android_kernel_samsung_sm8650/drivers/optics/common_timer.c

330 lines
8.4 KiB
C
Raw Permalink Normal View History

2024-10-06 23:20:51 +09:00
/*
* common_timer.c - Linux kernel modules for sensortek stk6d2x
* ambient light sensor (Common function)
*
* Copyright (C) 2019 Bk, sensortek Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/input.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/types.h>
#include <linux/pm.h>
#include <linux/delay.h>
#include <linux/pm_wakeup.h>
#include <common_define.h>
typedef struct timer_manager timer_manager;
struct timer_manager
{
struct work_struct stk_work;
struct hrtimer stk_hrtimer;
struct workqueue_struct *stk_wq;
ktime_t timer_interval;
stk_timer_info *timer_info;
} timer_mgr_default = {.timer_info = 0};
#define MAX_LINUX_TIMER_MANAGER_NUM 5
timer_manager linux_timer_mgr[MAX_LINUX_TIMER_MANAGER_NUM];
static timer_manager* parser_timer(struct hrtimer *timer)
{
int timer_idx = 0;
if (timer == NULL)
{
return NULL;
}
for (timer_idx = 0; timer_idx < MAX_LINUX_TIMER_MANAGER_NUM; timer_idx ++)
{
if (&linux_timer_mgr[timer_idx].stk_hrtimer == timer)
{
return &linux_timer_mgr[timer_idx];
}
}
return NULL;
}
static enum hrtimer_restart timer_func(struct hrtimer *timer)
{
timer_manager *timer_mgr = parser_timer(timer);
if (timer_mgr == NULL)
{
printk(KERN_ERR "%s: timer_mgr is NULL\n", __func__);
return HRTIMER_NORESTART;
}
if (timer_mgr->stk_wq == NULL)
{
printk(KERN_ERR "%s: timer_mgr->stk_wq is NULL\n", __func__);
return HRTIMER_NORESTART;
}
if (timer_mgr->timer_info == NULL)
{
printk(KERN_ERR "%s: timer_mgr->timer_info is NULL\n", __func__);
return HRTIMER_NORESTART;
}
queue_work(timer_mgr->stk_wq, &timer_mgr->stk_work);
hrtimer_forward_now(&timer_mgr->stk_hrtimer, timer_mgr->timer_interval);
return HRTIMER_RESTART;
}
static timer_manager* parser_work(struct work_struct *work)
{
int timer_idx = 0;
if (work == NULL)
{
return NULL;
}
for (timer_idx = 0; timer_idx < MAX_LINUX_TIMER_MANAGER_NUM; timer_idx ++)
{
if (&linux_timer_mgr[timer_idx].stk_work == work)
{
return &linux_timer_mgr[timer_idx];
}
}
return NULL;
}
static void timer_callback(struct work_struct *work)
{
timer_manager *timer_mgr = parser_work(work);
if (timer_mgr == NULL)
{
return;
}
timer_mgr->timer_info->timer_cb(timer_mgr->timer_info);
}
int register_timer(stk_timer_info *t_info)
{
int timer_idx = 0;
if (t_info == NULL)
{
return -1;
}
for (timer_idx = 0; timer_idx < MAX_LINUX_TIMER_MANAGER_NUM; timer_idx ++)
{
if (!linux_timer_mgr[timer_idx].timer_info)
{
linux_timer_mgr[timer_idx].timer_info = t_info;
break;
}
else
{
if (linux_timer_mgr[timer_idx].timer_info == t_info)
{
//already register
if (linux_timer_mgr[timer_idx].timer_info->change_interval_time)
{
linux_timer_mgr[timer_idx].timer_info->change_interval_time = 0;
printk(KERN_ERR "%s: chang interval time\n", __func__);
switch (linux_timer_mgr[timer_idx].timer_info->timer_unit)
{
case N_SECOND:
linux_timer_mgr[timer_idx].timer_interval = ns_to_ktime(linux_timer_mgr[timer_idx].timer_info->interval_time);
break;
case U_SECOND:
linux_timer_mgr[timer_idx].timer_interval = ns_to_ktime(linux_timer_mgr[timer_idx].timer_info->interval_time * NSEC_PER_USEC);
break;
case M_SECOND:
linux_timer_mgr[timer_idx].timer_interval = ns_to_ktime(linux_timer_mgr[timer_idx].timer_info->interval_time * NSEC_PER_MSEC);
break;
case SECOND:
break;
}
return 0;
}
printk(KERN_ERR "%s: this timer is registered\n", __func__);
return -1;
}
}
}
// if search/register timer manager not successfully
if (timer_idx == MAX_LINUX_TIMER_MANAGER_NUM)
{
printk(KERN_ERR "%s: timer_idx out of range %d\n", __func__, timer_idx);
return -1;
}
printk(KERN_ERR "%s: register timer name %s\n", __func__, linux_timer_mgr[timer_idx].timer_info->wq_name);
linux_timer_mgr[timer_idx].stk_wq = create_singlethread_workqueue(linux_timer_mgr[timer_idx].timer_info->wq_name);
if (linux_timer_mgr[timer_idx].stk_wq == NULL)
{
printk(KERN_ERR "%s: create single thread workqueue fail\n", __func__);
linux_timer_mgr[timer_idx].timer_info = 0;
return -1;
}
INIT_WORK(&linux_timer_mgr[timer_idx].stk_work, timer_callback);
hrtimer_init(&linux_timer_mgr[timer_idx].stk_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
switch (linux_timer_mgr[timer_idx].timer_info->timer_unit)
{
case N_SECOND:
linux_timer_mgr[timer_idx].timer_interval = ns_to_ktime(linux_timer_mgr[timer_idx].timer_info->interval_time);
break;
case U_SECOND:
linux_timer_mgr[timer_idx].timer_interval = ns_to_ktime(linux_timer_mgr[timer_idx].timer_info->interval_time * NSEC_PER_USEC);
break;
case M_SECOND:
linux_timer_mgr[timer_idx].timer_interval = ns_to_ktime(linux_timer_mgr[timer_idx].timer_info->interval_time * NSEC_PER_MSEC);
break;
case SECOND:
break;
}
linux_timer_mgr[timer_idx].stk_hrtimer.function = timer_func;
linux_timer_mgr[timer_idx].timer_info->is_exist = true;
return 0;
}
int start_timer(stk_timer_info *t_info)
{
int timer_idx = 0;
for (timer_idx = 0; timer_idx < MAX_LINUX_TIMER_MANAGER_NUM; timer_idx ++)
{
if (linux_timer_mgr[timer_idx].timer_info == t_info)
{
if (linux_timer_mgr[timer_idx].timer_info->is_exist)
{
if (!linux_timer_mgr[timer_idx].timer_info->is_active)
{
hrtimer_start(&linux_timer_mgr[timer_idx].stk_hrtimer, linux_timer_mgr[timer_idx].timer_interval, HRTIMER_MODE_REL);
linux_timer_mgr[timer_idx].timer_info->is_active = true;
printk(KERN_ERR "%s: start timer name %s\n", __func__, linux_timer_mgr[timer_idx].timer_info->wq_name);
}
else
{
printk(KERN_INFO "%s: %s was already running\n", __func__, linux_timer_mgr[timer_idx].timer_info->wq_name);
}
}
return 0;
}
}
return -1;
}
int stop_timer(stk_timer_info *t_info)
{
int timer_idx = 0;
for (timer_idx = 0; timer_idx < MAX_LINUX_TIMER_MANAGER_NUM; timer_idx ++)
{
if (linux_timer_mgr[timer_idx].timer_info == t_info)
{
if (linux_timer_mgr[timer_idx].timer_info->is_exist)
{
if (linux_timer_mgr[timer_idx].timer_info->is_active)
{
hrtimer_cancel(&linux_timer_mgr[timer_idx].stk_hrtimer);
drain_workqueue(linux_timer_mgr[timer_idx].stk_wq);
linux_timer_mgr[timer_idx].timer_info->is_active = false;
printk(KERN_ERR "%s: stop timer name %s\n", __func__, linux_timer_mgr[timer_idx].timer_info->wq_name);
}
else
{
printk(KERN_ERR "%s: %s stop already stop\n", __func__, linux_timer_mgr[timer_idx].timer_info->wq_name);
}
}
return 0;
}
}
return -1;
}
int remove_timer(stk_timer_info *t_info)
{
int timer_idx = 0;
for (timer_idx = 0; timer_idx < MAX_LINUX_TIMER_MANAGER_NUM; timer_idx ++)
{
if (linux_timer_mgr[timer_idx].timer_info == t_info)
{
if (linux_timer_mgr[timer_idx].timer_info->is_exist)
{
if (linux_timer_mgr[timer_idx].timer_info->is_active)
{
hrtimer_try_to_cancel(&linux_timer_mgr[timer_idx].stk_hrtimer);
destroy_workqueue(linux_timer_mgr[timer_idx].stk_wq);
cancel_work_sync(&linux_timer_mgr[timer_idx].stk_work);
linux_timer_mgr[timer_idx].timer_info->is_active = false;
linux_timer_mgr[timer_idx].timer_info->is_exist = false;
linux_timer_mgr[timer_idx].timer_info = 0;
}
}
return 0;
}
}
return -1;
}
void busy_wait(unsigned long min, unsigned long max, BUSY_WAIT_TYPE mode)
{
if ((!min) || (!max) || (max < min))
{
return;
}
if (mode == US_RANGE_DELAY)
{
usleep_range(min, max);
}
if (mode == MS_DELAY)
{
msleep(max);
}
}
const struct stk_timer_ops stk_t_ops =
{
.register_timer = register_timer,
.start_timer = start_timer,
.stop_timer = stop_timer,
.remove = remove_timer,
.busy_wait = busy_wait,
};