = s;
|
||||
page->flags |= 1 << PG_slab;
|
||||
if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
|
||||
@ -1116,10 +1160,10 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
|
||||
start = page_address(page);
|
||||
|
||||
if (unlikely(s->flags & SLAB_POISON))
|
||||
memset(start, POISON_INUSE, PAGE_SIZE << s->order);
|
||||
memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
|
||||
|
||||
last = start;
|
||||
for_each_object(p, s, start) {
|
||||
for_each_object(p, s, start, page->objects) {
|
||||
setup_object(s, page, last);
|
||||
set_freepointer(s, last, p);
|
||||
last = p;
|
||||
@ -1135,13 +1179,15 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
|
||||
|
||||
static void __free_slab(struct kmem_cache *s, struct page *page)
|
||||
{
|
||||
int pages = 1 << s->order;
|
||||
int order = compound_order(page);
|
||||
int pages = 1 << order;
|
||||
|
||||
if (unlikely(SlabDebug(page))) {
|
||||
void *p;
|
||||
|
||||
slab_pad_check(s, page);
|
||||
for_each_object(p, s, page_address(page))
|
||||
for_each_object(p, s, page_address(page),
|
||||
page->objects)
|
||||
check_object(s, page, p, 0);
|
||||
ClearSlabDebug(page);
|
||||
}
|
||||
@ -1153,7 +1199,7 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
|
||||
|
||||
__ClearPageSlab(page);
|
||||
reset_page_mapcount(page);
|
||||
__free_pages(page, s->order);
|
||||
__free_pages(page, order);
|
||||
}
|
||||
|
||||
static void rcu_free_slab(struct rcu_head *h)
|
||||
@ -1179,7 +1225,7 @@ static void free_slab(struct kmem_cache *s, struct page *page)
|
||||
|
||||
static void discard_slab(struct kmem_cache *s, struct page *page)
|
||||
{
|
||||
dec_slabs_node(s, page_to_nid(page));
|
||||
dec_slabs_node(s, page_to_nid(page), page->objects);
|
||||
free_slab(s, page);
|
||||
}
|
||||
|
||||
@ -1515,7 +1561,7 @@ static void *__slab_alloc(struct kmem_cache *s,
|
||||
goto debug;
|
||||
|
||||
c->freelist = object[c->offset];
|
||||
c->page->inuse = s->objects;
|
||||
c->page->inuse = c->page->objects;
|
||||
c->page->freelist = NULL;
|
||||
c->node = page_to_nid(c->page);
|
||||
unlock_out:
|
||||
@ -1552,27 +1598,6 @@ static void *__slab_alloc(struct kmem_cache *s,
|
||||
c->page = new;
|
||||
goto load_freelist;
|
||||
}
|
||||
|
||||
/*
|
||||
* No memory available.
|
||||
*
|
||||
* If the slab uses higher order allocs but the object is
|
||||
* smaller than a page size then we can fallback in emergencies
|
||||
* to the page allocator via kmalloc_large. The page allocator may
|
||||
* have failed to obtain a higher order page and we can try to
|
||||
* allocate a single page if the object fits into a single page.
|
||||
* That is only possible if certain conditions are met that are being
|
||||
* checked when a slab is created.
|
||||
*/
|
||||
if (!(gfpflags & __GFP_NORETRY) &&
|
||||
(s->flags & __PAGE_ALLOC_FALLBACK)) {
|
||||
if (gfpflags & __GFP_WAIT)
|
||||
local_irq_enable();
|
||||
object = kmalloc_large(s->objsize, gfpflags);
|
||||
if (gfpflags & __GFP_WAIT)
|
||||
local_irq_disable();
|
||||
return object;
|
||||
}
|
||||
return NULL;
|
||||
debug:
|
||||
if (!alloc_debug_processing(s, c->page, object, addr))
|
||||
@ -1773,8 +1798,8 @@ static struct page *get_object_page(const void *x)
|
||||
* take the list_lock.
|
||||
*/
|
||||
static int slub_min_order;
|
||||
static int slub_max_order = DEFAULT_MAX_ORDER;
|
||||
static int slub_min_objects = DEFAULT_MIN_OBJECTS;
|
||||
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
|
||||
static int slub_min_objects;
|
||||
|
||||
/*
|
||||
* Merge control. If this is set then no merging of slab caches will occur.
|
||||
@ -1789,7 +1814,7 @@ static int slub_nomerge;
|
||||
* system components. Generally order 0 allocations should be preferred since
|
||||
* order 0 does not cause fragmentation in the page allocator. Larger objects
|
||||
* be problematic to put into order 0 slabs because there may be too much
|
||||
* unused space left. We go to a higher order if more than 1/8th of the slab
|
||||
* unused space left. We go to a higher order if more than 1/16th of the slab
|
||||
* would be wasted.
|
||||
*
|
||||
* In order to reach satisfactory performance we must ensure that a minimum
|
||||
@ -1814,6 +1839,9 @@ static inline int slab_order(int size, int min_objects,
|
||||
int rem;
|
||||
int min_order = slub_min_order;
|
||||
|
||||
if ((PAGE_SIZE << min_order) / size > 65535)
|
||||
return get_order(size * 65535) - 1;
|
||||
|
||||
for (order = max(min_order,
|
||||
fls(min_objects * size - 1) - PAGE_SHIFT);
|
||||
order <= max_order; order++) {
|
||||
@ -1848,8 +1876,10 @@ static inline int calculate_order(int size)
|
||||
* we reduce the minimum objects required in a slab.
|
||||
*/
|
||||
min_objects = slub_min_objects;
|
||||
if (!min_objects)
|
||||
min_objects = 4 * (fls(nr_cpu_ids) + 1);
|
||||
while (min_objects > 1) {
|
||||
fraction = 8;
|
||||
fraction = 16;
|
||||
while (fraction >= 4) {
|
||||
order = slab_order(size, min_objects,
|
||||
slub_max_order, fraction);
|
||||
@ -2091,7 +2121,7 @@ static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
|
||||
init_tracking(kmalloc_caches, n);
|
||||
#endif
|
||||
init_kmem_cache_node(n);
|
||||
inc_slabs_node(kmalloc_caches, node);
|
||||
inc_slabs_node(kmalloc_caches, node, page->objects);
|
||||
|
||||
/*
|
||||
* lockdep requires consistent irq usage for each lock
|
||||
@ -2167,11 +2197,12 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
|
||||
* calculate_sizes() determines the order and the distribution of data within
|
||||
* a slab object.
|
||||
*/
|
||||
static int calculate_sizes(struct kmem_cache *s)
|
||||
static int calculate_sizes(struct kmem_cache *s, int forced_order)
|
||||
{
|
||||
unsigned long flags = s->flags;
|
||||
unsigned long size = s->objsize;
|
||||
unsigned long align = s->align;
|
||||
int order;
|
||||
|
||||
/*
|
||||
* Round up object size to the next word boundary. We can only
|
||||
@ -2255,26 +2286,16 @@ static int calculate_sizes(struct kmem_cache *s)
|
||||
*/
|
||||
size = ALIGN(size, align);
|
||||
s->size = size;
|
||||
if (forced_order >= 0)
|
||||
order = forced_order;
|
||||
else
|
||||
order = calculate_order(size);
|
||||
|
||||
if ((flags & __KMALLOC_CACHE) &&
|
||||
PAGE_SIZE / size < slub_min_objects) {
|
||||
/*
|
||||
* Kmalloc cache that would not have enough objects in
|
||||
* an order 0 page. Kmalloc slabs can fallback to
|
||||
* page allocator order 0 allocs so take a reasonably large
|
||||
* order that will allows us a good number of objects.
|
||||
*/
|
||||
s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
|
||||
s->flags |= __PAGE_ALLOC_FALLBACK;
|
||||
s->allocflags |= __GFP_NOWARN;
|
||||
} else
|
||||
s->order = calculate_order(size);
|
||||
|
||||
if (s->order < 0)
|
||||
if (order < 0)
|
||||
return 0;
|
||||
|
||||
s->allocflags = 0;
|
||||
if (s->order)
|
||||
if (order)
|
||||
s->allocflags |= __GFP_COMP;
|
||||
|
||||
if (s->flags & SLAB_CACHE_DMA)
|
||||
@ -2286,9 +2307,12 @@ static int calculate_sizes(struct kmem_cache *s)
|
||||
/*
|
||||
* Determine the number of objects per slab
|
||||
*/
|
||||
s->objects = (PAGE_SIZE << s->order) / size;
|
||||
s->oo = oo_make(order, size);
|
||||
s->min = oo_make(get_order(size), size);
|
||||
if (oo_objects(s->oo) > oo_objects(s->max))
|
||||
s->max = s->oo;
|
||||
|
||||
return !!s->objects;
|
||||
return !!oo_objects(s->oo);
|
||||
|
||||
}
|
||||
|
||||
@ -2304,7 +2328,7 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
|
||||
s->align = align;
|
||||
s->flags = kmem_cache_flags(size, flags, name, ctor);
|
||||
|
||||
if (!calculate_sizes(s))
|
||||
if (!calculate_sizes(s, -1))
|
||||
goto error;
|
||||
|
||||
s->refcount = 1;
|
||||
@ -2321,7 +2345,7 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
|
||||
if (flags & SLAB_PANIC)
|
||||
panic("Cannot create slab %s size=%lu realsize=%u "
|
||||
"order=%u offset=%u flags=%lx\n",
|
||||
s->name, (unsigned long)size, s->size, s->order,
|
||||
s->name, (unsigned long)size, s->size, oo_order(s->oo),
|
||||
s->offset, flags);
|
||||
return 0;
|
||||
}
|
||||
@ -2367,26 +2391,52 @@ const char *kmem_cache_name(struct kmem_cache *s)
|
||||
}
|
||||
EXPORT_SYMBOL(kmem_cache_name);
|
||||
|
||||
/*
|
||||
* Attempt to free all slabs on a node. Return the number of slabs we
|
||||
* were unable to free.
|
||||
*/
|
||||
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
|
||||
struct list_head *list)
|
||||
static void list_slab_objects(struct kmem_cache *s, struct page *page,
|
||||
const char *text)
|
||||
{
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
void *addr = page_address(page);
|
||||
void *p;
|
||||
DECLARE_BITMAP(map, page->objects);
|
||||
|
||||
bitmap_zero(map, page->objects);
|
||||
slab_err(s, page, "%s", text);
|
||||
slab_lock(page);
|
||||
for_each_free_object(p, s, page->freelist)
|
||||
set_bit(slab_index(p, s, addr), map);
|
||||
|
||||
for_each_object(p, s, addr, page->objects) {
|
||||
|
||||
if (!test_bit(slab_index(p, s, addr), map)) {
|
||||
printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
|
||||
p, p - addr);
|
||||
print_tracking(s, p);
|
||||
}
|
||||
}
|
||||
slab_unlock(page);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Attempt to free all partial slabs on a node.
|
||||
*/
|
||||
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
|
||||
{
|
||||
int slabs_inuse = 0;
|
||||
unsigned long flags;
|
||||
struct page *page, *h;
|
||||
|
||||
spin_lock_irqsave(&n->list_lock, flags);
|
||||
list_for_each_entry_safe(page, h, list, lru)
|
||||
list_for_each_entry_safe(page, h, &n->partial, lru) {
|
||||
if (!page->inuse) {
|
||||
list_del(&page->lru);
|
||||
discard_slab(s, page);
|
||||
} else
|
||||
slabs_inuse++;
|
||||
n->nr_partial--;
|
||||
} else {
|
||||
list_slab_objects(s, page,
|
||||
"Objects remaining on kmem_cache_close()");
|
||||
}
|
||||
}
|
||||
spin_unlock_irqrestore(&n->list_lock, flags);
|
||||
return slabs_inuse;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2403,8 +2453,8 @@ static inline int kmem_cache_close(struct kmem_cache *s)
|
||||
for_each_node_state(node, N_NORMAL_MEMORY) {
|
||||
struct kmem_cache_node *n = get_node(s, node);
|
||||
|
||||
n->nr_partial -= free_list(s, n, &n->partial);
|
||||
if (slabs_node(s, node))
|
||||
free_partial(s, n);
|
||||
if (n->nr_partial || slabs_node(s, node))
|
||||
return 1;
|
||||
}
|
||||
free_kmem_cache_nodes(s);
|
||||
@ -2422,8 +2472,11 @@ void kmem_cache_destroy(struct kmem_cache *s)
|
||||
if (!s->refcount) {
|
||||
list_del(&s->list);
|
||||
up_write(&slub_lock);
|
||||
if (kmem_cache_close(s))
|
||||
WARN_ON(1);
|
||||
if (kmem_cache_close(s)) {
|
||||
printk(KERN_ERR "SLUB %s: %s called for cache that "
|
||||
"still has objects.\n", s->name, __func__);
|
||||
dump_stack();
|
||||
}
|
||||
sysfs_slab_remove(s);
|
||||
} else
|
||||
up_write(&slub_lock);
|
||||
@ -2482,7 +2535,7 @@ static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
|
||||
|
||||
down_write(&slub_lock);
|
||||
if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
|
||||
flags | __KMALLOC_CACHE, NULL))
|
||||
flags, NULL))
|
||||
goto panic;
|
||||
|
||||
list_add(&s->list, &slab_caches);
|
||||
@ -2730,8 +2783,9 @@ int kmem_cache_shrink(struct kmem_cache *s)
|
||||
struct kmem_cache_node *n;
|
||||
struct page *page;
|
||||
struct page *t;
|
||||
int objects = oo_objects(s->max);
|
||||
struct list_head *slabs_by_inuse =
|
||||
kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
|
||||
kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
|
||||
unsigned long flags;
|
||||
|
||||
if (!slabs_by_inuse)
|
||||
@ -2744,7 +2798,7 @@ int kmem_cache_shrink(struct kmem_cache *s)
|
||||
if (!n->nr_partial)
|
||||
continue;
|
||||
|
||||
for (i = 0; i < s->objects; i++)
|
||||
for (i = 0; i < objects; i++)
|
||||
INIT_LIST_HEAD(slabs_by_inuse + i);
|
||||
|
||||
spin_lock_irqsave(&n->list_lock, flags);
|
||||
@ -2776,7 +2830,7 @@ int kmem_cache_shrink(struct kmem_cache *s)
|
||||
* Rebuild the partial list with the slabs filled up most
|
||||
* first and the least used slabs at the end.
|
||||
*/
|
||||
for (i = s->objects - 1; i >= 0; i--)
|
||||
for (i = objects - 1; i >= 0; i--)
|
||||
list_splice(slabs_by_inuse + i, n->partial.prev);
|
||||
|
||||
spin_unlock_irqrestore(&n->list_lock, flags);
|
||||
@ -2997,9 +3051,6 @@ static int slab_unmergeable(struct kmem_cache *s)
|
||||
if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
|
||||
return 1;
|
||||
|
||||
if ((s->flags & __PAGE_ALLOC_FALLBACK))
|
||||
return 1;
|
||||
|
||||
if (s->ctor)
|
||||
return 1;
|
||||
|
||||
@ -3192,7 +3243,8 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
|
||||
}
|
||||
|
||||
#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
|
||||
static unsigned long count_partial(struct kmem_cache_node *n)
|
||||
static unsigned long count_partial(struct kmem_cache_node *n,
|
||||
int (*get_count)(struct page *))
|
||||
{
|
||||
unsigned long flags;
|
||||
unsigned long x = 0;
|
||||
@ -3200,10 +3252,25 @@ static unsigned long count_partial(struct kmem_cache_node *n)
|
||||
|
||||
spin_lock_irqsave(&n->list_lock, flags);
|
||||
list_for_each_entry(page, &n->partial, lru)
|
||||
x += page->inuse;
|
||||
x += get_count(page);
|
||||
spin_unlock_irqrestore(&n->list_lock, flags);
|
||||
return x;
|
||||
}
|
||||
|
||||
static int count_inuse(struct page *page)
|
||||
{
|
||||
return page->inuse;
|
||||
}
|
||||
|
||||
static int count_total(struct page *page)
|
||||
{
|
||||
return page->objects;
|
||||
}
|
||||
|
||||
static int count_free(struct page *page)
|
||||
{
|
||||
return page->objects - page->inuse;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
|
||||
@ -3218,7 +3285,7 @@ static int validate_slab(struct kmem_cache *s, struct page *page,
|
||||
return 0;
|
||||
|
||||
/* Now we know that a valid freelist exists */
|
||||
bitmap_zero(map, s->objects);
|
||||
bitmap_zero(map, page->objects);
|
||||
|
||||
for_each_free_object(p, s, page->freelist) {
|
||||
set_bit(slab_index(p, s, addr), map);
|
||||
@ -3226,7 +3293,7 @@ static int validate_slab(struct kmem_cache *s, struct page *page,
|
||||
return 0;
|
||||
}
|
||||
|
||||
for_each_object(p, s, addr)
|
||||
for_each_object(p, s, addr, page->objects)
|
||||
if (!test_bit(slab_index(p, s, addr), map))
|
||||
if (!check_object(s, page, p, 1))
|
||||
return 0;
|
||||
@ -3292,7 +3359,7 @@ static long validate_slab_cache(struct kmem_cache *s)
|
||||
{
|
||||
int node;
|
||||
unsigned long count = 0;
|
||||
unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
|
||||
unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
|
||||
sizeof(unsigned long), GFP_KERNEL);
|
||||
|
||||
if (!map)
|
||||
@ -3495,14 +3562,14 @@ static void process_slab(struct loc_track *t, struct kmem_cache *s,
|
||||
struct page *page, enum track_item alloc)
|
||||
{
|
||||
void *addr = page_address(page);
|
||||
DECLARE_BITMAP(map, s->objects);
|
||||
DECLARE_BITMAP(map, page->objects);
|
||||
void *p;
|
||||
|
||||
bitmap_zero(map, s->objects);
|
||||
bitmap_zero(map, page->objects);
|
||||
for_each_free_object(p, s, page->freelist)
|
||||
set_bit(slab_index(p, s, addr), map);
|
||||
|
||||
for_each_object(p, s, addr)
|
||||
for_each_object(p, s, addr, page->objects)
|
||||
if (!test_bit(slab_index(p, s, addr), map))
|
||||
add_location(t, s, get_track(s, p, alloc));
|
||||
}
|
||||
@ -3592,22 +3659,23 @@ static int list_locations(struct kmem_cache *s, char *buf,
|
||||
}
|
||||
|
||||
enum slab_stat_type {
|
||||
SL_FULL,
|
||||
SL_PARTIAL,
|
||||
SL_CPU,
|
||||
SL_OBJECTS
|
||||
SL_ALL, /* All slabs */
|
||||
SL_PARTIAL, /* Only partially allocated slabs */
|
||||
SL_CPU, /* Only slabs used for cpu caches */
|
||||
SL_OBJECTS, /* Determine allocated objects not slabs */
|
||||
SL_TOTAL /* Determine object capacity not slabs */
|
||||
};
|
||||
|
||||
#define SO_FULL (1 << SL_FULL)
|
||||
#define SO_ALL (1 << SL_ALL)
|
||||
#define SO_PARTIAL (1 << SL_PARTIAL)
|
||||
#define SO_CPU (1 << SL_CPU)
|
||||
#define SO_OBJECTS (1 << SL_OBJECTS)
|
||||
#define SO_TOTAL (1 << SL_TOTAL)
|
||||
|
||||
static ssize_t show_slab_objects(struct kmem_cache *s,
|
||||
char *buf, unsigned long flags)
|
||||
{
|
||||
unsigned long total = 0;
|
||||
int cpu;
|
||||
int node;
|
||||
int x;
|
||||
unsigned long *nodes;
|
||||
@ -3618,56 +3686,60 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
|
||||
return -ENOMEM;
|
||||
per_cpu = nodes + nr_node_ids;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
struct page *page;
|
||||
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
|
||||
if (flags & SO_CPU) {
|
||||
int cpu;
|
||||
|
||||
if (!c)
|
||||
continue;
|
||||
for_each_possible_cpu(cpu) {
|
||||
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
|
||||
|
||||
page = c->page;
|
||||
node = c->node;
|
||||
if (node < 0)
|
||||
continue;
|
||||
if (page) {
|
||||
if (flags & SO_CPU) {
|
||||
if (flags & SO_OBJECTS)
|
||||
x = page->inuse;
|
||||
if (!c || c->node < 0)
|
||||
continue;
|
||||
|
||||
if (c->page) {
|
||||
if (flags & SO_TOTAL)
|
||||
x = c->page->objects;
|
||||
else if (flags & SO_OBJECTS)
|
||||
x = c->page->inuse;
|
||||
else
|
||||
x = 1;
|
||||
|
||||
total += x;
|
||||
nodes[node] += x;
|
||||
nodes[c->node] += x;
|
||||
}
|
||||
per_cpu[node]++;
|
||||
per_cpu[c->node]++;
|
||||
}
|
||||
}
|
||||
|
||||
for_each_node_state(node, N_NORMAL_MEMORY) {
|
||||
struct kmem_cache_node *n = get_node(s, node);
|
||||
if (flags & SO_ALL) {
|
||||
for_each_node_state(node, N_NORMAL_MEMORY) {
|
||||
struct kmem_cache_node *n = get_node(s, node);
|
||||
|
||||
if (flags & SO_PARTIAL) {
|
||||
if (flags & SO_OBJECTS)
|
||||
x = count_partial(n);
|
||||
if (flags & SO_TOTAL)
|
||||
x = atomic_long_read(&n->total_objects);
|
||||
else if (flags & SO_OBJECTS)
|
||||
x = atomic_long_read(&n->total_objects) -
|
||||
count_partial(n, count_free);
|
||||
|
||||
else
|
||||
x = atomic_long_read(&n->nr_slabs);
|
||||
total += x;
|
||||
nodes[node] += x;
|
||||
}
|
||||
|
||||
} else if (flags & SO_PARTIAL) {
|
||||
for_each_node_state(node, N_NORMAL_MEMORY) {
|
||||
struct kmem_cache_node *n = get_node(s, node);
|
||||
|
||||
if (flags & SO_TOTAL)
|
||||
x = count_partial(n, count_total);
|
||||
else if (flags & SO_OBJECTS)
|
||||
x = count_partial(n, count_inuse);
|
||||
else
|
||||
x = n->nr_partial;
|
||||
total += x;
|
||||
nodes[node] += x;
|
||||
}
|
||||
|
||||
if (flags & SO_FULL) {
|
||||
int full_slabs = atomic_long_read(&n->nr_slabs)
|
||||
- per_cpu[node]
|
||||
- n->nr_partial;
|
||||
|
||||
if (flags & SO_OBJECTS)
|
||||
x = full_slabs * s->objects;
|
||||
else
|
||||
x = full_slabs;
|
||||
total += x;
|
||||
nodes[node] += x;
|
||||
}
|
||||
}
|
||||
|
||||
x = sprintf(buf, "%lu", total);
|
||||
#ifdef CONFIG_NUMA
|
||||
for_each_node_state(node, N_NORMAL_MEMORY)
|
||||
@ -3682,14 +3754,6 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
|
||||
static int any_slab_objects(struct kmem_cache *s)
|
||||
{
|
||||
int node;
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
|
||||
|
||||
if (c && c->page)
|
||||
return 1;
|
||||
}
|
||||
|
||||
for_each_online_node(node) {
|
||||
struct kmem_cache_node *n = get_node(s, node);
|
||||
@ -3697,7 +3761,7 @@ static int any_slab_objects(struct kmem_cache *s)
|
||||
if (!n)
|
||||
continue;
|
||||
|
||||
if (n->nr_partial || atomic_long_read(&n->nr_slabs))
|
||||
if (atomic_read(&n->total_objects))
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
@ -3739,15 +3803,27 @@ SLAB_ATTR_RO(object_size);
|
||||
|
||||
static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", s->objects);
|
||||
return sprintf(buf, "%d\n", oo_objects(s->oo));
|
||||
}
|
||||
SLAB_ATTR_RO(objs_per_slab);
|
||||
|
||||
static ssize_t order_store(struct kmem_cache *s,
|
||||
const char *buf, size_t length)
|
||||
{
|
||||
int order = simple_strtoul(buf, NULL, 10);
|
||||
|
||||
if (order > slub_max_order || order < slub_min_order)
|
||||
return -EINVAL;
|
||||
|
||||
calculate_sizes(s, order);
|
||||
return length;
|
||||
}
|
||||
|
||||
static ssize_t order_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", s->order);
|
||||
return sprintf(buf, "%d\n", oo_order(s->oo));
|
||||
}
|
||||
SLAB_ATTR_RO(order);
|
||||
SLAB_ATTR(order);
|
||||
|
||||
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
@ -3768,7 +3844,7 @@ SLAB_ATTR_RO(aliases);
|
||||
|
||||
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
|
||||
return show_slab_objects(s, buf, SO_ALL);
|
||||
}
|
||||
SLAB_ATTR_RO(slabs);
|
||||
|
||||
@ -3786,10 +3862,22 @@ SLAB_ATTR_RO(cpu_slabs);
|
||||
|
||||
static ssize_t objects_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
|
||||
return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
|
||||
}
|
||||
SLAB_ATTR_RO(objects);
|
||||
|
||||
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
|
||||
}
|
||||
SLAB_ATTR_RO(objects_partial);
|
||||
|
||||
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
|
||||
}
|
||||
SLAB_ATTR_RO(total_objects);
|
||||
|
||||
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
|
||||
@ -3869,7 +3957,7 @@ static ssize_t red_zone_store(struct kmem_cache *s,
|
||||
s->flags &= ~SLAB_RED_ZONE;
|
||||
if (buf[0] == '1')
|
||||
s->flags |= SLAB_RED_ZONE;
|
||||
calculate_sizes(s);
|
||||
calculate_sizes(s, -1);
|
||||
return length;
|
||||
}
|
||||
SLAB_ATTR(red_zone);
|
||||
@ -3888,7 +3976,7 @@ static ssize_t poison_store(struct kmem_cache *s,
|
||||
s->flags &= ~SLAB_POISON;
|
||||
if (buf[0] == '1')
|
||||
s->flags |= SLAB_POISON;
|
||||
calculate_sizes(s);
|
||||
calculate_sizes(s, -1);
|
||||
return length;
|
||||
}
|
||||
SLAB_ATTR(poison);
|
||||
@ -3907,7 +3995,7 @@ static ssize_t store_user_store(struct kmem_cache *s,
|
||||
s->flags &= ~SLAB_STORE_USER;
|
||||
if (buf[0] == '1')
|
||||
s->flags |= SLAB_STORE_USER;
|
||||
calculate_sizes(s);
|
||||
calculate_sizes(s, -1);
|
||||
return length;
|
||||
}
|
||||
SLAB_ATTR(store_user);
|
||||
@ -4038,7 +4126,7 @@ STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
|
||||
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
|
||||
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
|
||||
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
|
||||
|
||||
STAT_ATTR(ORDER_FALLBACK, order_fallback);
|
||||
#endif
|
||||
|
||||
static struct attribute *slab_attrs[] = {
|
||||
@ -4047,6 +4135,8 @@ static struct attribute *slab_attrs[] = {
|
||||
&objs_per_slab_attr.attr,
|
||||
&order_attr.attr,
|
||||
&objects_attr.attr,
|
||||
&objects_partial_attr.attr,
|
||||
&total_objects_attr.attr,
|
||||
&slabs_attr.attr,
|
||||
&partial_attr.attr,
|
||||
&cpu_slabs_attr.attr,
|
||||
@ -4089,6 +4179,7 @@ static struct attribute *slab_attrs[] = {
|
||||
&deactivate_to_head_attr.attr,
|
||||
&deactivate_to_tail_attr.attr,
|
||||
&deactivate_remote_frees_attr.attr,
|
||||
&order_fallback_attr.attr,
|
||||
#endif
|
||||
NULL
|
||||
};
|
||||
@ -4375,7 +4466,8 @@ static int s_show(struct seq_file *m, void *p)
|
||||
unsigned long nr_partials = 0;
|
||||
unsigned long nr_slabs = 0;
|
||||
unsigned long nr_inuse = 0;
|
||||
unsigned long nr_objs;
|
||||
unsigned long nr_objs = 0;
|
||||
unsigned long nr_free = 0;
|
||||
struct kmem_cache *s;
|
||||
int node;
|
||||
|
||||
@ -4389,14 +4481,15 @@ static int s_show(struct seq_file *m, void *p)
|
||||
|
||||
nr_partials += n->nr_partial;
|
||||
nr_slabs += atomic_long_read(&n->nr_slabs);
|
||||
nr_inuse += count_partial(n);
|
||||
nr_objs += atomic_long_read(&n->total_objects);
|
||||
nr_free += count_partial(n, count_free);
|
||||
}
|
||||
|
||||
nr_objs = nr_slabs * s->objects;
|
||||
nr_inuse += (nr_slabs - nr_partials) * s->objects;
|
||||
nr_inuse = nr_objs - nr_free;
|
||||
|
||||
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
|
||||
nr_objs, s->size, s->objects, (1 << s->order));
|
||||
nr_objs, s->size, oo_objects(s->oo),
|
||||
(1 << oo_order(s->oo)));
|
||||
seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
|
||||
seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
|
||||
0UL);
|
||||
|
Loading…
Reference in New Issue
Block a user