crypto: arm64/aes-xctr - Improve readability of XCTR and CTR modes
Added some clarifying comments, changed the register allocations to make the code clearer, and added register aliases. Signed-off-by: Nathan Huckleberry <nhuck@google.com> Reviewed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
23a251cc16
commit
c0eb7591c1
@ -464,6 +464,14 @@ static int __maybe_unused xctr_encrypt(struct skcipher_request *req)
|
|||||||
u8 *dst = walk.dst.virt.addr;
|
u8 *dst = walk.dst.virt.addr;
|
||||||
u8 buf[AES_BLOCK_SIZE];
|
u8 buf[AES_BLOCK_SIZE];
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If given less than 16 bytes, we must copy the partial block
|
||||||
|
* into a temporary buffer of 16 bytes to avoid out of bounds
|
||||||
|
* reads and writes. Furthermore, this code is somewhat unusual
|
||||||
|
* in that it expects the end of the data to be at the end of
|
||||||
|
* the temporary buffer, rather than the start of the data at
|
||||||
|
* the start of the temporary buffer.
|
||||||
|
*/
|
||||||
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
||||||
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
||||||
src, nbytes);
|
src, nbytes);
|
||||||
@ -501,6 +509,14 @@ static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
|
|||||||
u8 *dst = walk.dst.virt.addr;
|
u8 *dst = walk.dst.virt.addr;
|
||||||
u8 buf[AES_BLOCK_SIZE];
|
u8 buf[AES_BLOCK_SIZE];
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If given less than 16 bytes, we must copy the partial block
|
||||||
|
* into a temporary buffer of 16 bytes to avoid out of bounds
|
||||||
|
* reads and writes. Furthermore, this code is somewhat unusual
|
||||||
|
* in that it expects the end of the data to be at the end of
|
||||||
|
* the temporary buffer, rather than the start of the data at
|
||||||
|
* the start of the temporary buffer.
|
||||||
|
*/
|
||||||
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
||||||
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
||||||
src, nbytes);
|
src, nbytes);
|
||||||
|
@ -322,32 +322,60 @@ AES_FUNC_END(aes_cbc_cts_decrypt)
|
|||||||
* This macro generates the code for CTR and XCTR mode.
|
* This macro generates the code for CTR and XCTR mode.
|
||||||
*/
|
*/
|
||||||
.macro ctr_encrypt xctr
|
.macro ctr_encrypt xctr
|
||||||
|
// Arguments
|
||||||
|
OUT .req x0
|
||||||
|
IN .req x1
|
||||||
|
KEY .req x2
|
||||||
|
ROUNDS_W .req w3
|
||||||
|
BYTES_W .req w4
|
||||||
|
IV .req x5
|
||||||
|
BYTE_CTR_W .req w6 // XCTR only
|
||||||
|
// Intermediate values
|
||||||
|
CTR_W .req w11 // XCTR only
|
||||||
|
CTR .req x11 // XCTR only
|
||||||
|
IV_PART .req x12
|
||||||
|
BLOCKS .req x13
|
||||||
|
BLOCKS_W .req w13
|
||||||
|
|
||||||
stp x29, x30, [sp, #-16]!
|
stp x29, x30, [sp, #-16]!
|
||||||
mov x29, sp
|
mov x29, sp
|
||||||
|
|
||||||
enc_prepare w3, x2, x12
|
enc_prepare ROUNDS_W, KEY, IV_PART
|
||||||
ld1 {vctr.16b}, [x5]
|
ld1 {vctr.16b}, [IV]
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Keep 64 bits of the IV in a register. For CTR mode this lets us
|
||||||
|
* easily increment the IV. For XCTR mode this lets us efficiently XOR
|
||||||
|
* the 64-bit counter with the IV.
|
||||||
|
*/
|
||||||
.if \xctr
|
.if \xctr
|
||||||
umov x12, vctr.d[0]
|
umov IV_PART, vctr.d[0]
|
||||||
lsr w11, w6, #4
|
lsr CTR_W, BYTE_CTR_W, #4
|
||||||
.else
|
.else
|
||||||
umov x12, vctr.d[1] /* keep swabbed ctr in reg */
|
umov IV_PART, vctr.d[1]
|
||||||
rev x12, x12
|
rev IV_PART, IV_PART
|
||||||
.endif
|
.endif
|
||||||
|
|
||||||
.LctrloopNx\xctr:
|
.LctrloopNx\xctr:
|
||||||
add w7, w4, #15
|
add BLOCKS_W, BYTES_W, #15
|
||||||
sub w4, w4, #MAX_STRIDE << 4
|
sub BYTES_W, BYTES_W, #MAX_STRIDE << 4
|
||||||
lsr w7, w7, #4
|
lsr BLOCKS_W, BLOCKS_W, #4
|
||||||
mov w8, #MAX_STRIDE
|
mov w8, #MAX_STRIDE
|
||||||
cmp w7, w8
|
cmp BLOCKS_W, w8
|
||||||
csel w7, w7, w8, lt
|
csel BLOCKS_W, BLOCKS_W, w8, lt
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Set up the counter values in v0-v{MAX_STRIDE-1}.
|
||||||
|
*
|
||||||
|
* If we are encrypting less than MAX_STRIDE blocks, the tail block
|
||||||
|
* handling code expects the last keystream block to be in
|
||||||
|
* v{MAX_STRIDE-1}. For example: if encrypting two blocks with
|
||||||
|
* MAX_STRIDE=5, then v3 and v4 should have the next two counter blocks.
|
||||||
|
*/
|
||||||
.if \xctr
|
.if \xctr
|
||||||
add x11, x11, x7
|
add CTR, CTR, BLOCKS
|
||||||
.else
|
.else
|
||||||
adds x12, x12, x7
|
adds IV_PART, IV_PART, BLOCKS
|
||||||
.endif
|
.endif
|
||||||
mov v0.16b, vctr.16b
|
mov v0.16b, vctr.16b
|
||||||
mov v1.16b, vctr.16b
|
mov v1.16b, vctr.16b
|
||||||
@ -355,16 +383,16 @@ AES_FUNC_END(aes_cbc_cts_decrypt)
|
|||||||
mov v3.16b, vctr.16b
|
mov v3.16b, vctr.16b
|
||||||
ST5( mov v4.16b, vctr.16b )
|
ST5( mov v4.16b, vctr.16b )
|
||||||
.if \xctr
|
.if \xctr
|
||||||
sub x6, x11, #MAX_STRIDE - 1
|
sub x6, CTR, #MAX_STRIDE - 1
|
||||||
sub x7, x11, #MAX_STRIDE - 2
|
sub x7, CTR, #MAX_STRIDE - 2
|
||||||
sub x8, x11, #MAX_STRIDE - 3
|
sub x8, CTR, #MAX_STRIDE - 3
|
||||||
sub x9, x11, #MAX_STRIDE - 4
|
sub x9, CTR, #MAX_STRIDE - 4
|
||||||
ST5( sub x10, x11, #MAX_STRIDE - 5 )
|
ST5( sub x10, CTR, #MAX_STRIDE - 5 )
|
||||||
eor x6, x6, x12
|
eor x6, x6, IV_PART
|
||||||
eor x7, x7, x12
|
eor x7, x7, IV_PART
|
||||||
eor x8, x8, x12
|
eor x8, x8, IV_PART
|
||||||
eor x9, x9, x12
|
eor x9, x9, IV_PART
|
||||||
ST5( eor x10, x10, x12 )
|
ST5( eor x10, x10, IV_PART )
|
||||||
mov v0.d[0], x6
|
mov v0.d[0], x6
|
||||||
mov v1.d[0], x7
|
mov v1.d[0], x7
|
||||||
mov v2.d[0], x8
|
mov v2.d[0], x8
|
||||||
@ -373,17 +401,32 @@ ST5( mov v4.d[0], x10 )
|
|||||||
.else
|
.else
|
||||||
bcs 0f
|
bcs 0f
|
||||||
.subsection 1
|
.subsection 1
|
||||||
/* apply carry to outgoing counter */
|
/*
|
||||||
|
* This subsection handles carries.
|
||||||
|
*
|
||||||
|
* Conditional branching here is allowed with respect to time
|
||||||
|
* invariance since the branches are dependent on the IV instead
|
||||||
|
* of the plaintext or key. This code is rarely executed in
|
||||||
|
* practice anyway.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Apply carry to outgoing counter. */
|
||||||
0: umov x8, vctr.d[0]
|
0: umov x8, vctr.d[0]
|
||||||
rev x8, x8
|
rev x8, x8
|
||||||
add x8, x8, #1
|
add x8, x8, #1
|
||||||
rev x8, x8
|
rev x8, x8
|
||||||
ins vctr.d[0], x8
|
ins vctr.d[0], x8
|
||||||
|
|
||||||
/* apply carry to N counter blocks for N := x12 */
|
/*
|
||||||
cbz x12, 2f
|
* Apply carry to counter blocks if needed.
|
||||||
|
*
|
||||||
|
* Since the carry flag was set, we know 0 <= IV_PART <
|
||||||
|
* MAX_STRIDE. Using the value of IV_PART we can determine how
|
||||||
|
* many counter blocks need to be updated.
|
||||||
|
*/
|
||||||
|
cbz IV_PART, 2f
|
||||||
adr x16, 1f
|
adr x16, 1f
|
||||||
sub x16, x16, x12, lsl #3
|
sub x16, x16, IV_PART, lsl #3
|
||||||
br x16
|
br x16
|
||||||
bti c
|
bti c
|
||||||
mov v0.d[0], vctr.d[0]
|
mov v0.d[0], vctr.d[0]
|
||||||
@ -398,71 +441,88 @@ ST5( mov v4.d[0], vctr.d[0] )
|
|||||||
1: b 2f
|
1: b 2f
|
||||||
.previous
|
.previous
|
||||||
|
|
||||||
2: rev x7, x12
|
2: rev x7, IV_PART
|
||||||
ins vctr.d[1], x7
|
ins vctr.d[1], x7
|
||||||
sub x7, x12, #MAX_STRIDE - 1
|
sub x7, IV_PART, #MAX_STRIDE - 1
|
||||||
sub x8, x12, #MAX_STRIDE - 2
|
sub x8, IV_PART, #MAX_STRIDE - 2
|
||||||
sub x9, x12, #MAX_STRIDE - 3
|
sub x9, IV_PART, #MAX_STRIDE - 3
|
||||||
rev x7, x7
|
rev x7, x7
|
||||||
rev x8, x8
|
rev x8, x8
|
||||||
mov v1.d[1], x7
|
mov v1.d[1], x7
|
||||||
rev x9, x9
|
rev x9, x9
|
||||||
ST5( sub x10, x12, #MAX_STRIDE - 4 )
|
ST5( sub x10, IV_PART, #MAX_STRIDE - 4 )
|
||||||
mov v2.d[1], x8
|
mov v2.d[1], x8
|
||||||
ST5( rev x10, x10 )
|
ST5( rev x10, x10 )
|
||||||
mov v3.d[1], x9
|
mov v3.d[1], x9
|
||||||
ST5( mov v4.d[1], x10 )
|
ST5( mov v4.d[1], x10 )
|
||||||
.endif
|
.endif
|
||||||
tbnz w4, #31, .Lctrtail\xctr
|
|
||||||
ld1 {v5.16b-v7.16b}, [x1], #48
|
/*
|
||||||
|
* If there are at least MAX_STRIDE blocks left, XOR the data with
|
||||||
|
* keystream and store. Otherwise jump to tail handling.
|
||||||
|
*/
|
||||||
|
tbnz BYTES_W, #31, .Lctrtail\xctr
|
||||||
|
ld1 {v5.16b-v7.16b}, [IN], #48
|
||||||
ST4( bl aes_encrypt_block4x )
|
ST4( bl aes_encrypt_block4x )
|
||||||
ST5( bl aes_encrypt_block5x )
|
ST5( bl aes_encrypt_block5x )
|
||||||
eor v0.16b, v5.16b, v0.16b
|
eor v0.16b, v5.16b, v0.16b
|
||||||
ST4( ld1 {v5.16b}, [x1], #16 )
|
ST4( ld1 {v5.16b}, [IN], #16 )
|
||||||
eor v1.16b, v6.16b, v1.16b
|
eor v1.16b, v6.16b, v1.16b
|
||||||
ST5( ld1 {v5.16b-v6.16b}, [x1], #32 )
|
ST5( ld1 {v5.16b-v6.16b}, [IN], #32 )
|
||||||
eor v2.16b, v7.16b, v2.16b
|
eor v2.16b, v7.16b, v2.16b
|
||||||
eor v3.16b, v5.16b, v3.16b
|
eor v3.16b, v5.16b, v3.16b
|
||||||
ST5( eor v4.16b, v6.16b, v4.16b )
|
ST5( eor v4.16b, v6.16b, v4.16b )
|
||||||
st1 {v0.16b-v3.16b}, [x0], #64
|
st1 {v0.16b-v3.16b}, [OUT], #64
|
||||||
ST5( st1 {v4.16b}, [x0], #16 )
|
ST5( st1 {v4.16b}, [OUT], #16 )
|
||||||
cbz w4, .Lctrout\xctr
|
cbz BYTES_W, .Lctrout\xctr
|
||||||
b .LctrloopNx\xctr
|
b .LctrloopNx\xctr
|
||||||
|
|
||||||
.Lctrout\xctr:
|
.Lctrout\xctr:
|
||||||
.if !\xctr
|
.if !\xctr
|
||||||
st1 {vctr.16b}, [x5] /* return next CTR value */
|
st1 {vctr.16b}, [IV] /* return next CTR value */
|
||||||
.endif
|
.endif
|
||||||
ldp x29, x30, [sp], #16
|
ldp x29, x30, [sp], #16
|
||||||
ret
|
ret
|
||||||
|
|
||||||
.Lctrtail\xctr:
|
.Lctrtail\xctr:
|
||||||
|
/*
|
||||||
|
* Handle up to MAX_STRIDE * 16 - 1 bytes of plaintext
|
||||||
|
*
|
||||||
|
* This code expects the last keystream block to be in v{MAX_STRIDE-1}.
|
||||||
|
* For example: if encrypting two blocks with MAX_STRIDE=5, then v3 and
|
||||||
|
* v4 should have the next two counter blocks.
|
||||||
|
*
|
||||||
|
* This allows us to store the ciphertext by writing to overlapping
|
||||||
|
* regions of memory. Any invalid ciphertext blocks get overwritten by
|
||||||
|
* correctly computed blocks. This approach greatly simplifies the
|
||||||
|
* logic for storing the ciphertext.
|
||||||
|
*/
|
||||||
mov x16, #16
|
mov x16, #16
|
||||||
ands x6, x4, #0xf
|
ands w7, BYTES_W, #0xf
|
||||||
csel x13, x6, x16, ne
|
csel x13, x7, x16, ne
|
||||||
|
|
||||||
ST5( cmp w4, #64 - (MAX_STRIDE << 4) )
|
ST5( cmp BYTES_W, #64 - (MAX_STRIDE << 4))
|
||||||
ST5( csel x14, x16, xzr, gt )
|
ST5( csel x14, x16, xzr, gt )
|
||||||
cmp w4, #48 - (MAX_STRIDE << 4)
|
cmp BYTES_W, #48 - (MAX_STRIDE << 4)
|
||||||
csel x15, x16, xzr, gt
|
csel x15, x16, xzr, gt
|
||||||
cmp w4, #32 - (MAX_STRIDE << 4)
|
cmp BYTES_W, #32 - (MAX_STRIDE << 4)
|
||||||
csel x16, x16, xzr, gt
|
csel x16, x16, xzr, gt
|
||||||
cmp w4, #16 - (MAX_STRIDE << 4)
|
cmp BYTES_W, #16 - (MAX_STRIDE << 4)
|
||||||
|
|
||||||
adr_l x12, .Lcts_permute_table
|
adr_l x9, .Lcts_permute_table
|
||||||
add x12, x12, x13
|
add x9, x9, x13
|
||||||
ble .Lctrtail1x\xctr
|
ble .Lctrtail1x\xctr
|
||||||
|
|
||||||
ST5( ld1 {v5.16b}, [x1], x14 )
|
ST5( ld1 {v5.16b}, [IN], x14 )
|
||||||
ld1 {v6.16b}, [x1], x15
|
ld1 {v6.16b}, [IN], x15
|
||||||
ld1 {v7.16b}, [x1], x16
|
ld1 {v7.16b}, [IN], x16
|
||||||
|
|
||||||
ST4( bl aes_encrypt_block4x )
|
ST4( bl aes_encrypt_block4x )
|
||||||
ST5( bl aes_encrypt_block5x )
|
ST5( bl aes_encrypt_block5x )
|
||||||
|
|
||||||
ld1 {v8.16b}, [x1], x13
|
ld1 {v8.16b}, [IN], x13
|
||||||
ld1 {v9.16b}, [x1]
|
ld1 {v9.16b}, [IN]
|
||||||
ld1 {v10.16b}, [x12]
|
ld1 {v10.16b}, [x9]
|
||||||
|
|
||||||
ST4( eor v6.16b, v6.16b, v0.16b )
|
ST4( eor v6.16b, v6.16b, v0.16b )
|
||||||
ST4( eor v7.16b, v7.16b, v1.16b )
|
ST4( eor v7.16b, v7.16b, v1.16b )
|
||||||
@ -477,35 +537,70 @@ ST5( eor v7.16b, v7.16b, v2.16b )
|
|||||||
ST5( eor v8.16b, v8.16b, v3.16b )
|
ST5( eor v8.16b, v8.16b, v3.16b )
|
||||||
ST5( eor v9.16b, v9.16b, v4.16b )
|
ST5( eor v9.16b, v9.16b, v4.16b )
|
||||||
|
|
||||||
ST5( st1 {v5.16b}, [x0], x14 )
|
ST5( st1 {v5.16b}, [OUT], x14 )
|
||||||
st1 {v6.16b}, [x0], x15
|
st1 {v6.16b}, [OUT], x15
|
||||||
st1 {v7.16b}, [x0], x16
|
st1 {v7.16b}, [OUT], x16
|
||||||
add x13, x13, x0
|
add x13, x13, OUT
|
||||||
st1 {v9.16b}, [x13] // overlapping stores
|
st1 {v9.16b}, [x13] // overlapping stores
|
||||||
st1 {v8.16b}, [x0]
|
st1 {v8.16b}, [OUT]
|
||||||
b .Lctrout\xctr
|
b .Lctrout\xctr
|
||||||
|
|
||||||
.Lctrtail1x\xctr:
|
.Lctrtail1x\xctr:
|
||||||
sub x7, x6, #16
|
/*
|
||||||
csel x6, x6, x7, eq
|
* Handle <= 16 bytes of plaintext
|
||||||
add x1, x1, x6
|
*
|
||||||
add x0, x0, x6
|
* This code always reads and writes 16 bytes. To avoid out of bounds
|
||||||
ld1 {v5.16b}, [x1]
|
* accesses, XCTR and CTR modes must use a temporary buffer when
|
||||||
ld1 {v6.16b}, [x0]
|
* encrypting/decrypting less than 16 bytes.
|
||||||
|
*
|
||||||
|
* This code is unusual in that it loads the input and stores the output
|
||||||
|
* relative to the end of the buffers rather than relative to the start.
|
||||||
|
* This causes unusual behaviour when encrypting/decrypting less than 16
|
||||||
|
* bytes; the end of the data is expected to be at the end of the
|
||||||
|
* temporary buffer rather than the start of the data being at the start
|
||||||
|
* of the temporary buffer.
|
||||||
|
*/
|
||||||
|
sub x8, x7, #16
|
||||||
|
csel x7, x7, x8, eq
|
||||||
|
add IN, IN, x7
|
||||||
|
add OUT, OUT, x7
|
||||||
|
ld1 {v5.16b}, [IN]
|
||||||
|
ld1 {v6.16b}, [OUT]
|
||||||
ST5( mov v3.16b, v4.16b )
|
ST5( mov v3.16b, v4.16b )
|
||||||
encrypt_block v3, w3, x2, x8, w7
|
encrypt_block v3, ROUNDS_W, KEY, x8, w7
|
||||||
ld1 {v10.16b-v11.16b}, [x12]
|
ld1 {v10.16b-v11.16b}, [x9]
|
||||||
tbl v3.16b, {v3.16b}, v10.16b
|
tbl v3.16b, {v3.16b}, v10.16b
|
||||||
sshr v11.16b, v11.16b, #7
|
sshr v11.16b, v11.16b, #7
|
||||||
eor v5.16b, v5.16b, v3.16b
|
eor v5.16b, v5.16b, v3.16b
|
||||||
bif v5.16b, v6.16b, v11.16b
|
bif v5.16b, v6.16b, v11.16b
|
||||||
st1 {v5.16b}, [x0]
|
st1 {v5.16b}, [OUT]
|
||||||
b .Lctrout\xctr
|
b .Lctrout\xctr
|
||||||
|
|
||||||
|
// Arguments
|
||||||
|
.unreq OUT
|
||||||
|
.unreq IN
|
||||||
|
.unreq KEY
|
||||||
|
.unreq ROUNDS_W
|
||||||
|
.unreq BYTES_W
|
||||||
|
.unreq IV
|
||||||
|
.unreq BYTE_CTR_W // XCTR only
|
||||||
|
// Intermediate values
|
||||||
|
.unreq CTR_W // XCTR only
|
||||||
|
.unreq CTR // XCTR only
|
||||||
|
.unreq IV_PART
|
||||||
|
.unreq BLOCKS
|
||||||
|
.unreq BLOCKS_W
|
||||||
.endm
|
.endm
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds,
|
* aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds,
|
||||||
* int bytes, u8 ctr[])
|
* int bytes, u8 ctr[])
|
||||||
|
*
|
||||||
|
* The input and output buffers must always be at least 16 bytes even if
|
||||||
|
* encrypting/decrypting less than 16 bytes. Otherwise out of bounds
|
||||||
|
* accesses will occur. The data to be encrypted/decrypted is expected
|
||||||
|
* to be at the end of this 16-byte temporary buffer rather than the
|
||||||
|
* start.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
AES_FUNC_START(aes_ctr_encrypt)
|
AES_FUNC_START(aes_ctr_encrypt)
|
||||||
@ -515,6 +610,12 @@ AES_FUNC_END(aes_ctr_encrypt)
|
|||||||
/*
|
/*
|
||||||
* aes_xctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds,
|
* aes_xctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds,
|
||||||
* int bytes, u8 const iv[], int byte_ctr)
|
* int bytes, u8 const iv[], int byte_ctr)
|
||||||
|
*
|
||||||
|
* The input and output buffers must always be at least 16 bytes even if
|
||||||
|
* encrypting/decrypting less than 16 bytes. Otherwise out of bounds
|
||||||
|
* accesses will occur. The data to be encrypted/decrypted is expected
|
||||||
|
* to be at the end of this 16-byte temporary buffer rather than the
|
||||||
|
* start.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
AES_FUNC_START(aes_xctr_encrypt)
|
AES_FUNC_START(aes_xctr_encrypt)
|
||||||
|
Loading…
Reference in New Issue
Block a user