sched/fair: unlink misfit task from cpu overutilized
commit e5ed0550c04c5469ecdc1634d8aa18c8609590f0 upstream. By taking into account uclamp_min, the 1:1 relation between task misfit and cpu overutilized is no more true as a task with a small util_avg may not fit a high capacity cpu because of uclamp_min constraint. Add a new state in util_fits_cpu() to reflect the case that task would fit a CPU except for the uclamp_min hint which is a performance requirement. Use -1 to reflect that a CPU doesn't fit only because of uclamp_min so we can use this new value to take additional action to select the best CPU that doesn't match uclamp_min hint. When util_fits_cpu() returns -1, we will continue to look for a possible CPU with better performance, which replaces Capacity Inversion detection with capacity_orig_of() - thermal_load_avg to detect a capacity inversion. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-and-tested-by: Qais Yousef <qyousef@layalina.io> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Kajetan Puchalski <kajetan.puchalski@arm.com> Link: https://lore.kernel.org/r/20230201143628.270912-2-vincent.guittot@linaro.org Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
parent
5274bf1f74
commit
e8acf9971f
@ -4549,8 +4549,8 @@ static inline int util_fits_cpu(unsigned long util,
|
||||
* handle the case uclamp_min > uclamp_max.
|
||||
*/
|
||||
uclamp_min = min(uclamp_min, uclamp_max);
|
||||
if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE)
|
||||
fits = fits && (uclamp_min <= capacity_orig_thermal);
|
||||
if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
|
||||
return -1;
|
||||
|
||||
return fits;
|
||||
}
|
||||
@ -4560,7 +4560,11 @@ static inline int task_fits_cpu(struct task_struct *p, int cpu)
|
||||
unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
|
||||
unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
|
||||
unsigned long util = task_util_est(p);
|
||||
return util_fits_cpu(util, uclamp_min, uclamp_max, cpu);
|
||||
/*
|
||||
* Return true only if the cpu fully fits the task requirements, which
|
||||
* include the utilization but also the performance hints.
|
||||
*/
|
||||
return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
|
||||
}
|
||||
|
||||
static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
|
||||
@ -6043,6 +6047,7 @@ static inline bool cpu_overutilized(int cpu)
|
||||
unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
|
||||
unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
|
||||
|
||||
/* Return true only if the utilization doesn't fit CPU's capacity */
|
||||
return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
|
||||
}
|
||||
|
||||
@ -6836,6 +6841,7 @@ static int
|
||||
select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
|
||||
{
|
||||
unsigned long task_util, util_min, util_max, best_cap = 0;
|
||||
int fits, best_fits = 0;
|
||||
int cpu, best_cpu = -1;
|
||||
struct cpumask *cpus;
|
||||
|
||||
@ -6851,12 +6857,28 @@ select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
|
||||
|
||||
if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
|
||||
continue;
|
||||
if (util_fits_cpu(task_util, util_min, util_max, cpu))
|
||||
return cpu;
|
||||
|
||||
if (cpu_cap > best_cap) {
|
||||
fits = util_fits_cpu(task_util, util_min, util_max, cpu);
|
||||
|
||||
/* This CPU fits with all requirements */
|
||||
if (fits > 0)
|
||||
return cpu;
|
||||
/*
|
||||
* Only the min performance hint (i.e. uclamp_min) doesn't fit.
|
||||
* Look for the CPU with best capacity.
|
||||
*/
|
||||
else if (fits < 0)
|
||||
cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
|
||||
|
||||
/*
|
||||
* First, select CPU which fits better (-1 being better than 0).
|
||||
* Then, select the one with best capacity at same level.
|
||||
*/
|
||||
if ((fits < best_fits) ||
|
||||
((fits == best_fits) && (cpu_cap > best_cap))) {
|
||||
best_cap = cpu_cap;
|
||||
best_cpu = cpu;
|
||||
best_fits = fits;
|
||||
}
|
||||
}
|
||||
|
||||
@ -6869,7 +6891,11 @@ static inline bool asym_fits_cpu(unsigned long util,
|
||||
int cpu)
|
||||
{
|
||||
if (sched_asym_cpucap_active())
|
||||
return util_fits_cpu(util, util_min, util_max, cpu);
|
||||
/*
|
||||
* Return true only if the cpu fully fits the task requirements
|
||||
* which include the utilization and the performance hints.
|
||||
*/
|
||||
return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -7236,6 +7262,9 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
|
||||
unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
|
||||
struct root_domain *rd = this_rq()->rd;
|
||||
int cpu, best_energy_cpu, target = -1;
|
||||
int prev_fits = -1, best_fits = -1;
|
||||
unsigned long best_thermal_cap = 0;
|
||||
unsigned long prev_thermal_cap = 0;
|
||||
struct sched_domain *sd;
|
||||
struct perf_domain *pd;
|
||||
struct energy_env eenv;
|
||||
@ -7271,6 +7300,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
|
||||
unsigned long prev_spare_cap = 0;
|
||||
int max_spare_cap_cpu = -1;
|
||||
unsigned long base_energy;
|
||||
int fits, max_fits = -1;
|
||||
|
||||
cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
|
||||
|
||||
@ -7320,7 +7350,9 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
|
||||
util_min = max(rq_util_min, p_util_min);
|
||||
util_max = max(rq_util_max, p_util_max);
|
||||
}
|
||||
if (!util_fits_cpu(util, util_min, util_max, cpu))
|
||||
|
||||
fits = util_fits_cpu(util, util_min, util_max, cpu);
|
||||
if (!fits)
|
||||
continue;
|
||||
|
||||
lsub_positive(&cpu_cap, util);
|
||||
@ -7328,7 +7360,9 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
|
||||
if (cpu == prev_cpu) {
|
||||
/* Always use prev_cpu as a candidate. */
|
||||
prev_spare_cap = cpu_cap;
|
||||
} else if (cpu_cap > max_spare_cap) {
|
||||
prev_fits = fits;
|
||||
} else if ((fits > max_fits) ||
|
||||
((fits == max_fits) && (cpu_cap > max_spare_cap))) {
|
||||
/*
|
||||
* Find the CPU with the maximum spare capacity
|
||||
* among the remaining CPUs in the performance
|
||||
@ -7336,6 +7370,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
|
||||
*/
|
||||
max_spare_cap = cpu_cap;
|
||||
max_spare_cap_cpu = cpu;
|
||||
max_fits = fits;
|
||||
}
|
||||
}
|
||||
|
||||
@ -7354,26 +7389,50 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
|
||||
if (prev_delta < base_energy)
|
||||
goto unlock;
|
||||
prev_delta -= base_energy;
|
||||
prev_thermal_cap = cpu_thermal_cap;
|
||||
best_delta = min(best_delta, prev_delta);
|
||||
}
|
||||
|
||||
/* Evaluate the energy impact of using max_spare_cap_cpu. */
|
||||
if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
|
||||
/* Current best energy cpu fits better */
|
||||
if (max_fits < best_fits)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Both don't fit performance hint (i.e. uclamp_min)
|
||||
* but best energy cpu has better capacity.
|
||||
*/
|
||||
if ((max_fits < 0) &&
|
||||
(cpu_thermal_cap <= best_thermal_cap))
|
||||
continue;
|
||||
|
||||
cur_delta = compute_energy(&eenv, pd, cpus, p,
|
||||
max_spare_cap_cpu);
|
||||
/* CPU utilization has changed */
|
||||
if (cur_delta < base_energy)
|
||||
goto unlock;
|
||||
cur_delta -= base_energy;
|
||||
if (cur_delta < best_delta) {
|
||||
best_delta = cur_delta;
|
||||
best_energy_cpu = max_spare_cap_cpu;
|
||||
}
|
||||
|
||||
/*
|
||||
* Both fit for the task but best energy cpu has lower
|
||||
* energy impact.
|
||||
*/
|
||||
if ((max_fits > 0) && (best_fits > 0) &&
|
||||
(cur_delta >= best_delta))
|
||||
continue;
|
||||
|
||||
best_delta = cur_delta;
|
||||
best_energy_cpu = max_spare_cap_cpu;
|
||||
best_fits = max_fits;
|
||||
best_thermal_cap = cpu_thermal_cap;
|
||||
}
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
if (best_delta < prev_delta)
|
||||
if ((best_fits > prev_fits) ||
|
||||
((best_fits > 0) && (best_delta < prev_delta)) ||
|
||||
((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
|
||||
target = best_energy_cpu;
|
||||
|
||||
return target;
|
||||
@ -10183,6 +10242,16 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
|
||||
*/
|
||||
update_sd_lb_stats(env, &sds);
|
||||
|
||||
/* There is no busy sibling group to pull tasks from */
|
||||
if (!sds.busiest)
|
||||
goto out_balanced;
|
||||
|
||||
busiest = &sds.busiest_stat;
|
||||
|
||||
/* Misfit tasks should be dealt with regardless of the avg load */
|
||||
if (busiest->group_type == group_misfit_task)
|
||||
goto force_balance;
|
||||
|
||||
if (sched_energy_enabled()) {
|
||||
struct root_domain *rd = env->dst_rq->rd;
|
||||
|
||||
@ -10190,17 +10259,6 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
|
||||
goto out_balanced;
|
||||
}
|
||||
|
||||
local = &sds.local_stat;
|
||||
busiest = &sds.busiest_stat;
|
||||
|
||||
/* There is no busy sibling group to pull tasks from */
|
||||
if (!sds.busiest)
|
||||
goto out_balanced;
|
||||
|
||||
/* Misfit tasks should be dealt with regardless of the avg load */
|
||||
if (busiest->group_type == group_misfit_task)
|
||||
goto force_balance;
|
||||
|
||||
/* ASYM feature bypasses nice load balance check */
|
||||
if (busiest->group_type == group_asym_packing)
|
||||
goto force_balance;
|
||||
@ -10213,6 +10271,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
|
||||
if (busiest->group_type == group_imbalanced)
|
||||
goto force_balance;
|
||||
|
||||
local = &sds.local_stat;
|
||||
/*
|
||||
* If the local group is busier than the selected busiest group
|
||||
* don't try and pull any tasks.
|
||||
|
Loading…
Reference in New Issue
Block a user