android_kernel_samsung_sm86.../qcom/opensource/graphics-kernel/kgsl.c
David Wronek 880d405719 Add 'qcom/opensource/graphics-kernel/' from commit 'b4fdc4c04295ac59109ae19d64747522740c3f14'
git-subtree-dir: qcom/opensource/graphics-kernel
git-subtree-mainline: 992813d9c1
git-subtree-split: b4fdc4c042
Change-Id:
repo: https://git.codelinaro.org/clo/la/platform/vendor/qcom/opensource/graphics-kernel
tag: GRAPHICS.LA.14.0.r1-07700-lanai.0
2024-10-06 16:44:56 +02:00

5423 lines
134 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2008-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <uapi/linux/sched/types.h>
#include <linux/bitfield.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/dma-buf.h>
#include <linux/dma-map-ops.h>
#include <linux/fdtable.h>
#include <linux/io.h>
#include <linux/mem-buf.h>
#include <linux/mman.h>
#include <linux/mm_types.h>
#include <linux/msm_kgsl.h>
#include <linux/msm_sysstats.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/pm_runtime.h>
#include <linux/qcom_dma_heap.h>
#include <linux/security.h>
#include <linux/sort.h>
#include <linux/string_helpers.h>
#include <soc/qcom/of_common.h>
#include <soc/qcom/secure_buffer.h>
#include "kgsl_compat.h"
#include "kgsl_debugfs.h"
#include "kgsl_device.h"
#include "kgsl_eventlog.h"
#include "kgsl_mmu.h"
#include "kgsl_pool.h"
#include "kgsl_reclaim.h"
#include "kgsl_sync.h"
#include "kgsl_sysfs.h"
#include "kgsl_trace.h"
/* Instantiate tracepoints */
#define CREATE_TRACE_POINTS
#include "kgsl_power_trace.h"
#ifndef arch_mmap_check
#define arch_mmap_check(addr, len, flags) (0)
#endif
#ifndef pgprot_writebackcache
#define pgprot_writebackcache(_prot) (_prot)
#endif
#ifndef pgprot_writethroughcache
#define pgprot_writethroughcache(_prot) (_prot)
#endif
#if defined(CONFIG_ARM64) || defined(CONFIG_ARM_LPAE)
#define KGSL_DMA_BIT_MASK DMA_BIT_MASK(64)
#else
#define KGSL_DMA_BIT_MASK DMA_BIT_MASK(32)
#endif
/* List of dmabufs mapped */
static LIST_HEAD(kgsl_dmabuf_list);
static DEFINE_SPINLOCK(kgsl_dmabuf_lock);
struct dmabuf_list_entry {
struct page *firstpage;
struct list_head node;
struct list_head dmabuf_list;
};
struct kgsl_dma_buf_meta {
struct kgsl_mem_entry *entry;
struct dma_buf_attachment *attach;
struct dma_buf *dmabuf;
struct sg_table *table;
struct dmabuf_list_entry *dle;
struct list_head node;
};
static inline struct kgsl_pagetable *_get_memdesc_pagetable(
struct kgsl_pagetable *pt, struct kgsl_mem_entry *entry)
{
/* if a secured buffer, map it to secure global pagetable */
if (kgsl_memdesc_is_secured(&entry->memdesc))
return pt->mmu->securepagetable;
return pt;
}
static void kgsl_mem_entry_detach_process(struct kgsl_mem_entry *entry);
static const struct vm_operations_struct kgsl_gpumem_vm_ops;
/*
* The memfree list contains the last N blocks of memory that have been freed.
* On a GPU fault we walk the list to see if the faulting address had been
* recently freed and print out a message to that effect
*/
#define MEMFREE_ENTRIES 512
static DEFINE_SPINLOCK(memfree_lock);
struct memfree_entry {
pid_t ptname;
uint64_t gpuaddr;
uint64_t size;
pid_t pid;
uint64_t flags;
};
static struct {
struct memfree_entry *list;
int head;
int tail;
} memfree;
static inline bool match_memfree_addr(struct memfree_entry *entry,
pid_t ptname, uint64_t gpuaddr)
{
return ((entry->ptname == ptname) &&
(entry->size > 0) &&
(gpuaddr >= entry->gpuaddr &&
gpuaddr < (entry->gpuaddr + entry->size)));
}
int kgsl_memfree_find_entry(pid_t ptname, uint64_t *gpuaddr,
uint64_t *size, uint64_t *flags, pid_t *pid)
{
int ptr;
if (memfree.list == NULL)
return 0;
spin_lock(&memfree_lock);
ptr = memfree.head - 1;
if (ptr < 0)
ptr = MEMFREE_ENTRIES - 1;
/* Walk backwards through the list looking for the last match */
while (ptr != memfree.tail) {
struct memfree_entry *entry = &memfree.list[ptr];
if (match_memfree_addr(entry, ptname, *gpuaddr)) {
*gpuaddr = entry->gpuaddr;
*flags = entry->flags;
*size = entry->size;
*pid = entry->pid;
spin_unlock(&memfree_lock);
return 1;
}
ptr = ptr - 1;
if (ptr < 0)
ptr = MEMFREE_ENTRIES - 1;
}
spin_unlock(&memfree_lock);
return 0;
}
static void kgsl_memfree_purge(struct kgsl_pagetable *pagetable,
uint64_t gpuaddr, uint64_t size)
{
pid_t ptname = pagetable ? pagetable->name : 0;
int i;
if (memfree.list == NULL)
return;
spin_lock(&memfree_lock);
for (i = 0; i < MEMFREE_ENTRIES; i++) {
struct memfree_entry *entry = &memfree.list[i];
if (entry->ptname != ptname || entry->size == 0)
continue;
if (gpuaddr > entry->gpuaddr &&
gpuaddr < entry->gpuaddr + entry->size) {
/* truncate the end of the entry */
entry->size = gpuaddr - entry->gpuaddr;
} else if (gpuaddr <= entry->gpuaddr) {
if (gpuaddr + size > entry->gpuaddr &&
gpuaddr + size < entry->gpuaddr + entry->size)
/* Truncate the beginning of the entry */
entry->gpuaddr = gpuaddr + size;
else if (gpuaddr + size >= entry->gpuaddr + entry->size)
/* Remove the entire entry */
entry->size = 0;
}
}
spin_unlock(&memfree_lock);
}
static void kgsl_memfree_add(pid_t pid, pid_t ptname, uint64_t gpuaddr,
uint64_t size, uint64_t flags)
{
struct memfree_entry *entry;
if (memfree.list == NULL)
return;
spin_lock(&memfree_lock);
entry = &memfree.list[memfree.head];
entry->pid = pid;
entry->ptname = ptname;
entry->gpuaddr = gpuaddr;
entry->size = size;
entry->flags = flags;
memfree.head = (memfree.head + 1) % MEMFREE_ENTRIES;
if (memfree.head == memfree.tail)
memfree.tail = (memfree.tail + 1) % MEMFREE_ENTRIES;
spin_unlock(&memfree_lock);
}
int kgsl_readtimestamp(struct kgsl_device *device, void *priv,
enum kgsl_timestamp_type type, unsigned int *timestamp)
{
if (device)
return device->ftbl->readtimestamp(device, priv, type,
timestamp);
return -EINVAL;
}
const char *kgsl_context_type(int type)
{
if (type == KGSL_CONTEXT_TYPE_GL)
return "GL";
else if (type == KGSL_CONTEXT_TYPE_CL)
return "CL";
else if (type == KGSL_CONTEXT_TYPE_C2D)
return "C2D";
else if (type == KGSL_CONTEXT_TYPE_RS)
return "RS";
else if (type == KGSL_CONTEXT_TYPE_VK)
return "VK";
return "ANY";
}
static struct kgsl_mem_entry *kgsl_mem_entry_create(void)
{
struct kgsl_mem_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (entry != NULL) {
kref_init(&entry->refcount);
/* put this ref in userspace memory alloc and map ioctls */
kref_get(&entry->refcount);
atomic_set(&entry->map_count, 0);
atomic_set(&entry->vbo_count, 0);
}
return entry;
}
static void add_dmabuf_list(struct kgsl_dma_buf_meta *metadata)
{
struct kgsl_device *device = dev_get_drvdata(metadata->attach->dev);
struct dmabuf_list_entry *dle;
struct page *page;
/*
* Get the first page. We will use it to identify the imported
* buffer, since the same buffer can be mapped as different
* mem entries.
*/
page = sg_page(metadata->table->sgl);
spin_lock(&kgsl_dmabuf_lock);
/* Go through the list to see if we imported this buffer before */
list_for_each_entry(dle, &kgsl_dmabuf_list, node) {
if (dle->firstpage == page) {
/* Add the dmabuf metadata to the list for this dle */
metadata->dle = dle;
list_add(&metadata->node, &dle->dmabuf_list);
spin_unlock(&kgsl_dmabuf_lock);
return;
}
}
/* This is a new buffer. Add a new entry for it */
dle = kzalloc(sizeof(*dle), GFP_ATOMIC);
if (dle) {
dle->firstpage = page;
INIT_LIST_HEAD(&dle->dmabuf_list);
list_add(&dle->node, &kgsl_dmabuf_list);
metadata->dle = dle;
list_add(&metadata->node, &dle->dmabuf_list);
kgsl_trace_gpu_mem_total(device,
metadata->entry->memdesc.size);
}
spin_unlock(&kgsl_dmabuf_lock);
}
static void remove_dmabuf_list(struct kgsl_dma_buf_meta *metadata)
{
struct kgsl_device *device = dev_get_drvdata(metadata->attach->dev);
struct dmabuf_list_entry *dle = metadata->dle;
if (!dle)
return;
spin_lock(&kgsl_dmabuf_lock);
list_del(&metadata->node);
if (list_empty(&dle->dmabuf_list)) {
list_del(&dle->node);
kfree(dle);
kgsl_trace_gpu_mem_total(device,
-(metadata->entry->memdesc.size));
}
spin_unlock(&kgsl_dmabuf_lock);
}
#ifdef CONFIG_DMA_SHARED_BUFFER
static void kgsl_destroy_ion(struct kgsl_memdesc *memdesc)
{
struct kgsl_mem_entry *entry = container_of(memdesc,
struct kgsl_mem_entry, memdesc);
struct kgsl_dma_buf_meta *metadata = entry->priv_data;
if (memdesc->priv & KGSL_MEMDESC_MAPPED)
return;
if (metadata != NULL) {
remove_dmabuf_list(metadata);
#if (KERNEL_VERSION(6, 2, 0) <= LINUX_VERSION_CODE)
dma_buf_unmap_attachment_unlocked(metadata->attach, memdesc->sgt,
DMA_BIDIRECTIONAL);
#else
dma_buf_unmap_attachment(metadata->attach, memdesc->sgt, DMA_BIDIRECTIONAL);
#endif
dma_buf_detach(metadata->dmabuf, metadata->attach);
dma_buf_put(metadata->dmabuf);
kfree(metadata);
}
memdesc->sgt = NULL;
}
static const struct kgsl_memdesc_ops kgsl_dmabuf_ops = {
.free = kgsl_destroy_ion,
.put_gpuaddr = kgsl_unmap_and_put_gpuaddr,
};
#endif
static void kgsl_destroy_anon(struct kgsl_memdesc *memdesc)
{
int i = 0, j;
struct scatterlist *sg;
struct page *page;
if (memdesc->priv & KGSL_MEMDESC_MAPPED)
return;
for_each_sg(memdesc->sgt->sgl, sg, memdesc->sgt->nents, i) {
page = sg_page(sg);
for (j = 0; j < (sg->length >> PAGE_SHIFT); j++) {
/*
* Mark the page in the scatterlist as dirty if they
* were writable by the GPU.
*/
if (!(memdesc->flags & KGSL_MEMFLAGS_GPUREADONLY))
set_page_dirty_lock(nth_page(page, j));
/*
* Put the page reference taken using get_user_pages
* during memdesc_sg_virt.
*/
put_page(nth_page(page, j));
}
}
sg_free_table(memdesc->sgt);
kfree(memdesc->sgt);
memdesc->sgt = NULL;
}
void
kgsl_mem_entry_destroy(struct kref *kref)
{
struct kgsl_mem_entry *entry = container_of(kref,
struct kgsl_mem_entry,
refcount);
unsigned int memtype;
if (entry == NULL)
return;
/* pull out the memtype before the flags get cleared */
memtype = kgsl_memdesc_usermem_type(&entry->memdesc);
/*
* VBO allocations at gpumem_alloc_vbo_entry are not added into stats
* (using kgsl_process_add_stats) so do not subtract here. For all other
* allocations subtract before freeing memdesc
*/
if (!(entry->memdesc.flags & KGSL_MEMFLAGS_VBO))
atomic64_sub(entry->memdesc.size, &entry->priv->stats[memtype].cur);
/* Detach from process list */
kgsl_mem_entry_detach_process(entry);
if (memtype != KGSL_MEM_ENTRY_KERNEL)
atomic_long_sub(entry->memdesc.size,
&kgsl_driver.stats.mapped);
kgsl_sharedmem_free(&entry->memdesc);
kfree(entry);
}
/* Scheduled by kgsl_mem_entry_destroy_deferred() */
static void _deferred_destroy(struct work_struct *work)
{
struct kgsl_mem_entry *entry =
container_of(work, struct kgsl_mem_entry, work);
kgsl_mem_entry_destroy(&entry->refcount);
}
void kgsl_mem_entry_destroy_deferred(struct kref *kref)
{
struct kgsl_mem_entry *entry =
container_of(kref, struct kgsl_mem_entry, refcount);
INIT_WORK(&entry->work, _deferred_destroy);
queue_work(kgsl_driver.lockless_workqueue, &entry->work);
}
/* Commit the entry to the process so it can be accessed by other operations */
static void kgsl_mem_entry_commit_process(struct kgsl_mem_entry *entry)
{
if (!entry)
return;
spin_lock(&entry->priv->mem_lock);
idr_replace(&entry->priv->mem_idr, entry, entry->id);
spin_unlock(&entry->priv->mem_lock);
}
static int kgsl_mem_entry_attach_to_process(struct kgsl_device *device,
struct kgsl_process_private *process,
struct kgsl_mem_entry *entry)
{
struct kgsl_memdesc *memdesc = &entry->memdesc;
int ret, id;
ret = kgsl_process_private_get(process);
if (!ret)
return -EBADF;
/* Assign a gpu address */
if (!kgsl_memdesc_use_cpu_map(memdesc) &&
kgsl_mmu_get_mmutype(device) != KGSL_MMU_TYPE_NONE) {
struct kgsl_pagetable *pagetable;
pagetable = kgsl_memdesc_is_secured(memdesc) ?
device->mmu.securepagetable : process->pagetable;
ret = kgsl_mmu_get_gpuaddr(pagetable, memdesc);
if (ret) {
kgsl_process_private_put(process);
return ret;
}
}
idr_preload(GFP_KERNEL);
spin_lock(&process->mem_lock);
/* Allocate the ID but don't attach the pointer just yet */
id = idr_alloc(&process->mem_idr, NULL, 1, 0, GFP_NOWAIT);
spin_unlock(&process->mem_lock);
idr_preload_end();
if (id < 0) {
if (!kgsl_memdesc_use_cpu_map(memdesc))
kgsl_mmu_put_gpuaddr(memdesc->pagetable, memdesc);
kgsl_process_private_put(process);
return id;
}
entry->id = id;
entry->priv = process;
return 0;
}
/*
* Attach the memory object to a process by (possibly) getting a GPU address and
* (possibly) mapping it
*/
static int kgsl_mem_entry_attach_and_map(struct kgsl_device *device,
struct kgsl_process_private *process,
struct kgsl_mem_entry *entry)
{
struct kgsl_memdesc *memdesc = &entry->memdesc;
int ret;
ret = kgsl_mem_entry_attach_to_process(device, process, entry);
if (ret)
return ret;
if (memdesc->gpuaddr) {
/*
* Map the memory if a GPU address is already assigned, either
* through kgsl_mem_entry_attach_to_process() or via some other
* SVM process
*/
ret = kgsl_mmu_map(memdesc->pagetable, memdesc);
if (ret) {
kgsl_mem_entry_detach_process(entry);
return ret;
}
}
kgsl_memfree_purge(memdesc->pagetable, memdesc->gpuaddr,
memdesc->size);
return ret;
}
/* Detach a memory entry from a process and unmap it from the MMU */
static void kgsl_mem_entry_detach_process(struct kgsl_mem_entry *entry)
{
if (entry == NULL)
return;
/*
* First remove the entry from mem_idr list
* so that no one can operate on obsolete values
*/
spin_lock(&entry->priv->mem_lock);
if (entry->id != 0)
idr_remove(&entry->priv->mem_idr, entry->id);
entry->id = 0;
spin_unlock(&entry->priv->mem_lock);
kgsl_sharedmem_put_gpuaddr(&entry->memdesc);
if (entry->memdesc.priv & KGSL_MEMDESC_RECLAIMED)
atomic_sub(entry->memdesc.page_count,
&entry->priv->unpinned_page_count);
kgsl_process_private_put(entry->priv);
entry->priv = NULL;
}
#ifdef CONFIG_QCOM_KGSL_CONTEXT_DEBUG
static void kgsl_context_debug_info(struct kgsl_device *device)
{
struct kgsl_context *context;
struct kgsl_process_private *p;
int next;
/*
* Keep an interval between consecutive logging to avoid
* flooding the kernel log
*/
static DEFINE_RATELIMIT_STATE(_rs, 10 * HZ, 1);
if (!__ratelimit(&_rs))
return;
dev_info(device->dev, "KGSL active contexts:\n");
dev_info(device->dev, "pid process total attached detached\n");
read_lock(&kgsl_driver.proclist_lock);
read_lock(&device->context_lock);
list_for_each_entry(p, &kgsl_driver.process_list, list) {
int total_contexts = 0, num_detached = 0;
idr_for_each_entry(&device->context_idr, context, next) {
if (context->proc_priv == p) {
total_contexts++;
if (kgsl_context_detached(context))
num_detached++;
}
}
dev_info(device->dev, "%-8u %-15.15s %-8d %-10d %-10d\n",
pid_nr(p->pid), p->comm, total_contexts,
total_contexts - num_detached, num_detached);
}
read_unlock(&device->context_lock);
read_unlock(&kgsl_driver.proclist_lock);
}
#else
static void kgsl_context_debug_info(struct kgsl_device *device)
{
}
#endif
/**
* kgsl_context_dump() - dump information about a draw context
* @device: KGSL device that owns the context
* @context: KGSL context to dump information about
*
* Dump specific information about the context to the kernel log. Used for
* fence timeout callbacks
*/
void kgsl_context_dump(struct kgsl_context *context)
{
struct kgsl_device *device;
if (_kgsl_context_get(context) == 0)
return;
device = context->device;
if (kgsl_context_detached(context)) {
dev_err(device->dev, " context[%u]: context detached\n",
context->id);
} else if (device->ftbl->drawctxt_dump != NULL)
device->ftbl->drawctxt_dump(device, context);
kgsl_context_put(context);
}
/* Allocate a new context ID */
static int _kgsl_get_context_id(struct kgsl_device *device)
{
int id;
idr_preload(GFP_KERNEL);
write_lock(&device->context_lock);
/* Allocate the slot but don't put a pointer in it yet */
id = idr_alloc(&device->context_idr, NULL, 1,
KGSL_GLOBAL_CTXT_ID, GFP_NOWAIT);
write_unlock(&device->context_lock);
idr_preload_end();
return id;
}
/**
* kgsl_context_init() - helper to initialize kgsl_context members
* @dev_priv: the owner of the context
* @context: the newly created context struct, should be allocated by
* the device specific drawctxt_create function.
*
* This is a helper function for the device specific drawctxt_create
* function to initialize the common members of its context struct.
* If this function succeeds, reference counting is active in the context
* struct and the caller should kgsl_context_put() it on error.
* If it fails, the caller should just free the context structure
* it passed in.
*/
int kgsl_context_init(struct kgsl_device_private *dev_priv,
struct kgsl_context *context)
{
struct kgsl_device *device = dev_priv->device;
int ret = 0, id;
struct kgsl_process_private *proc_priv = dev_priv->process_priv;
/*
* Read and increment the context count under lock to make sure
* no process goes beyond the specified context limit.
*/
spin_lock(&proc_priv->ctxt_count_lock);
if (atomic_read(&proc_priv->ctxt_count) > KGSL_MAX_CONTEXTS_PER_PROC) {
dev_err(device->dev,
"Per process context limit reached for pid %u\n",
pid_nr(dev_priv->process_priv->pid));
spin_unlock(&proc_priv->ctxt_count_lock);
kgsl_context_debug_info(device);
return -ENOSPC;
}
atomic_inc(&proc_priv->ctxt_count);
spin_unlock(&proc_priv->ctxt_count_lock);
id = _kgsl_get_context_id(device);
if (id == -ENOSPC) {
/*
* Before declaring that there are no contexts left try
* flushing the event worker just in case there are
* detached contexts waiting to finish
*/
kthread_flush_worker(device->events_worker);
id = _kgsl_get_context_id(device);
}
if (id < 0) {
if (id == -ENOSPC) {
dev_warn(device->dev,
"cannot have more than %zu contexts due to memstore limitation\n",
KGSL_MEMSTORE_MAX);
kgsl_context_debug_info(device);
}
atomic_dec(&proc_priv->ctxt_count);
return id;
}
context->id = id;
mutex_init(&context->fault_lock);
INIT_LIST_HEAD(&context->faults);
kref_init(&context->refcount);
/*
* Get a refernce to the process private so its not destroyed, until
* the context is destroyed. This will also prevent the pagetable
* from being destroyed
*/
if (!kgsl_process_private_get(dev_priv->process_priv)) {
ret = -EBADF;
goto out;
}
context->device = dev_priv->device;
context->dev_priv = dev_priv;
context->proc_priv = dev_priv->process_priv;
context->tid = task_pid_nr(current);
ret = kgsl_sync_timeline_create(context);
if (ret) {
kgsl_process_private_put(dev_priv->process_priv);
goto out;
}
kgsl_add_event_group(device, &context->events, context,
kgsl_readtimestamp, context, "context-%d", id);
out:
if (ret) {
atomic_dec(&proc_priv->ctxt_count);
write_lock(&device->context_lock);
idr_remove(&dev_priv->device->context_idr, id);
write_unlock(&device->context_lock);
}
return ret;
}
void kgsl_free_faults(struct kgsl_context *context)
{
struct kgsl_fault_node *p, *tmp;
if (!(context->flags & KGSL_CONTEXT_FAULT_INFO))
return;
list_for_each_entry_safe(p, tmp, &context->faults, node) {
list_del(&p->node);
kfree(p->priv);
kfree(p);
}
}
/**
* kgsl_context_detach() - Release the "master" context reference
* @context: The context that will be detached
*
* This is called when a context becomes unusable, because userspace
* has requested for it to be destroyed. The context itself may
* exist a bit longer until its reference count goes to zero.
* Other code referencing the context can detect that it has been
* detached by checking the KGSL_CONTEXT_PRIV_DETACHED bit in
* context->priv.
*/
void kgsl_context_detach(struct kgsl_context *context)
{
struct kgsl_device *device;
if (context == NULL)
return;
device = context->device;
device->ftbl->dequeue_recurring_cmd(device, context);
/*
* Mark the context as detached to keep others from using
* the context before it gets fully removed, and to make sure
* we don't try to detach twice.
*/
if (test_and_set_bit(KGSL_CONTEXT_PRIV_DETACHED, &context->priv))
return;
trace_kgsl_context_detach(device, context);
context->device->ftbl->drawctxt_detach(context);
/*
* Cancel all pending events after the device-specific context is
* detached, to avoid possibly freeing memory while it is still
* in use by the GPU.
*/
kgsl_cancel_events(device, &context->events);
/* Remove the event group from the list */
kgsl_del_event_group(device, &context->events);
kgsl_sync_timeline_detach(context->ktimeline);
kgsl_context_put(context);
}
void
kgsl_context_destroy(struct kref *kref)
{
struct kgsl_context *context = container_of(kref, struct kgsl_context,
refcount);
struct kgsl_device *device = context->device;
trace_kgsl_context_destroy(device, context);
/*
* It's not safe to destroy the context if it's not detached as GPU
* may still be executing commands
*/
BUG_ON(!kgsl_context_detached(context));
kgsl_free_faults(context);
kgsl_sync_timeline_put(context->ktimeline);
write_lock(&device->context_lock);
if (context->id != KGSL_CONTEXT_INVALID) {
/* Clear the timestamps in the memstore during destroy */
kgsl_sharedmem_writel(device->memstore,
KGSL_MEMSTORE_OFFSET(context->id, soptimestamp), 0);
kgsl_sharedmem_writel(device->memstore,
KGSL_MEMSTORE_OFFSET(context->id, eoptimestamp), 0);
/* clear device power constraint */
if (context->id == device->pwrctrl.constraint.owner_id) {
trace_kgsl_constraint(device,
device->pwrctrl.constraint.type,
device->pwrctrl.active_pwrlevel,
0);
device->pwrctrl.constraint.type = KGSL_CONSTRAINT_NONE;
}
atomic_dec(&context->proc_priv->ctxt_count);
idr_remove(&device->context_idr, context->id);
context->id = KGSL_CONTEXT_INVALID;
}
write_unlock(&device->context_lock);
kgsl_process_private_put(context->proc_priv);
device->ftbl->drawctxt_destroy(context);
}
struct kgsl_device *kgsl_get_device(int dev_idx)
{
int i;
struct kgsl_device *ret = NULL;
mutex_lock(&kgsl_driver.devlock);
for (i = 0; i < ARRAY_SIZE(kgsl_driver.devp); i++) {
if (kgsl_driver.devp[i] && kgsl_driver.devp[i]->id == dev_idx) {
ret = kgsl_driver.devp[i];
break;
}
}
mutex_unlock(&kgsl_driver.devlock);
return ret;
}
static struct kgsl_device *kgsl_get_minor(int minor)
{
struct kgsl_device *ret = NULL;
if (minor < 0 || minor >= ARRAY_SIZE(kgsl_driver.devp))
return NULL;
mutex_lock(&kgsl_driver.devlock);
ret = kgsl_driver.devp[minor];
mutex_unlock(&kgsl_driver.devlock);
return ret;
}
/**
* kgsl_check_timestamp() - return true if the specified timestamp is retired
* @device: Pointer to the KGSL device to check
* @context: Pointer to the context for the timestamp
* @timestamp: The timestamp to compare
*/
bool kgsl_check_timestamp(struct kgsl_device *device,
struct kgsl_context *context, unsigned int timestamp)
{
unsigned int ts_processed;
kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED,
&ts_processed);
return (timestamp_cmp(ts_processed, timestamp) >= 0);
}
static void kgsl_work_period_release(struct kref *kref)
{
struct gpu_work_period *wp = container_of(kref,
struct gpu_work_period, refcount);
spin_lock(&kgsl_driver.wp_list_lock);
if (!list_empty(&wp->list))
list_del_init(&wp->list);
spin_unlock(&kgsl_driver.wp_list_lock);
kfree(wp);
}
static void kgsl_put_work_period(struct gpu_work_period *wp)
{
if (!IS_ERR_OR_NULL(wp))
kref_put(&wp->refcount, kgsl_work_period_release);
}
/**
* kgsl_destroy_process_private() - Cleanup function to free process private
* @kref: - Pointer to object being destroyed's kref struct
* Free struct object and all other resources attached to it.
* Since the function can be used when not all resources inside process
* private have been allocated, there is a check to (before each resource
* cleanup) see if the struct member being cleaned is in fact allocated or not.
* If the value is not NULL, resource is freed.
*/
static void kgsl_destroy_process_private(struct kref *kref)
{
struct kgsl_process_private *private = container_of(kref,
struct kgsl_process_private, refcount);
kgsl_put_work_period(private->period);
/*
* While removing sysfs entries, kernfs_mutex is held by sysfs apis. Since
* it is a global fs mutex, sometimes it takes longer for kgsl to get hold
* of the lock. Meanwhile, kgsl open thread may exhaust all its re-tries
* and open can fail. To avoid this, remove sysfs entries inside process
* mutex to avoid wasting re-tries when kgsl is waiting for kernfs mutex.
*/
mutex_lock(&kgsl_driver.process_mutex);
debugfs_remove_recursive(private->debug_root);
kobject_put(&private->kobj_memtype);
kobject_put(&private->kobj);
/* When using global pagetables, do not detach global pagetable */
if (private->pagetable->name != KGSL_MMU_GLOBAL_PT)
kgsl_mmu_detach_pagetable(private->pagetable);
/* Remove the process struct from the master list */
write_lock(&kgsl_driver.proclist_lock);
list_del(&private->list);
write_unlock(&kgsl_driver.proclist_lock);
mutex_unlock(&kgsl_driver.process_mutex);
kfree(private->cmdline);
put_pid(private->pid);
idr_destroy(&private->mem_idr);
idr_destroy(&private->syncsource_idr);
/* When using global pagetables, do not put global pagetable */
if (private->pagetable->name != KGSL_MMU_GLOBAL_PT)
kgsl_mmu_putpagetable(private->pagetable);
kfree(private);
}
void
kgsl_process_private_put(struct kgsl_process_private *private)
{
if (private)
kref_put(&private->refcount, kgsl_destroy_process_private);
}
/**
* kgsl_process_private_find() - Find the process associated with the specified
* name
* @name: pid_t of the process to search for
* Return the process struct for the given ID.
*/
struct kgsl_process_private *kgsl_process_private_find(pid_t pid)
{
struct kgsl_process_private *p, *private = NULL;
read_lock(&kgsl_driver.proclist_lock);
list_for_each_entry(p, &kgsl_driver.process_list, list) {
if (pid_nr(p->pid) == pid) {
if (kgsl_process_private_get(p))
private = p;
break;
}
}
read_unlock(&kgsl_driver.proclist_lock);
return private;
}
void kgsl_work_period_update(struct kgsl_device *device,
struct gpu_work_period *period, u64 active)
{
spin_lock(&device->work_period_lock);
if (test_bit(KGSL_WORK_PERIOD, &period->flags)) {
period->active += active;
period->cmds++;
}
spin_unlock(&device->work_period_lock);
}
static void _defer_work_period_put(struct work_struct *work)
{
struct gpu_work_period *wp =
container_of(work, struct gpu_work_period, defer_ws);
/* Put back the refcount that was taken in kgsl_drawobj_cmd_create() */
kgsl_put_work_period(wp);
}
#define KGSL_GPU_ID 1
static void _log_gpu_work_events(struct work_struct *work)
{
struct kgsl_device *device = container_of(work, struct kgsl_device,
work_period_ws);
struct gpu_work_period *wp;
u64 active_time;
bool restart = false;
spin_lock(&device->work_period_lock);
device->gpu_period.end = ktime_get_ns();
spin_lock(&kgsl_driver.wp_list_lock);
list_for_each_entry(wp, &kgsl_driver.wp_list, list) {
if (!test_bit(KGSL_WORK_PERIOD, &wp->flags))
continue;
/* Active time in XO cycles(19.2MHz), convert to nanoseconds */
active_time = wp->active * 10000;
do_div(active_time, 192);
/* Ensure active_time is within work period */
active_time = min_t(u64, active_time,
device->gpu_period.end - device->gpu_period.begin);
/*
* Emit GPU work period events via a kernel tracepoint
* to provide information to the Android OS about how
* apps are using the GPU.
*/
if (active_time)
trace_gpu_work_period(KGSL_GPU_ID, wp->uid,
device->gpu_period.begin,
device->gpu_period.end,
active_time);
/* Reset gpu work period stats */
wp->active = 0;
wp->cmds = 0;
atomic_set(&wp->frames, 0);
/* make sure other CPUs see the update */
smp_wmb();
if (!atomic_read(&wp->active_cmds)) {
__clear_bit(KGSL_WORK_PERIOD, &wp->flags);
queue_work(kgsl_driver.lockless_workqueue, &wp->defer_ws);
} else {
restart = true;
}
}
spin_unlock(&kgsl_driver.wp_list_lock);
if (restart) {
/*
* GPU work period duration (end time - begin time) must be at
* most 1 second. The event for a period must be emitted within
* 1 second of the end time of the period. Restart timer within
* 1 second to emit gpu work period events.
*/
mod_timer(&device->work_period_timer,
jiffies + msecs_to_jiffies(KGSL_WORK_PERIOD_MS));
device->gpu_period.begin = device->gpu_period.end;
} else {
memset(&device->gpu_period, 0, sizeof(device->gpu_period));
__clear_bit(KGSL_WORK_PERIOD, &device->flags);
}
spin_unlock(&device->work_period_lock);
}
static void kgsl_work_period_timer(struct timer_list *t)
{
struct kgsl_device *device = from_timer(device, t, work_period_timer);
queue_work(kgsl_driver.lockless_workqueue, &device->work_period_ws);
}
static struct gpu_work_period *kgsl_get_work_period(uid_t uid)
{
struct gpu_work_period *wp;
spin_lock(&kgsl_driver.wp_list_lock);
list_for_each_entry(wp, &kgsl_driver.wp_list, list) {
if ((uid == wp->uid) && kref_get_unless_zero(&wp->refcount)) {
spin_unlock(&kgsl_driver.wp_list_lock);
return wp;
}
}
wp = kzalloc(sizeof(*wp), GFP_ATOMIC);
if (!wp) {
spin_unlock(&kgsl_driver.wp_list_lock);
return ERR_PTR(-ENOMEM);
}
kref_init(&wp->refcount);
wp->uid = uid;
INIT_WORK(&wp->defer_ws, _defer_work_period_put);
list_add(&wp->list, &kgsl_driver.wp_list);
spin_unlock(&kgsl_driver.wp_list_lock);
return wp;
}
static struct kgsl_process_private *kgsl_process_private_new(
struct kgsl_device *device)
{
struct kgsl_process_private *private;
struct pid *cur_pid = get_task_pid(current->group_leader, PIDTYPE_PID);
/* Search in the process list */
list_for_each_entry(private, &kgsl_driver.process_list, list) {
if (private->pid == cur_pid) {
if (!kgsl_process_private_get(private)) {
/*
* This will happen only if refcount is zero
* i.e. destroy is triggered but didn't complete
* yet. Return -EEXIST to indicate caller that
* destroy is pending to allow caller to take
* appropriate action.
*/
private = ERR_PTR(-EEXIST);
} else {
mutex_lock(&private->private_mutex);
private->fd_count++;
mutex_unlock(&private->private_mutex);
}
/*
* We need to hold only one reference to the PID for
* each process struct to avoid overflowing the
* reference counter which can lead to use-after-free.
*/
put_pid(cur_pid);
return private;
}
}
/* Create a new object */
private = kzalloc(sizeof(struct kgsl_process_private), GFP_KERNEL);
if (private == NULL) {
put_pid(cur_pid);
return ERR_PTR(-ENOMEM);
}
private->period = kgsl_get_work_period(current_uid().val);
if (IS_ERR(private->period)) {
int err = PTR_ERR(private->period);
kfree(private);
return ERR_PTR(err);
}
kref_init(&private->refcount);
private->fd_count = 1;
private->pid = cur_pid;
get_task_comm(private->comm, current->group_leader);
private->cmdline = kstrdup_quotable_cmdline(current, GFP_KERNEL);
spin_lock_init(&private->mem_lock);
spin_lock_init(&private->syncsource_lock);
spin_lock_init(&private->ctxt_count_lock);
mutex_init(&private->private_mutex);
idr_init(&private->mem_idr);
idr_init(&private->syncsource_idr);
kgsl_reclaim_proc_private_init(private);
/* Allocate a pagetable for the new process object */
private->pagetable = kgsl_mmu_getpagetable(&device->mmu, pid_nr(cur_pid));
if (IS_ERR(private->pagetable)) {
int err = PTR_ERR(private->pagetable);
kgsl_put_work_period(private->period);
idr_destroy(&private->mem_idr);
idr_destroy(&private->syncsource_idr);
put_pid(private->pid);
kfree(private);
private = ERR_PTR(err);
return private;
}
kgsl_process_init_sysfs(device, private);
kgsl_process_init_debugfs(private);
write_lock(&kgsl_driver.proclist_lock);
list_add(&private->list, &kgsl_driver.process_list);
write_unlock(&kgsl_driver.proclist_lock);
return private;
}
static void process_release_memory(struct kgsl_process_private *private)
{
struct kgsl_mem_entry *entry;
int next = 0;
while (1) {
spin_lock(&private->mem_lock);
entry = idr_get_next(&private->mem_idr, &next);
if (entry == NULL) {
spin_unlock(&private->mem_lock);
break;
}
/*
* If the free pending flag is not set it means that user space
* did not free it's reference to this entry, in that case
* free a reference to this entry, other references are from
* within kgsl so they will be freed eventually by kgsl
*/
if (!entry->pending_free) {
entry->pending_free = 1;
spin_unlock(&private->mem_lock);
kgsl_mem_entry_put(entry);
} else {
spin_unlock(&private->mem_lock);
}
next = next + 1;
}
}
static void kgsl_process_private_close(struct kgsl_device_private *dev_priv,
struct kgsl_process_private *private)
{
mutex_lock(&private->private_mutex);
if (--private->fd_count > 0) {
mutex_unlock(&private->private_mutex);
kgsl_process_private_put(private);
return;
}
/*
* If this is the last file on the process garbage collect
* any outstanding resources
*/
process_release_memory(private);
/* Release all syncsource objects from process private */
kgsl_syncsource_process_release_syncsources(private);
mutex_unlock(&private->private_mutex);
kgsl_process_private_put(private);
}
static struct kgsl_process_private *_process_private_open(
struct kgsl_device *device)
{
struct kgsl_process_private *private;
mutex_lock(&kgsl_driver.process_mutex);
private = kgsl_process_private_new(device);
mutex_unlock(&kgsl_driver.process_mutex);
return private;
}
static struct kgsl_process_private *kgsl_process_private_open(
struct kgsl_device *device)
{
struct kgsl_process_private *private;
int i;
private = _process_private_open(device);
/*
* If we get error and error is -EEXIST that means previous process
* private destroy is triggered but didn't complete. Retry creating
* process private after sometime to allow previous destroy to complete.
*/
for (i = 0; (PTR_ERR_OR_ZERO(private) == -EEXIST) && (i < 50); i++) {
usleep_range(10, 100);
private = _process_private_open(device);
}
return private;
}
int kgsl_gpu_frame_count(pid_t pid, u64 *frame_count)
{
struct kgsl_process_private *p;
if (!frame_count)
return -EINVAL;
p = kgsl_process_private_find(pid);
if (!p)
return -ENOENT;
*frame_count = atomic64_read(&p->frame_count);
kgsl_process_private_put(p);
return 0;
}
EXPORT_SYMBOL(kgsl_gpu_frame_count);
int kgsl_add_rcu_notifier(struct notifier_block *nb)
{
struct kgsl_device *device = kgsl_get_device(0);
if (!device)
return -ENODEV;
return srcu_notifier_chain_register(&device->nh, nb);
}
EXPORT_SYMBOL(kgsl_add_rcu_notifier);
int kgsl_del_rcu_notifier(struct notifier_block *nb)
{
struct kgsl_device *device = kgsl_get_device(0);
if (!device)
return -ENODEV;
return srcu_notifier_chain_unregister(&device->nh, nb);
}
EXPORT_SYMBOL(kgsl_del_rcu_notifier);
static int kgsl_close_device(struct kgsl_device *device)
{
int result = 0;
mutex_lock(&device->mutex);
if (device->open_count == 1)
result = device->ftbl->last_close(device);
/*
* We must decrement the open_count after last_close() has finished.
* This is because last_close() relinquishes device mutex while
* waiting for active count to become 0. This opens up a window
* where a new process can come in, see that open_count is 0, and
* initiate a first_open(). This can potentially mess up the power
* state machine. To avoid a first_open() from happening before
* last_close() has finished, decrement the open_count after
* last_close().
*/
device->open_count--;
mutex_unlock(&device->mutex);
return result;
}
static void device_release_contexts(struct kgsl_device_private *dev_priv)
{
struct kgsl_device *device = dev_priv->device;
struct kgsl_context *context;
int next = 0;
int result = 0;
while (1) {
read_lock(&device->context_lock);
context = idr_get_next(&device->context_idr, &next);
if (context == NULL) {
read_unlock(&device->context_lock);
break;
} else if (context->dev_priv == dev_priv) {
/*
* Hold a reference to the context in case somebody
* tries to put it while we are detaching
*/
result = _kgsl_context_get(context);
}
read_unlock(&device->context_lock);
if (result) {
kgsl_context_detach(context);
kgsl_context_put(context);
result = 0;
}
next = next + 1;
}
}
static int kgsl_release(struct inode *inodep, struct file *filep)
{
struct kgsl_device_private *dev_priv = filep->private_data;
struct kgsl_device *device = dev_priv->device;
int result;
filep->private_data = NULL;
/* Release the contexts for the file */
device_release_contexts(dev_priv);
/* Close down the process wide resources for the file */
kgsl_process_private_close(dev_priv, dev_priv->process_priv);
/* Destroy the device-specific structure */
device->ftbl->device_private_destroy(dev_priv);
result = kgsl_close_device(device);
pm_runtime_put(&device->pdev->dev);
return result;
}
static int kgsl_open_device(struct kgsl_device *device)
{
int result = 0;
mutex_lock(&device->mutex);
if (device->open_count == 0) {
result = device->ftbl->first_open(device);
if (result)
goto out;
}
device->open_count++;
out:
mutex_unlock(&device->mutex);
return result;
}
static int kgsl_open(struct inode *inodep, struct file *filep)
{
int result;
struct kgsl_device_private *dev_priv;
struct kgsl_device *device;
unsigned int minor = iminor(inodep);
device = kgsl_get_minor(minor);
if (device == NULL) {
pr_err("kgsl: No device found\n");
return -ENODEV;
}
result = pm_runtime_get_sync(&device->pdev->dev);
if (result < 0) {
dev_err(device->dev,
"Runtime PM: Unable to wake up the device, rc = %d\n",
result);
return result;
}
result = 0;
dev_priv = device->ftbl->device_private_create();
if (dev_priv == NULL) {
result = -ENOMEM;
goto err;
}
dev_priv->device = device;
filep->private_data = dev_priv;
result = kgsl_open_device(device);
if (result)
goto err;
/*
* Get file (per process) private struct. This must be done
* after the first start so that the global pagetable mappings
* are set up before we create the per-process pagetable.
*/
dev_priv->process_priv = kgsl_process_private_open(device);
if (IS_ERR(dev_priv->process_priv)) {
result = PTR_ERR(dev_priv->process_priv);
kgsl_close_device(device);
goto err;
}
err:
if (result) {
filep->private_data = NULL;
kfree(dev_priv);
pm_runtime_put(&device->pdev->dev);
}
return result;
}
#define GPUADDR_IN_MEMDESC(_val, _memdesc) \
(((_val) >= (_memdesc)->gpuaddr) && \
((_val) < ((_memdesc)->gpuaddr + (_memdesc)->size)))
/**
* kgsl_sharedmem_find() - Find a gpu memory allocation
*
* @private: private data for the process to check.
* @gpuaddr: start address of the region
*
* Find a gpu allocation. Caller must kgsl_mem_entry_put()
* the returned entry when finished using it.
*/
struct kgsl_mem_entry * __must_check
kgsl_sharedmem_find(struct kgsl_process_private *private, uint64_t gpuaddr)
{
int id;
struct kgsl_mem_entry *entry, *ret = NULL;
if (!private)
return NULL;
if (!kgsl_mmu_gpuaddr_in_range(private->pagetable, gpuaddr, 0) &&
!kgsl_mmu_gpuaddr_in_range(
private->pagetable->mmu->securepagetable, gpuaddr, 0))
return NULL;
spin_lock(&private->mem_lock);
idr_for_each_entry(&private->mem_idr, entry, id) {
if (GPUADDR_IN_MEMDESC(gpuaddr, &entry->memdesc)) {
if (!entry->pending_free)
ret = kgsl_mem_entry_get(entry);
break;
}
}
spin_unlock(&private->mem_lock);
return ret;
}
static struct kgsl_mem_entry * __must_check
kgsl_sharedmem_find_id_flags(struct kgsl_process_private *process,
unsigned int id, uint64_t flags)
{
struct kgsl_mem_entry *entry, *ret = NULL;
spin_lock(&process->mem_lock);
entry = idr_find(&process->mem_idr, id);
if (entry)
if (!entry->pending_free &&
(flags & entry->memdesc.flags) == flags)
ret = kgsl_mem_entry_get(entry);
spin_unlock(&process->mem_lock);
return ret;
}
/**
* kgsl_sharedmem_find_id() - find a memory entry by id
* @process: the owning process
* @id: id to find
*
* @returns - the mem_entry or NULL
*
* Caller must kgsl_mem_entry_put() the returned entry, when finished using
* it.
*/
struct kgsl_mem_entry * __must_check
kgsl_sharedmem_find_id(struct kgsl_process_private *process, unsigned int id)
{
return kgsl_sharedmem_find_id_flags(process, id, 0);
}
/**
* kgsl_mem_entry_unset_pend() - Unset the pending free flag of an entry
* @entry - The memory entry
*/
static inline void kgsl_mem_entry_unset_pend(struct kgsl_mem_entry *entry)
{
if (entry == NULL)
return;
spin_lock(&entry->priv->mem_lock);
entry->pending_free = 0;
spin_unlock(&entry->priv->mem_lock);
}
/**
* kgsl_mem_entry_set_pend() - Set the pending free flag of a memory entry
* @entry - The memory entry
*
* @returns - true if pending flag was 0 else false
*
* This function will set the pending free flag if it is previously unset. Used
* to prevent race condition between ioctls calling free/freememontimestamp
* on the same entry. Whichever thread set's the flag first will do the free.
*/
static inline bool kgsl_mem_entry_set_pend(struct kgsl_mem_entry *entry)
{
bool ret = false;
if (entry == NULL)
return false;
spin_lock(&entry->priv->mem_lock);
if (!entry->pending_free) {
entry->pending_free = 1;
ret = true;
}
spin_unlock(&entry->priv->mem_lock);
return ret;
}
static int kgsl_get_ctxt_fault_stats(struct kgsl_context *context,
struct kgsl_context_property *ctxt_property)
{
struct kgsl_context_property_fault fault_stats;
size_t copy;
/* Return the size of the subtype struct */
if (ctxt_property->size == 0) {
ctxt_property->size = sizeof(fault_stats);
return 0;
}
memset(&fault_stats, 0, sizeof(fault_stats));
copy = min_t(size_t, ctxt_property->size, sizeof(fault_stats));
fault_stats.faults = context->total_fault_count;
fault_stats.timestamp = context->last_faulted_cmd_ts;
/*
* Copy the context fault stats to data which also serves as
* the out parameter.
*/
if (copy_to_user(u64_to_user_ptr(ctxt_property->data),
&fault_stats, copy))
return -EFAULT;
return 0;
}
static long kgsl_get_ctxt_properties(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param)
{
/* Return fault stats of given context */
struct kgsl_context_property ctxt_property;
struct kgsl_context *context;
size_t copy;
long ret;
/*
* If sizebytes is zero, tell the user how big the
* ctxt_property struct should be.
*/
if (param->sizebytes == 0) {
param->sizebytes = sizeof(ctxt_property);
return 0;
}
memset(&ctxt_property, 0, sizeof(ctxt_property));
copy = min_t(size_t, param->sizebytes, sizeof(ctxt_property));
/* We expect the value passed in to contain the context id */
if (copy_from_user(&ctxt_property, param->value, copy))
return -EFAULT;
/* ctxt type zero is not valid, as we consider it as uninitialized. */
if (ctxt_property.type == 0)
return -EINVAL;
context = kgsl_context_get_owner(dev_priv,
ctxt_property.contextid);
if (!context)
return -EINVAL;
if (ctxt_property.type == KGSL_CONTEXT_PROP_FAULTS)
ret = kgsl_get_ctxt_fault_stats(context, &ctxt_property);
else
ret = -EOPNOTSUPP;
kgsl_context_put(context);
return ret;
}
static long kgsl_prop_version(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param)
{
struct kgsl_version version = {
.drv_major = KGSL_VERSION_MAJOR,
.drv_minor = KGSL_VERSION_MINOR,
.dev_major = 3,
.dev_minor = 1,
};
if (param->sizebytes != sizeof(version))
return -EINVAL;
if (copy_to_user(param->value, &version, sizeof(version)))
return -EFAULT;
return 0;
}
/* Return reset status of given context and clear it */
static long kgsl_prop_gpu_reset_stat(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param)
{
u32 id;
struct kgsl_context *context;
if (param->sizebytes != sizeof(id))
return -EINVAL;
/* We expect the value passed in to contain the context id */
if (copy_from_user(&id, param->value, sizeof(id)))
return -EFAULT;
context = kgsl_context_get_owner(dev_priv, id);
if (!context)
return -EINVAL;
/*
* Copy the reset status to value which also serves as
* the out parameter
*/
id = context->reset_status;
context->reset_status = KGSL_CTX_STAT_NO_ERROR;
kgsl_context_put(context);
if (copy_to_user(param->value, &id, sizeof(id)))
return -EFAULT;
return 0;
}
static long kgsl_prop_secure_buf_alignment(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param)
{
u32 align = PAGE_SIZE;
if (param->sizebytes != sizeof(align))
return -EINVAL;
if (copy_to_user(param->value, &align, sizeof(align)))
return -EFAULT;
return 0;
}
static long kgsl_prop_secure_ctxt_support(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param)
{
u32 secure;
if (param->sizebytes != sizeof(secure))
return -EINVAL;
secure = dev_priv->device->mmu.secured ? 1 : 0;
if (copy_to_user(param->value, &secure, sizeof(secure)))
return -EFAULT;
return 0;
}
static int kgsl_query_caps_properties(struct kgsl_device *device,
struct kgsl_capabilities *caps)
{
struct kgsl_capabilities_properties props;
size_t copy;
u32 count, *local;
int ret;
/* Return the size of the subtype struct */
if (caps->size == 0) {
caps->size = sizeof(props);
return 0;
}
memset(&props, 0, sizeof(props));
copy = min_t(size_t, caps->size, sizeof(props));
if (copy_from_user(&props, u64_to_user_ptr(caps->data), copy))
return -EFAULT;
/* Get the number of properties */
count = kgsl_query_property_list(device, NULL, 0);
/*
* If the incoming user count is zero, they are querying the number of
* available properties. Set it and return.
*/
if (props.count == 0) {
props.count = count;
goto done;
}
/* Copy the lesser of the user or kernel property count */
if (props.count < count)
count = props.count;
/* Create a local buffer to store the property list */
local = kcalloc(count, sizeof(u32), GFP_KERNEL);
if (!local)
return -ENOMEM;
/* Get the properties */
props.count = kgsl_query_property_list(device, local, count);
ret = copy_to_user(u64_to_user_ptr(props.list), local,
props.count * sizeof(u32));
kfree(local);
if (ret)
return -EFAULT;
done:
if (copy_to_user(u64_to_user_ptr(caps->data), &props, copy))
return -EFAULT;
return 0;
}
static long kgsl_prop_query_capabilities(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param)
{
struct kgsl_capabilities caps;
long ret;
size_t copy;
/*
* If sizebytes is zero, tell the user how big the capabilities struct
* should be
*/
if (param->sizebytes == 0) {
param->sizebytes = sizeof(caps);
return 0;
}
memset(&caps, 0, sizeof(caps));
copy = min_t(size_t, param->sizebytes, sizeof(caps));
if (copy_from_user(&caps, param->value, copy))
return -EFAULT;
/* querytype must be non zero */
if (caps.querytype == 0)
return -EINVAL;
if (caps.querytype == KGSL_QUERY_CAPS_PROPERTIES)
ret = kgsl_query_caps_properties(dev_priv->device, &caps);
else {
/* Unsupported querytypes should return a unique return value */
return -EOPNOTSUPP;
}
if (copy_to_user(param->value, &caps, copy))
return -EFAULT;
return ret;
}
static long kgsl_get_gpu_va64_size(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param)
{
u64 va_size = KGSL_IOMMU_VA_END64 - KGSL_IOMMU_VA_BASE64;
if (param->sizebytes != sizeof(va_size))
return -EINVAL;
if (copy_to_user(param->value, &va_size, sizeof(va_size)))
return -EFAULT;
return 0;
}
static long kgsl_get_gpu_secure_va_size(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param)
{
u64 size = KGSL_IOMMU_SECURE_SIZE(&dev_priv->device->mmu);
if (param->sizebytes != sizeof(size))
return -EINVAL;
if (copy_to_user(param->value, &size, sizeof(size)))
return -EFAULT;
return 0;
}
static long kgsl_get_gpu_secure_va_inuse(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param)
{
u64 val;
if (param->sizebytes != sizeof(val))
return -EINVAL;
val = atomic_long_read(&kgsl_driver.stats.secure);
if (copy_to_user(param->value, &val, sizeof(val)))
return -EFAULT;
return 0;
}
static const struct {
int type;
long (*func)(struct kgsl_device_private *dev_priv,
struct kgsl_device_getproperty *param);
} kgsl_property_funcs[] = {
{ KGSL_PROP_VERSION, kgsl_prop_version },
{ KGSL_PROP_GPU_RESET_STAT, kgsl_prop_gpu_reset_stat},
{ KGSL_PROP_SECURE_BUFFER_ALIGNMENT, kgsl_prop_secure_buf_alignment },
{ KGSL_PROP_SECURE_CTXT_SUPPORT, kgsl_prop_secure_ctxt_support },
{ KGSL_PROP_QUERY_CAPABILITIES, kgsl_prop_query_capabilities },
{ KGSL_PROP_CONTEXT_PROPERTY, kgsl_get_ctxt_properties },
{ KGSL_PROP_GPU_VA64_SIZE, kgsl_get_gpu_va64_size },
{ KGSL_PROP_GPU_SECURE_VA_SIZE, kgsl_get_gpu_secure_va_size },
{ KGSL_PROP_GPU_SECURE_VA_INUSE, kgsl_get_gpu_secure_va_inuse },
};
/*call all ioctl sub functions with driver locked*/
long kgsl_ioctl_device_getproperty(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_device *device = dev_priv->device;
struct kgsl_device_getproperty *param = data;
int i;
for (i = 0; i < ARRAY_SIZE(kgsl_property_funcs); i++) {
if (param->type == kgsl_property_funcs[i].type)
return kgsl_property_funcs[i].func(dev_priv, param);
}
if (is_compat_task())
return device->ftbl->getproperty_compat(device, param);
return device->ftbl->getproperty(device, param);
}
int kgsl_query_property_list(struct kgsl_device *device, u32 *list, u32 count)
{
int num = 0;
if (!list) {
num = ARRAY_SIZE(kgsl_property_funcs);
if (device->ftbl->query_property_list)
num += device->ftbl->query_property_list(device, list,
count);
return num;
}
for (; num < count && num < ARRAY_SIZE(kgsl_property_funcs); num++)
list[num] = kgsl_property_funcs[num].type;
if (device->ftbl->query_property_list)
num += device->ftbl->query_property_list(device, &list[num],
count - num);
return num;
}
long kgsl_ioctl_device_setproperty(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
int result = 0;
/* The getproperty struct is reused for setproperty too */
struct kgsl_device_getproperty *param = data;
/* Reroute to compat version if coming from compat_ioctl */
if (is_compat_task())
result = dev_priv->device->ftbl->setproperty_compat(
dev_priv, param->type, param->value,
param->sizebytes);
else if (dev_priv->device->ftbl->setproperty)
result = dev_priv->device->ftbl->setproperty(
dev_priv, param->type, param->value,
param->sizebytes);
return result;
}
long kgsl_ioctl_device_waittimestamp_ctxtid(
struct kgsl_device_private *dev_priv, unsigned int cmd,
void *data)
{
struct kgsl_device_waittimestamp_ctxtid *param = data;
struct kgsl_device *device = dev_priv->device;
long result = -EINVAL;
unsigned int temp_cur_ts = 0;
struct kgsl_context *context;
context = kgsl_context_get_owner(dev_priv, param->context_id);
if (context == NULL)
return result;
kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED,
&temp_cur_ts);
trace_kgsl_waittimestamp_entry(device, context->id, temp_cur_ts,
param->timestamp, param->timeout);
result = device->ftbl->waittimestamp(device, context, param->timestamp,
param->timeout);
kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED,
&temp_cur_ts);
trace_kgsl_waittimestamp_exit(device, temp_cur_ts, result);
kgsl_context_put(context);
return result;
}
long kgsl_ioctl_rb_issueibcmds(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_ringbuffer_issueibcmds *param = data;
struct kgsl_device *device = dev_priv->device;
struct kgsl_context *context;
struct kgsl_drawobj *drawobj;
struct kgsl_drawobj_cmd *cmdobj;
long result = -EINVAL;
/* The legacy functions don't support synchronization commands */
if ((param->flags & (KGSL_DRAWOBJ_SYNC | KGSL_DRAWOBJ_MARKER)))
return -EINVAL;
/* Sanity check the number of IBs */
if (param->flags & KGSL_DRAWOBJ_SUBMIT_IB_LIST &&
(param->numibs == 0 || param->numibs > KGSL_MAX_NUMIBS))
return -EINVAL;
/* Get the context */
context = kgsl_context_get_owner(dev_priv, param->drawctxt_id);
if (context == NULL)
return -EINVAL;
cmdobj = kgsl_drawobj_cmd_create(device, context, param->flags,
CMDOBJ_TYPE);
if (IS_ERR(cmdobj)) {
kgsl_context_put(context);
return PTR_ERR(cmdobj);
}
drawobj = DRAWOBJ(cmdobj);
if (param->flags & KGSL_DRAWOBJ_SUBMIT_IB_LIST)
result = kgsl_drawobj_cmd_add_ibdesc_list(device, cmdobj,
(void __user *) param->ibdesc_addr,
param->numibs);
else {
struct kgsl_ibdesc ibdesc;
/* Ultra legacy path */
ibdesc.gpuaddr = param->ibdesc_addr;
ibdesc.sizedwords = param->numibs;
ibdesc.ctrl = 0;
result = kgsl_drawobj_cmd_add_ibdesc(device, cmdobj, &ibdesc);
}
if (result == 0)
result = kgsl_reclaim_to_pinned_state(dev_priv->process_priv);
if (result == 0)
result = dev_priv->device->ftbl->queue_cmds(dev_priv, context,
&drawobj, 1, &param->timestamp);
/*
* -EPROTO is a "success" error - it just tells the user that the
* context had previously faulted
*/
if (result && result != -EPROTO)
kgsl_drawobj_destroy(drawobj);
kgsl_context_put(context);
return result;
}
/* Returns 0 on failure. Returns command type(s) on success */
static unsigned int _process_command_input(struct kgsl_device *device,
unsigned int flags, unsigned int numcmds,
unsigned int numobjs, unsigned int numsyncs)
{
if (numcmds > KGSL_MAX_NUMIBS ||
numobjs > KGSL_MAX_NUMIBS ||
numsyncs > KGSL_MAX_SYNCPOINTS)
return 0;
/*
* The SYNC bit is supposed to identify a dummy sync object
* so warn the user if they specified any IBs with it.
* A MARKER command can either have IBs or not but if the
* command has 0 IBs it is automatically assumed to be a marker.
*/
/* If they specify the flag, go with what they say */
if (flags & KGSL_DRAWOBJ_MARKER)
return MARKEROBJ_TYPE;
else if (flags & KGSL_DRAWOBJ_SYNC)
return SYNCOBJ_TYPE;
/* If not, deduce what they meant */
if (numsyncs && numcmds)
return SYNCOBJ_TYPE | CMDOBJ_TYPE;
else if (numsyncs)
return SYNCOBJ_TYPE;
else if (numcmds)
return CMDOBJ_TYPE;
else if (numcmds == 0)
return MARKEROBJ_TYPE;
return 0;
}
long kgsl_ioctl_submit_commands(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_submit_commands *param = data;
struct kgsl_device *device = dev_priv->device;
struct kgsl_context *context;
struct kgsl_drawobj *drawobj[2];
unsigned int type;
long result;
unsigned int i = 0;
type = _process_command_input(device, param->flags, param->numcmds, 0,
param->numsyncs);
if (!type)
return -EINVAL;
context = kgsl_context_get_owner(dev_priv, param->context_id);
if (context == NULL)
return -EINVAL;
if (type & SYNCOBJ_TYPE) {
struct kgsl_drawobj_sync *syncobj =
kgsl_drawobj_sync_create(device, context);
if (IS_ERR(syncobj)) {
result = PTR_ERR(syncobj);
goto done;
}
drawobj[i++] = DRAWOBJ(syncobj);
result = kgsl_drawobj_sync_add_syncpoints(device, syncobj,
param->synclist, param->numsyncs);
if (result)
goto done;
if (!(syncobj->flags & KGSL_SYNCOBJ_SW))
syncobj->flags |= KGSL_SYNCOBJ_HW;
}
if (type & (CMDOBJ_TYPE | MARKEROBJ_TYPE)) {
struct kgsl_drawobj_cmd *cmdobj =
kgsl_drawobj_cmd_create(device,
context, param->flags, type);
if (IS_ERR(cmdobj)) {
result = PTR_ERR(cmdobj);
goto done;
}
drawobj[i++] = DRAWOBJ(cmdobj);
result = kgsl_drawobj_cmd_add_ibdesc_list(device, cmdobj,
param->cmdlist, param->numcmds);
if (result)
goto done;
/* If no profiling buffer was specified, clear the flag */
if (cmdobj->profiling_buf_entry == NULL)
DRAWOBJ(cmdobj)->flags &=
~(unsigned long)KGSL_DRAWOBJ_PROFILING;
if (type & CMDOBJ_TYPE) {
result = kgsl_reclaim_to_pinned_state(
dev_priv->process_priv);
if (result)
goto done;
}
}
result = device->ftbl->queue_cmds(dev_priv, context, drawobj,
i, &param->timestamp);
done:
/*
* -EPROTO is a "success" error - it just tells the user that the
* context had previously faulted
*/
if (result && result != -EPROTO)
while (i--)
kgsl_drawobj_destroy(drawobj[i]);
kgsl_context_put(context);
return result;
}
long kgsl_ioctl_gpu_command(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_gpu_command *param = data;
struct kgsl_device *device = dev_priv->device;
struct kgsl_context *context;
struct kgsl_drawobj *drawobj[2];
unsigned int type;
long result;
unsigned int i = 0;
type = _process_command_input(device, param->flags, param->numcmds,
param->numobjs, param->numsyncs);
if (!type)
return -EINVAL;
context = kgsl_context_get_owner(dev_priv, param->context_id);
if (context == NULL)
return -EINVAL;
if (type & SYNCOBJ_TYPE) {
struct kgsl_drawobj_sync *syncobj =
kgsl_drawobj_sync_create(device, context);
if (IS_ERR(syncobj)) {
result = PTR_ERR(syncobj);
goto done;
}
drawobj[i++] = DRAWOBJ(syncobj);
result = kgsl_drawobj_sync_add_synclist(device, syncobj,
u64_to_user_ptr(param->synclist),
param->syncsize, param->numsyncs);
if (result)
goto done;
if (!(syncobj->flags & KGSL_SYNCOBJ_SW))
syncobj->flags |= KGSL_SYNCOBJ_HW;
}
if (type & (CMDOBJ_TYPE | MARKEROBJ_TYPE)) {
struct kgsl_drawobj_cmd *cmdobj =
kgsl_drawobj_cmd_create(device,
context, param->flags, type);
if (IS_ERR(cmdobj)) {
result = PTR_ERR(cmdobj);
goto done;
}
drawobj[i++] = DRAWOBJ(cmdobj);
result = kgsl_drawobj_cmd_add_cmdlist(device, cmdobj,
u64_to_user_ptr(param->cmdlist),
param->cmdsize, param->numcmds);
if (result)
goto done;
result = kgsl_drawobj_cmd_add_memlist(device, cmdobj,
u64_to_user_ptr(param->objlist),
param->objsize, param->numobjs);
if (result)
goto done;
/* If no profiling buffer was specified, clear the flag */
if (cmdobj->profiling_buf_entry == NULL)
DRAWOBJ(cmdobj)->flags &=
~(unsigned long)KGSL_DRAWOBJ_PROFILING;
if (type & CMDOBJ_TYPE) {
result = kgsl_reclaim_to_pinned_state(
dev_priv->process_priv);
if (result)
goto done;
}
}
result = device->ftbl->queue_cmds(dev_priv, context, drawobj,
i, &param->timestamp);
done:
/*
* -EPROTO is a "success" error - it just tells the user that the
* context had previously faulted
*/
if (result && result != -EPROTO)
while (i--)
kgsl_drawobj_destroy(drawobj[i]);
kgsl_context_put(context);
return result;
}
long kgsl_ioctl_gpu_aux_command(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_gpu_aux_command *param = data;
struct kgsl_device *device = dev_priv->device;
struct kgsl_context *context;
struct kgsl_drawobj **drawobjs;
void __user *cmdlist;
u32 count;
int i, index = 0;
long ret;
struct kgsl_gpu_aux_command_generic generic;
/* We support only one aux command */
if (param->numcmds != 1)
return -EINVAL;
if (!(param->flags &
(KGSL_GPU_AUX_COMMAND_BIND | KGSL_GPU_AUX_COMMAND_TIMELINE)))
return -EINVAL;
if ((param->flags & KGSL_GPU_AUX_COMMAND_SYNC) &&
(param->numsyncs > KGSL_MAX_SYNCPOINTS))
return -EINVAL;
context = kgsl_context_get_owner(dev_priv, param->context_id);
if (!context)
return -EINVAL;
/*
* param->numcmds is always one and we have one additional drawobj
* for the timestamp sync if KGSL_GPU_AUX_COMMAND_SYNC flag is passed.
* On top of that we make an implicit sync object for the last queued
* timestamp on this context.
*/
count = (param->flags & KGSL_GPU_AUX_COMMAND_SYNC) ? 3 : 2;
drawobjs = kvcalloc(count, sizeof(*drawobjs),
GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
if (!drawobjs) {
kgsl_context_put(context);
return -ENOMEM;
}
trace_kgsl_aux_command(context->id, param->numcmds, param->flags,
param->timestamp);
if (param->flags & KGSL_GPU_AUX_COMMAND_SYNC) {
struct kgsl_drawobj_sync *syncobj =
kgsl_drawobj_sync_create(device, context);
if (IS_ERR(syncobj)) {
ret = PTR_ERR(syncobj);
goto err;
}
drawobjs[index++] = DRAWOBJ(syncobj);
ret = kgsl_drawobj_sync_add_synclist(device, syncobj,
u64_to_user_ptr(param->synclist),
param->syncsize, param->numsyncs);
if (ret)
goto err;
}
cmdlist = u64_to_user_ptr(param->cmdlist);
/*
* Create a draw object for KGSL_GPU_AUX_COMMAND_BIND or
* KGSL_GPU_AUX_COMMAND_TIMELINE.
*/
if (copy_struct_from_user(&generic, sizeof(generic),
cmdlist, param->cmdsize)) {
ret = -EFAULT;
goto err;
}
if (generic.type == KGSL_GPU_AUX_COMMAND_BIND) {
struct kgsl_drawobj_sync *tsobj;
struct kgsl_drawobj_bind *bindobj;
u32 queued;
kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_QUEUED,
&queued);
/*
* Make an implicit sync object for the last queued timestamp
* on this context
*/
tsobj = kgsl_drawobj_create_timestamp_syncobj(device,
context, queued);
if (IS_ERR(tsobj)) {
ret = PTR_ERR(tsobj);
goto err;
}
drawobjs[index++] = DRAWOBJ(tsobj);
bindobj = kgsl_drawobj_bind_create(device, context);
if (IS_ERR(bindobj)) {
ret = PTR_ERR(bindobj);
goto err;
}
drawobjs[index++] = DRAWOBJ(bindobj);
ret = kgsl_drawobj_add_bind(dev_priv, bindobj,
cmdlist, param->cmdsize);
if (ret)
goto err;
} else if (generic.type == KGSL_GPU_AUX_COMMAND_TIMELINE) {
struct kgsl_drawobj_timeline *timelineobj;
struct kgsl_drawobj_cmd *markerobj;
timelineobj = kgsl_drawobj_timeline_create(device,
context);
if (IS_ERR(timelineobj)) {
ret = PTR_ERR(timelineobj);
goto err;
}
drawobjs[index++] = DRAWOBJ(timelineobj);
ret = kgsl_drawobj_add_timeline(dev_priv, timelineobj,
cmdlist, param->cmdsize);
if (ret)
goto err;
/*
* Userspace needs a timestamp to associate with this
* submisssion. Use a marker to keep the timestamp
* bookkeeping correct.
*/
markerobj = kgsl_drawobj_cmd_create(device, context,
KGSL_DRAWOBJ_MARKER, MARKEROBJ_TYPE);
if (IS_ERR(markerobj)) {
ret = PTR_ERR(markerobj);
goto err;
}
drawobjs[index++] = DRAWOBJ(markerobj);
} else {
ret = -EINVAL;
goto err;
}
ret = device->ftbl->queue_cmds(dev_priv, context,
drawobjs, index, &param->timestamp);
err:
kgsl_context_put(context);
if (ret && ret != -EPROTO) {
for (i = 0; i < count; i++)
kgsl_drawobj_destroy(drawobjs[i]);
}
kvfree(drawobjs);
return ret;
}
/* Returns 0 on failure. Returns command type(s) on success */
static unsigned int _process_recurring_input(struct kgsl_device *device,
unsigned int flags, unsigned int numcmds,
unsigned int numobjs)
{
if (numcmds > KGSL_MAX_NUMIBS ||
numobjs > KGSL_MAX_NUMIBS)
return 0;
/* SYNC and MARKER object is not allowed through recurring command */
if ((flags & KGSL_DRAWOBJ_MARKER) || (flags & KGSL_DRAWOBJ_SYNC))
return 0;
if (numcmds)
return CMDOBJ_TYPE;
return 0;
}
long kgsl_ioctl_recurring_command(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_recurring_command *param = data;
struct kgsl_device *device = dev_priv->device;
struct kgsl_context *context = NULL;
struct kgsl_drawobj *drawobj = NULL;
struct kgsl_drawobj_cmd *cmdobj = NULL;
unsigned int type;
long result;
if (!(param->flags & (unsigned long)(KGSL_DRAWOBJ_START_RECURRING |
KGSL_DRAWOBJ_STOP_RECURRING)))
return -EINVAL;
context = kgsl_context_get_owner(dev_priv, param->context_id);
if (context == NULL)
return -EINVAL;
type = _process_recurring_input(device, param->flags, param->numcmds,
param->numobjs);
if (!type) {
kgsl_context_put(context);
return -EINVAL;
}
cmdobj = kgsl_drawobj_cmd_create(device, context, param->flags, type);
if (IS_ERR(cmdobj)) {
result = PTR_ERR(cmdobj);
goto done;
}
drawobj = DRAWOBJ(cmdobj);
/* Clear the profiling flag for recurring command */
drawobj->flags &= ~(unsigned long)KGSL_DRAWOBJ_PROFILING;
result = kgsl_drawobj_cmd_add_cmdlist(device, cmdobj,
u64_to_user_ptr(param->cmdlist),
param->cmdsize, param->numcmds);
if (result)
goto done;
result = kgsl_drawobj_cmd_add_memlist(device, cmdobj,
u64_to_user_ptr(param->objlist),
param->objsize, param->numobjs);
if (result)
goto done;
if (drawobj->flags & KGSL_DRAWOBJ_STOP_RECURRING) {
result = device->ftbl->dequeue_recurring_cmd(device, context);
if (!result)
kgsl_drawobj_destroy(drawobj);
} else {
result = device->ftbl->queue_recurring_cmd(dev_priv, context, drawobj);
}
done:
/*
* -EPROTO is a "success" error - it just tells the user that the
* context had previously faulted
*/
if (result && result != -EPROTO)
kgsl_drawobj_destroy(drawobj);
kgsl_context_put(context);
return result;
}
long kgsl_ioctl_cmdstream_readtimestamp_ctxtid(struct kgsl_device_private
*dev_priv, unsigned int cmd,
void *data)
{
struct kgsl_cmdstream_readtimestamp_ctxtid *param = data;
struct kgsl_device *device = dev_priv->device;
struct kgsl_context *context;
long result = -EINVAL;
mutex_lock(&device->mutex);
context = kgsl_context_get_owner(dev_priv, param->context_id);
if (context) {
result = kgsl_readtimestamp(device, context,
param->type, &param->timestamp);
trace_kgsl_readtimestamp(device, context->id,
param->type, param->timestamp);
}
kgsl_context_put(context);
mutex_unlock(&device->mutex);
return result;
}
long kgsl_ioctl_drawctxt_create(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
int result = 0;
struct kgsl_drawctxt_create *param = data;
struct kgsl_context *context = NULL;
struct kgsl_device *device = dev_priv->device;
context = device->ftbl->drawctxt_create(dev_priv, &param->flags);
if (IS_ERR(context)) {
result = PTR_ERR(context);
goto done;
}
trace_kgsl_context_create(dev_priv->device, context, param->flags);
/* Commit the pointer to the context in context_idr */
write_lock(&device->context_lock);
idr_replace(&device->context_idr, context, context->id);
param->drawctxt_id = context->id;
write_unlock(&device->context_lock);
done:
return result;
}
long kgsl_ioctl_drawctxt_destroy(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_drawctxt_destroy *param = data;
struct kgsl_context *context;
context = kgsl_context_get_owner(dev_priv, param->drawctxt_id);
if (context == NULL)
return -EINVAL;
kgsl_context_detach(context);
kgsl_context_put(context);
return 0;
}
long gpumem_free_entry(struct kgsl_mem_entry *entry)
{
if (!kgsl_mem_entry_set_pend(entry))
return -EBUSY;
trace_kgsl_mem_free(entry);
kgsl_memfree_add(pid_nr(entry->priv->pid),
entry->memdesc.pagetable ?
entry->memdesc.pagetable->name : 0,
entry->memdesc.gpuaddr, entry->memdesc.size,
entry->memdesc.flags);
kgsl_mem_entry_put(entry);
return 0;
}
static void gpumem_free_func(struct kgsl_device *device,
struct kgsl_event_group *group, void *priv, int ret)
{
struct kgsl_context *context = group->context;
struct kgsl_mem_entry *entry = priv;
unsigned int timestamp;
kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED, &timestamp);
/* Free the memory for all event types */
trace_kgsl_mem_timestamp_free(device, entry, KGSL_CONTEXT_ID(context),
timestamp, 0);
kgsl_memfree_add(pid_nr(entry->priv->pid),
entry->memdesc.pagetable ?
entry->memdesc.pagetable->name : 0,
entry->memdesc.gpuaddr, entry->memdesc.size,
entry->memdesc.flags);
kgsl_mem_entry_put_deferred(entry);
}
static long gpumem_free_entry_on_timestamp(struct kgsl_device *device,
struct kgsl_mem_entry *entry,
struct kgsl_context *context, unsigned int timestamp)
{
int ret;
unsigned int temp;
if (!kgsl_mem_entry_set_pend(entry))
return -EBUSY;
kgsl_readtimestamp(device, context, KGSL_TIMESTAMP_RETIRED, &temp);
trace_kgsl_mem_timestamp_queue(device, entry, context->id, temp,
timestamp);
ret = kgsl_add_event(device, &context->events,
timestamp, gpumem_free_func, entry);
if (ret)
kgsl_mem_entry_unset_pend(entry);
return ret;
}
long kgsl_ioctl_sharedmem_free(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_sharedmem_free *param = data;
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_mem_entry *entry;
long ret;
entry = kgsl_sharedmem_find(private, (uint64_t) param->gpuaddr);
if (entry == NULL)
return -EINVAL;
ret = gpumem_free_entry(entry);
kgsl_mem_entry_put(entry);
return ret;
}
long kgsl_ioctl_gpumem_free_id(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_gpumem_free_id *param = data;
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_mem_entry *entry;
long ret;
entry = kgsl_sharedmem_find_id(private, param->id);
if (entry == NULL)
return -EINVAL;
ret = gpumem_free_entry(entry);
kgsl_mem_entry_put(entry);
return ret;
}
static long gpuobj_free_on_timestamp(struct kgsl_device_private *dev_priv,
struct kgsl_mem_entry *entry, struct kgsl_gpuobj_free *param)
{
struct kgsl_gpu_event_timestamp event;
struct kgsl_context *context;
long ret;
if (copy_struct_from_user(&event, sizeof(event),
u64_to_user_ptr(param->priv), param->len))
return -EFAULT;
if (event.context_id == 0)
return -EINVAL;
context = kgsl_context_get_owner(dev_priv, event.context_id);
if (context == NULL)
return -EINVAL;
ret = gpumem_free_entry_on_timestamp(dev_priv->device, entry, context,
event.timestamp);
kgsl_context_put(context);
return ret;
}
static bool gpuobj_free_fence_func(void *priv)
{
struct kgsl_mem_entry *entry = priv;
trace_kgsl_mem_free(entry);
kgsl_memfree_add(pid_nr(entry->priv->pid),
entry->memdesc.pagetable ?
entry->memdesc.pagetable->name : 0,
entry->memdesc.gpuaddr, entry->memdesc.size,
entry->memdesc.flags);
kgsl_mem_entry_put_deferred(entry);
return true;
}
static long gpuobj_free_on_fence(struct kgsl_device_private *dev_priv,
struct kgsl_mem_entry *entry, struct kgsl_gpuobj_free *param)
{
struct kgsl_sync_fence_cb *handle;
struct kgsl_gpu_event_fence event;
if (!kgsl_mem_entry_set_pend(entry))
return -EBUSY;
if (copy_struct_from_user(&event, sizeof(event),
u64_to_user_ptr(param->priv), param->len)) {
kgsl_mem_entry_unset_pend(entry);
return -EFAULT;
}
if (event.fd < 0) {
kgsl_mem_entry_unset_pend(entry);
return -EINVAL;
}
handle = kgsl_sync_fence_async_wait(event.fd, gpuobj_free_fence_func, entry);
if (IS_ERR(handle)) {
kgsl_mem_entry_unset_pend(entry);
return PTR_ERR(handle);
}
/* if handle is NULL the fence has already signaled */
if (handle == NULL)
gpuobj_free_fence_func(entry);
return 0;
}
long kgsl_ioctl_gpuobj_free(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_gpuobj_free *param = data;
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_mem_entry *entry;
long ret;
entry = kgsl_sharedmem_find_id(private, param->id);
if (entry == NULL)
return -EINVAL;
/* If no event is specified then free immediately */
if (!(param->flags & KGSL_GPUOBJ_FREE_ON_EVENT))
ret = gpumem_free_entry(entry);
else if (param->type == KGSL_GPU_EVENT_TIMESTAMP)
ret = gpuobj_free_on_timestamp(dev_priv, entry, param);
else if (param->type == KGSL_GPU_EVENT_FENCE)
ret = gpuobj_free_on_fence(dev_priv, entry, param);
else
ret = -EINVAL;
kgsl_mem_entry_put(entry);
return ret;
}
long kgsl_ioctl_cmdstream_freememontimestamp_ctxtid(
struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_cmdstream_freememontimestamp_ctxtid *param = data;
struct kgsl_context *context = NULL;
struct kgsl_mem_entry *entry;
long ret = -EINVAL;
if (param->type != KGSL_TIMESTAMP_RETIRED)
return -EINVAL;
context = kgsl_context_get_owner(dev_priv, param->context_id);
if (context == NULL)
return -EINVAL;
entry = kgsl_sharedmem_find(dev_priv->process_priv,
(uint64_t) param->gpuaddr);
if (entry == NULL) {
kgsl_context_put(context);
return -EINVAL;
}
ret = gpumem_free_entry_on_timestamp(dev_priv->device, entry,
context, param->timestamp);
kgsl_mem_entry_put(entry);
kgsl_context_put(context);
return ret;
}
static bool _vma_is_cached(struct vm_area_struct *vma)
{
pteval_t pgprot_val = pgprot_val(vma->vm_page_prot);
/*
* An uncached cpu mapping can either be marked as writecombine or noncached. If it isn't
* either, then it means it is cached.
*/
if ((pgprot_val != pgprot_val(pgprot_writecombine((vma->vm_page_prot)))) &&
(pgprot_val != pgprot_val(pgprot_noncached(vma->vm_page_prot))))
return true;
return false;
}
static bool check_vma(struct kgsl_device *device, struct kgsl_memdesc *memdesc,
unsigned long hostptr)
{
struct vm_area_struct *vma;
unsigned long cur = hostptr;
bool cached;
vma = find_vma(current->mm, hostptr);
if (!vma)
return false;
/* Don't remap memory that we already own */
if (vma->vm_file && (vma->vm_ops == &kgsl_gpumem_vm_ops))
return false;
cached = _vma_is_cached(vma);
cur = vma->vm_end;
while (cur < (hostptr + memdesc->size)) {
vma = find_vma(current->mm, cur);
if (!vma)
return false;
/* Don't remap memory that we already own */
if (vma->vm_file && (vma->vm_ops == &kgsl_gpumem_vm_ops))
return false;
/*
* Make sure the entire memdesc is either cached or noncached. Bail out if there is
* a mismatch as it can lead to coherency issues.
*/
if (cached != _vma_is_cached(vma))
return false;
cur = vma->vm_end;
}
/*
* If cpu side mapping is cached (and io-coherency is enabled), the gpu mapping should be
* marked io-coherent to avoid coherency issues.
*/
if (cached && kgsl_mmu_has_feature(device, KGSL_MMU_IO_COHERENT) &&
IS_ENABLED(CONFIG_QCOM_KGSL_IOCOHERENCY_DEFAULT))
memdesc->flags |= KGSL_MEMFLAGS_IOCOHERENT;
return true;
}
static int memdesc_sg_virt(struct kgsl_device *device, struct kgsl_memdesc *memdesc,
unsigned long useraddr)
{
int ret = 0;
long npages = 0, i;
size_t sglen = (size_t) (memdesc->size / PAGE_SIZE);
struct page **pages = NULL;
int write = ((memdesc->flags & KGSL_MEMFLAGS_GPUREADONLY) ? 0 :
FOLL_WRITE);
if (sglen == 0 || sglen >= LONG_MAX)
return -EINVAL;
pages = kvcalloc(sglen, sizeof(*pages), GFP_KERNEL);
if (pages == NULL)
return -ENOMEM;
memdesc->sgt = kmalloc(sizeof(*memdesc->sgt), GFP_KERNEL);
if (memdesc->sgt == NULL) {
ret = -ENOMEM;
goto out;
}
mmap_read_lock(current->mm);
if (!check_vma(device, memdesc, useraddr)) {
mmap_read_unlock(current->mm);
ret = -EFAULT;
goto out;
}
npages = get_user_pages(useraddr, sglen, write, pages, NULL);
mmap_read_unlock(current->mm);
ret = (npages < 0) ? (int)npages : 0;
if (ret)
goto out;
if ((unsigned long) npages != sglen) {
ret = -EINVAL;
goto out;
}
ret = sg_alloc_table_from_pages(memdesc->sgt, pages, npages,
0, memdesc->size, GFP_KERNEL);
if (ret)
goto out;
ret = kgsl_cache_range_op(memdesc, 0, memdesc->size,
KGSL_CACHE_OP_FLUSH);
if (ret)
sg_free_table(memdesc->sgt);
out:
if (ret) {
for (i = 0; i < npages; i++)
put_page(pages[i]);
kfree(memdesc->sgt);
memdesc->sgt = NULL;
}
kvfree(pages);
return ret;
}
static const struct kgsl_memdesc_ops kgsl_usermem_ops = {
.free = kgsl_destroy_anon,
.put_gpuaddr = kgsl_unmap_and_put_gpuaddr,
};
static int kgsl_setup_anon_useraddr(struct kgsl_device *device, struct kgsl_pagetable *pagetable,
struct kgsl_mem_entry *entry, unsigned long hostptr, size_t offset, size_t size)
{
/* Map an anonymous memory chunk */
int ret;
if (size == 0 || offset != 0 ||
!IS_ALIGNED(size, PAGE_SIZE))
return -EINVAL;
entry->memdesc.pagetable = pagetable;
entry->memdesc.size = (uint64_t) size;
entry->memdesc.flags |= (uint64_t)KGSL_MEMFLAGS_USERMEM_ADDR;
entry->memdesc.ops = &kgsl_usermem_ops;
if (kgsl_memdesc_use_cpu_map(&entry->memdesc)) {
/* Register the address in the database */
ret = kgsl_mmu_set_svm_region(pagetable,
(uint64_t) hostptr, (uint64_t) size);
/* if OOM, retry once after flushing lockless_workqueue */
if (ret == -ENOMEM) {
flush_workqueue(kgsl_driver.lockless_workqueue);
ret = kgsl_mmu_set_svm_region(pagetable,
(uint64_t) hostptr, (uint64_t) size);
}
if (ret)
return ret;
entry->memdesc.gpuaddr = (uint64_t) hostptr;
}
ret = memdesc_sg_virt(device, &entry->memdesc, hostptr);
if (ret && kgsl_memdesc_use_cpu_map(&entry->memdesc))
kgsl_mmu_put_gpuaddr(pagetable, &entry->memdesc);
return ret;
}
static int kgsl_setup_useraddr(struct kgsl_device *device,
struct kgsl_pagetable *pagetable,
struct kgsl_mem_entry *entry,
unsigned long hostptr, size_t offset, size_t size)
{
if (hostptr == 0 || !IS_ALIGNED(hostptr, PAGE_SIZE))
return -EINVAL;
return kgsl_setup_anon_useraddr(device, pagetable, entry,
hostptr, offset, size);
}
static long _gpuobj_map_useraddr(struct kgsl_device *device,
struct kgsl_pagetable *pagetable,
struct kgsl_mem_entry *entry,
struct kgsl_gpuobj_import *param)
{
struct kgsl_gpuobj_import_useraddr useraddr;
param->flags &= KGSL_MEMFLAGS_GPUREADONLY
| KGSL_CACHEMODE_MASK
| KGSL_MEMFLAGS_USE_CPU_MAP
| KGSL_MEMTYPE_MASK
| KGSL_MEMFLAGS_FORCE_32BIT
| KGSL_MEMFLAGS_IOCOHERENT;
/* Specifying SECURE is an explicit error */
if (param->flags & KGSL_MEMFLAGS_SECURE)
return -ENOTSUPP;
kgsl_memdesc_init(device, &entry->memdesc, param->flags);
if (copy_from_user(&useraddr,
u64_to_user_ptr(param->priv), sizeof(useraddr)))
return -EINVAL;
/* Verify that the virtaddr and len are within bounds */
if (useraddr.virtaddr > ULONG_MAX)
return -EINVAL;
return kgsl_setup_useraddr(device, pagetable, entry,
(unsigned long) useraddr.virtaddr, 0, param->priv_len);
}
static bool check_and_warn_secured(struct kgsl_device *device)
{
if (kgsl_mmu_is_secured(&device->mmu))
return true;
dev_WARN_ONCE(device->dev, 1, "Secure buffers are not supported\n");
return false;
}
#ifdef CONFIG_DMA_SHARED_BUFFER
static int kgsl_setup_dma_buf(struct kgsl_device *device,
struct kgsl_pagetable *pagetable,
struct kgsl_mem_entry *entry,
struct dma_buf *dmabuf);
static long _gpuobj_map_dma_buf(struct kgsl_device *device,
struct kgsl_pagetable *pagetable,
struct kgsl_mem_entry *entry,
struct kgsl_gpuobj_import *param,
int *fd)
{
bool iocoherent = (param->flags & KGSL_MEMFLAGS_IOCOHERENT);
struct kgsl_gpuobj_import_dma_buf buf;
struct dma_buf *dmabuf;
int ret;
param->flags &= KGSL_MEMFLAGS_GPUREADONLY |
KGSL_MEMTYPE_MASK |
KGSL_MEMALIGN_MASK |
KGSL_MEMFLAGS_SECURE |
KGSL_MEMFLAGS_FORCE_32BIT |
KGSL_MEMFLAGS_GUARD_PAGE;
kgsl_memdesc_init(device, &entry->memdesc, param->flags);
/*
* If content protection is not enabled and secure buffer
* is requested to be mapped return error.
*/
if (entry->memdesc.flags & KGSL_MEMFLAGS_SECURE) {
if (!check_and_warn_secured(device))
return -ENOTSUPP;
entry->memdesc.priv |= KGSL_MEMDESC_SECURE;
}
if (copy_struct_from_user(&buf, sizeof(buf),
u64_to_user_ptr(param->priv), param->priv_len))
return -EFAULT;
if (buf.fd < 0)
return -EINVAL;
*fd = buf.fd;
dmabuf = dma_buf_get(buf.fd);
if (IS_ERR(dmabuf))
return PTR_ERR(dmabuf);
/*
* DMA BUFS are always cached so make sure that is reflected in
* the memdesc.
*/
entry->memdesc.flags |=
FIELD_PREP(KGSL_CACHEMODE_MASK, KGSL_CACHEMODE_WRITEBACK);
/*
* Enable I/O coherency if it is 1) a thing, and either
* 2) enabled by default or 3) enabled by the caller
*/
if (kgsl_mmu_has_feature(device, KGSL_MMU_IO_COHERENT) &&
(IS_ENABLED(CONFIG_QCOM_KGSL_IOCOHERENCY_DEFAULT) ||
iocoherent))
entry->memdesc.flags |= KGSL_MEMFLAGS_IOCOHERENT;
ret = kgsl_setup_dma_buf(device, pagetable, entry, dmabuf);
if (ret)
dma_buf_put(dmabuf);
return ret;
}
#else
static long _gpuobj_map_dma_buf(struct kgsl_device *device,
struct kgsl_pagetable *pagetable,
struct kgsl_mem_entry *entry,
struct kgsl_gpuobj_import *param,
int *fd)
{
return -EINVAL;
}
#endif
static void kgsl_process_add_stats(struct kgsl_process_private *priv,
unsigned int type, uint64_t size)
{
u64 ret = atomic64_add_return(size, &priv->stats[type].cur);
if (ret > priv->stats[type].max)
priv->stats[type].max = ret;
}
u64 kgsl_get_stats(pid_t pid)
{
struct kgsl_process_private *process;
u64 ret;
if (pid < 0)
return atomic_long_read(&kgsl_driver.stats.page_alloc);
process = kgsl_process_private_find(pid);
if (!process)
return 0;
ret = atomic64_read(&process->stats[KGSL_MEM_ENTRY_KERNEL].cur);
kgsl_process_private_put(process);
return ret;
}
long kgsl_ioctl_gpuobj_import(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_device *device = dev_priv->device;
struct kgsl_gpuobj_import *param = data;
struct kgsl_mem_entry *entry;
int ret, fd = -1;
if (param->type != KGSL_USER_MEM_TYPE_ADDR &&
param->type != KGSL_USER_MEM_TYPE_DMABUF)
return -ENOTSUPP;
if (param->flags & KGSL_MEMFLAGS_VBO)
return -EINVAL;
entry = kgsl_mem_entry_create();
if (entry == NULL)
return -ENOMEM;
if (param->type == KGSL_USER_MEM_TYPE_ADDR)
ret = _gpuobj_map_useraddr(device, private->pagetable,
entry, param);
else
ret = _gpuobj_map_dma_buf(device, private->pagetable,
entry, param, &fd);
if (ret)
goto out;
if (entry->memdesc.size >= SZ_1M)
kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_1M));
else if (entry->memdesc.size >= SZ_64K)
kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_64K));
param->flags = entry->memdesc.flags;
ret = kgsl_mem_entry_attach_and_map(device, private, entry);
if (ret)
goto unmap;
param->id = entry->id;
KGSL_STATS_ADD(entry->memdesc.size, &kgsl_driver.stats.mapped,
&kgsl_driver.stats.mapped_max);
kgsl_process_add_stats(private,
kgsl_memdesc_usermem_type(&entry->memdesc),
entry->memdesc.size);
trace_kgsl_mem_map(entry, fd);
kgsl_mem_entry_commit_process(entry);
/* Put the extra ref from kgsl_mem_entry_create() */
kgsl_mem_entry_put(entry);
return 0;
unmap:
kgsl_sharedmem_free(&entry->memdesc);
out:
kfree(entry);
return ret;
}
static long _map_usermem_addr(struct kgsl_device *device,
struct kgsl_pagetable *pagetable, struct kgsl_mem_entry *entry,
unsigned long hostptr, size_t offset, size_t size)
{
if (!kgsl_mmu_has_feature(device, KGSL_MMU_PAGED))
return -EINVAL;
/* No CPU mapped buffer could ever be secure */
if (entry->memdesc.flags & KGSL_MEMFLAGS_SECURE)
return -EINVAL;
return kgsl_setup_useraddr(device, pagetable, entry, hostptr,
offset, size);
}
#ifdef CONFIG_DMA_SHARED_BUFFER
static int _map_usermem_dma_buf(struct kgsl_device *device,
struct kgsl_pagetable *pagetable,
struct kgsl_mem_entry *entry,
unsigned int fd)
{
int ret;
struct dma_buf *dmabuf;
/*
* If content protection is not enabled and secure buffer
* is requested to be mapped return error.
*/
if (entry->memdesc.flags & KGSL_MEMFLAGS_SECURE) {
if (!check_and_warn_secured(device))
return -EOPNOTSUPP;
entry->memdesc.priv |= KGSL_MEMDESC_SECURE;
}
dmabuf = dma_buf_get(fd);
if (IS_ERR_OR_NULL(dmabuf)) {
ret = PTR_ERR(dmabuf);
return ret ? ret : -EINVAL;
}
ret = kgsl_setup_dma_buf(device, pagetable, entry, dmabuf);
if (ret)
dma_buf_put(dmabuf);
return ret;
}
#else
static int _map_usermem_dma_buf(struct kgsl_device *device,
struct kgsl_pagetable *pagetable,
struct kgsl_mem_entry *entry,
unsigned int fd)
{
return -EINVAL;
}
#endif
#ifdef CONFIG_DMA_SHARED_BUFFER
static int verify_secure_access(struct kgsl_device *device,
struct kgsl_mem_entry *entry, struct dma_buf *dmabuf)
{
bool secure = entry->memdesc.priv & KGSL_MEMDESC_SECURE;
uint32_t *vmid_list = NULL, *perms_list = NULL;
uint32_t nelems = 0;
int i;
if (mem_buf_dma_buf_copy_vmperm(dmabuf, (int **)&vmid_list,
(int **)&perms_list, (int *)&nelems)) {
dev_info(device->dev, "Skipped access check\n");
return 0;
}
/* Check if secure buffer is accessible to CP_PIXEL */
for (i = 0; i < nelems; i++) {
if (vmid_list[i] == VMID_CP_PIXEL)
break;
}
kfree(vmid_list);
kfree(perms_list);
/*
* Do not import a buffer if it is accessible to CP_PIXEL but is being imported as
* a buffer accessible to non-secure GPU. Also, make sure if buffer is to be made
* accessible to secure GPU, it must be accessible to CP_PIXEL
*/
if (!(secure ^ (i == nelems)))
return -EPERM;
if (secure && mem_buf_dma_buf_exclusive_owner(dmabuf))
return -EPERM;
return 0;
}
static int kgsl_setup_dma_buf(struct kgsl_device *device,
struct kgsl_pagetable *pagetable,
struct kgsl_mem_entry *entry,
struct dma_buf *dmabuf)
{
int ret = 0;
struct scatterlist *s;
struct sg_table *sg_table = NULL;
struct dma_buf_attachment *attach = NULL;
struct kgsl_dma_buf_meta *metadata;
metadata = kzalloc(sizeof(*metadata), GFP_KERNEL);
if (!metadata)
return -ENOMEM;
attach = dma_buf_attach(dmabuf, device->dev);
if (IS_ERR(attach)) {
ret = PTR_ERR(attach);
goto out;
}
/*
* If dma buffer is marked IO coherent, skip sync at attach,
* which involves flushing the buffer on CPU.
* HW manages coherency for IO coherent buffers.
*/
if (entry->memdesc.flags & KGSL_MEMFLAGS_IOCOHERENT)
attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
metadata->dmabuf = dmabuf;
metadata->attach = attach;
metadata->entry = entry;
entry->priv_data = metadata;
entry->memdesc.pagetable = pagetable;
entry->memdesc.size = 0;
entry->memdesc.ops = &kgsl_dmabuf_ops;
/* USE_CPU_MAP is not impemented for ION. */
entry->memdesc.flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP);
entry->memdesc.flags |= (uint64_t)KGSL_MEMFLAGS_USERMEM_ION;
#if (KERNEL_VERSION(6, 2, 0) <= LINUX_VERSION_CODE)
sg_table = dma_buf_map_attachment_unlocked(attach, DMA_BIDIRECTIONAL);
#else
sg_table = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
#endif
if (IS_ERR_OR_NULL(sg_table)) {
ret = PTR_ERR(sg_table);
goto out;
}
metadata->table = sg_table;
entry->priv_data = metadata;
entry->memdesc.sgt = sg_table;
ret = verify_secure_access(device, entry, dmabuf);
if (ret)
goto out;
/* Calculate the size of the memdesc from the sglist */
for (s = entry->memdesc.sgt->sgl; s != NULL; s = sg_next(s))
entry->memdesc.size += (uint64_t) s->length;
if (!entry->memdesc.size) {
ret = -EINVAL;
goto out;
}
add_dmabuf_list(metadata);
entry->memdesc.size = PAGE_ALIGN(entry->memdesc.size);
out:
if (ret) {
if (!IS_ERR_OR_NULL(sg_table))
#if (KERNEL_VERSION(6, 2, 0) <= LINUX_VERSION_CODE)
dma_buf_unmap_attachment_unlocked(attach, sg_table, DMA_BIDIRECTIONAL);
#else
dma_buf_unmap_attachment(attach, sg_table, DMA_BIDIRECTIONAL);
#endif
if (!IS_ERR_OR_NULL(attach))
dma_buf_detach(dmabuf, attach);
kfree(metadata);
}
return ret;
}
#endif
#ifdef CONFIG_DMA_SHARED_BUFFER
void kgsl_get_egl_counts(struct kgsl_mem_entry *entry,
int *egl_surface_count, int *egl_image_count)
{
struct kgsl_dma_buf_meta *metadata = entry->priv_data;
struct dmabuf_list_entry *dle = metadata->dle;
struct kgsl_dma_buf_meta *scan_meta;
struct kgsl_mem_entry *scan_mem_entry;
if (!dle)
return;
spin_lock(&kgsl_dmabuf_lock);
list_for_each_entry(scan_meta, &dle->dmabuf_list, node) {
scan_mem_entry = scan_meta->entry;
switch (kgsl_memdesc_get_memtype(&scan_mem_entry->memdesc)) {
case KGSL_MEMTYPE_EGL_SURFACE:
(*egl_surface_count)++;
break;
case KGSL_MEMTYPE_EGL_IMAGE:
(*egl_image_count)++;
break;
}
}
spin_unlock(&kgsl_dmabuf_lock);
}
unsigned long kgsl_get_dmabuf_inode_number(struct kgsl_mem_entry *entry)
{
struct kgsl_dma_buf_meta *metadata = entry->priv_data;
return metadata ? file_inode(metadata->dmabuf->file)->i_ino : 0;
}
#else
void kgsl_get_egl_counts(struct kgsl_mem_entry *entry,
int *egl_surface_count, int *egl_image_count)
{
}
unsigned long kgsl_get_dmabuf_inode_number(struct kgsl_mem_entry *entry)
{
}
#endif
long kgsl_ioctl_map_user_mem(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
int result = -EINVAL;
struct kgsl_map_user_mem *param = data;
struct kgsl_mem_entry *entry = NULL;
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_device *device = dev_priv->device;
unsigned int memtype;
uint64_t flags;
/*
* If content protection is not enabled and secure buffer
* is requested to be mapped return error.
*/
if (param->flags & KGSL_MEMFLAGS_SECURE) {
if (!check_and_warn_secured(device))
return -EOPNOTSUPP;
/* Can't use CPU map with secure buffers */
if (param->flags & KGSL_MEMFLAGS_USE_CPU_MAP)
return -EINVAL;
}
entry = kgsl_mem_entry_create();
if (entry == NULL)
return -ENOMEM;
/*
* Convert from enum value to KGSL_MEM_ENTRY value, so that
* we can use the latter consistently everywhere.
*/
memtype = param->memtype + 1;
/*
* Mask off unknown flags from userspace. This way the caller can
* check if a flag is supported by looking at the returned flags.
* Note: CACHEMODE is ignored for this call. Caching should be
* determined by type of allocation being mapped.
*/
flags = param->flags & (KGSL_MEMFLAGS_GPUREADONLY
| KGSL_MEMTYPE_MASK
| KGSL_MEMALIGN_MASK
| KGSL_MEMFLAGS_USE_CPU_MAP
| KGSL_MEMFLAGS_SECURE
| KGSL_MEMFLAGS_IOCOHERENT);
if (is_compat_task())
flags |= KGSL_MEMFLAGS_FORCE_32BIT;
kgsl_memdesc_init(device, &entry->memdesc, flags);
switch (memtype) {
case KGSL_MEM_ENTRY_USER:
result = _map_usermem_addr(device, private->pagetable,
entry, param->hostptr, param->offset, param->len);
break;
case KGSL_MEM_ENTRY_ION:
if (param->offset != 0)
result = -EINVAL;
else
result = _map_usermem_dma_buf(device,
private->pagetable, entry, param->fd);
break;
default:
result = -EOPNOTSUPP;
break;
}
if (result)
goto error;
if (entry->memdesc.size >= SZ_2M)
kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_2M));
else if (entry->memdesc.size >= SZ_1M)
kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_1M));
else if (entry->memdesc.size >= SZ_64K)
kgsl_memdesc_set_align(&entry->memdesc, ilog2(SZ_64));
/* echo back flags */
param->flags = (unsigned int) entry->memdesc.flags;
result = kgsl_mem_entry_attach_and_map(device, private,
entry);
if (result)
goto error_attach;
/* Adjust the returned value for a non 4k aligned offset */
param->gpuaddr = (unsigned long)
entry->memdesc.gpuaddr + (param->offset & PAGE_MASK);
KGSL_STATS_ADD(param->len, &kgsl_driver.stats.mapped,
&kgsl_driver.stats.mapped_max);
kgsl_process_add_stats(private,
kgsl_memdesc_usermem_type(&entry->memdesc), param->len);
trace_kgsl_mem_map(entry, param->fd);
kgsl_mem_entry_commit_process(entry);
/* Put the extra ref from kgsl_mem_entry_create() */
kgsl_mem_entry_put(entry);
return result;
error_attach:
kgsl_sharedmem_free(&entry->memdesc);
error:
/* Clear gpuaddr here so userspace doesn't get any wrong ideas */
param->gpuaddr = 0;
kfree(entry);
return result;
}
static int _kgsl_gpumem_sync_cache(struct kgsl_mem_entry *entry,
uint64_t offset, uint64_t length, unsigned int op)
{
int ret = 0;
int cacheop;
if (!entry)
return 0;
/* Cache ops are not allowed on secure memory */
if (entry->memdesc.flags & KGSL_MEMFLAGS_SECURE)
return 0;
/*
* Flush is defined as (clean | invalidate). If both bits are set, then
* do a flush, otherwise check for the individual bits and clean or inv
* as requested
*/
if ((op & KGSL_GPUMEM_CACHE_FLUSH) == KGSL_GPUMEM_CACHE_FLUSH)
cacheop = KGSL_CACHE_OP_FLUSH;
else if (op & KGSL_GPUMEM_CACHE_CLEAN)
cacheop = KGSL_CACHE_OP_CLEAN;
else if (op & KGSL_GPUMEM_CACHE_INV)
cacheop = KGSL_CACHE_OP_INV;
else {
ret = -EINVAL;
goto done;
}
if (!(op & KGSL_GPUMEM_CACHE_RANGE)) {
offset = 0;
length = entry->memdesc.size;
}
if (kgsl_cachemode_is_cached(entry->memdesc.flags)) {
trace_kgsl_mem_sync_cache(entry, offset, length, op);
ret = kgsl_cache_range_op(&entry->memdesc, offset,
length, cacheop);
}
done:
return ret;
}
/* New cache sync function - supports both directions (clean and invalidate) */
long kgsl_ioctl_gpumem_sync_cache(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_gpumem_sync_cache *param = data;
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_mem_entry *entry = NULL;
long ret;
if (param->id != 0)
entry = kgsl_sharedmem_find_id(private, param->id);
else if (param->gpuaddr != 0)
entry = kgsl_sharedmem_find(private, (uint64_t) param->gpuaddr);
if (entry == NULL)
return -EINVAL;
ret = _kgsl_gpumem_sync_cache(entry, (uint64_t) param->offset,
(uint64_t) param->length, param->op);
kgsl_mem_entry_put(entry);
return ret;
}
static int mem_id_cmp(const void *_a, const void *_b)
{
const unsigned int *a = _a, *b = _b;
if (*a == *b)
return 0;
return (*a > *b) ? 1 : -1;
}
#ifdef CONFIG_ARM64
/* Do not support full flush on ARM64 targets */
static inline bool check_full_flush(size_t size, int op)
{
return false;
}
#else
/* Support full flush if the size is bigger than the threshold */
static inline bool check_full_flush(size_t size, int op)
{
/* If we exceed the breakeven point, flush the entire cache */
bool ret = (kgsl_driver.full_cache_threshold != 0) &&
(size >= kgsl_driver.full_cache_threshold) &&
(op == KGSL_GPUMEM_CACHE_FLUSH);
if (ret)
flush_cache_all();
return ret;
}
#endif
long kgsl_ioctl_gpumem_sync_cache_bulk(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
int i;
struct kgsl_gpumem_sync_cache_bulk *param = data;
struct kgsl_process_private *private = dev_priv->process_priv;
unsigned int id, last_id = 0, *id_list = NULL, actual_count = 0;
struct kgsl_mem_entry **entries = NULL;
long ret = 0;
uint64_t op_size = 0;
bool full_flush = false;
if (param->id_list == NULL || param->count == 0
|| param->count > (PAGE_SIZE / sizeof(unsigned int)))
return -EINVAL;
id_list = kcalloc(param->count, sizeof(unsigned int), GFP_KERNEL);
if (id_list == NULL)
return -ENOMEM;
entries = kcalloc(param->count, sizeof(*entries), GFP_KERNEL);
if (entries == NULL) {
ret = -ENOMEM;
goto end;
}
if (copy_from_user(id_list, param->id_list,
param->count * sizeof(unsigned int))) {
ret = -EFAULT;
goto end;
}
/* sort the ids so we can weed out duplicates */
sort(id_list, param->count, sizeof(*id_list), mem_id_cmp, NULL);
for (i = 0; i < param->count; i++) {
unsigned int cachemode;
struct kgsl_mem_entry *entry = NULL;
id = id_list[i];
/* skip 0 ids or duplicates */
if (id == last_id)
continue;
entry = kgsl_sharedmem_find_id(private, id);
if (entry == NULL)
continue;
/* skip uncached memory */
cachemode = kgsl_memdesc_get_cachemode(&entry->memdesc);
if (cachemode != KGSL_CACHEMODE_WRITETHROUGH &&
cachemode != KGSL_CACHEMODE_WRITEBACK) {
kgsl_mem_entry_put(entry);
continue;
}
op_size += entry->memdesc.size;
entries[actual_count++] = entry;
full_flush = check_full_flush(op_size, param->op);
if (full_flush) {
trace_kgsl_mem_sync_full_cache(actual_count, op_size);
break;
}
last_id = id;
}
param->op &= ~KGSL_GPUMEM_CACHE_RANGE;
for (i = 0; i < actual_count; i++) {
if (!full_flush)
_kgsl_gpumem_sync_cache(entries[i], 0,
entries[i]->memdesc.size,
param->op);
kgsl_mem_entry_put(entries[i]);
}
end:
kfree(entries);
kfree(id_list);
return ret;
}
/* Legacy cache function, does a flush (clean + invalidate) */
long kgsl_ioctl_sharedmem_flush_cache(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_sharedmem_free *param = data;
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_mem_entry *entry = NULL;
long ret;
entry = kgsl_sharedmem_find(private, (uint64_t) param->gpuaddr);
if (entry == NULL)
return -EINVAL;
ret = _kgsl_gpumem_sync_cache(entry, 0, entry->memdesc.size,
KGSL_GPUMEM_CACHE_FLUSH);
kgsl_mem_entry_put(entry);
return ret;
}
long kgsl_ioctl_gpuobj_sync(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_gpuobj_sync *param = data;
struct kgsl_gpuobj_sync_obj *objs;
struct kgsl_mem_entry **entries;
long ret = 0;
uint64_t size = 0;
int i;
void __user *ptr;
if (param->count == 0 || param->count > 128)
return -EINVAL;
objs = kcalloc(param->count, sizeof(*objs), GFP_KERNEL);
if (objs == NULL)
return -ENOMEM;
entries = kcalloc(param->count, sizeof(*entries), GFP_KERNEL);
if (entries == NULL) {
kfree(objs);
return -ENOMEM;
}
ptr = u64_to_user_ptr(param->objs);
for (i = 0; i < param->count; i++) {
ret = copy_struct_from_user(&objs[i], sizeof(*objs), ptr,
param->obj_len);
if (ret)
goto out;
entries[i] = kgsl_sharedmem_find_id(private, objs[i].id);
/* Not finding the ID is not a fatal failure - just skip it */
if (entries[i] == NULL)
continue;
if (!(objs[i].op & KGSL_GPUMEM_CACHE_RANGE))
size += entries[i]->memdesc.size;
else if (objs[i].offset < entries[i]->memdesc.size)
size += (entries[i]->memdesc.size - objs[i].offset);
if (check_full_flush(size, objs[i].op)) {
trace_kgsl_mem_sync_full_cache(i, size);
goto out;
}
ptr += sizeof(*objs);
}
for (i = 0; !ret && i < param->count; i++)
ret = _kgsl_gpumem_sync_cache(entries[i],
objs[i].offset, objs[i].length, objs[i].op);
out:
for (i = 0; i < param->count; i++)
kgsl_mem_entry_put(entries[i]);
kfree(entries);
kfree(objs);
return ret;
}
static int kgsl_update_fault_details(struct kgsl_context *context,
void __user *ptr, u32 faultnents, u32 faultsize)
{
u32 size = min_t(u32, sizeof(struct kgsl_fault), faultsize);
u32 cur_idx[KGSL_FAULT_TYPE_MAX] = {0};
struct kgsl_fault_node *fault_node;
struct kgsl_fault *faults;
int i, ret = 0;
faults = kcalloc(KGSL_FAULT_TYPE_MAX, sizeof(struct kgsl_fault),
GFP_KERNEL);
if (!faults)
return -ENOMEM;
for (i = 0; i < faultnents; i++) {
struct kgsl_fault fault = {0};
if (copy_from_user(&fault, ptr + i * faultsize, size)) {
ret = -EFAULT;
goto err;
}
if (fault.type >= KGSL_FAULT_TYPE_MAX) {
ret = -EINVAL;
goto err;
}
memcpy(&faults[fault.type], &fault, sizeof(fault));
}
mutex_lock(&context->fault_lock);
list_for_each_entry(fault_node, &context->faults, node) {
u32 fault_type = fault_node->type;
if (cur_idx[fault_type] >= faults[fault_type].count)
continue;
switch (fault_type) {
case KGSL_FAULT_TYPE_PAGEFAULT:
size = sizeof(struct kgsl_pagefault_report);
}
size = min_t(u32, size, faults[fault_type].size);
if (copy_to_user(u64_to_user_ptr(faults[fault_type].fault +
cur_idx[fault_type] * faults[fault_type].size),
fault_node->priv, size)) {
ret = -EFAULT;
goto release_lock;
}
cur_idx[fault_type] += 1;
}
release_lock:
mutex_unlock(&context->fault_lock);
err:
kfree(faults);
return ret;
}
static int kgsl_update_fault_count(struct kgsl_context *context,
void __user *faults, u32 faultnents, u32 faultsize)
{
u32 size = min_t(u32, sizeof(struct kgsl_fault), faultsize);
u32 faultcount[KGSL_FAULT_TYPE_MAX] = {0};
struct kgsl_fault_node *fault_node;
int i, j;
mutex_lock(&context->fault_lock);
list_for_each_entry(fault_node, &context->faults, node)
faultcount[fault_node->type]++;
mutex_unlock(&context->fault_lock);
/* KGSL_FAULT_TYPE_NO_FAULT (i.e. 0) is not an actual fault type */
for (i = 0, j = 1; i < faultnents && j < KGSL_FAULT_TYPE_MAX; j++) {
struct kgsl_fault fault = {0};
if (!faultcount[j])
continue;
fault.type = j;
fault.count = faultcount[j];
if (copy_to_user(faults, &fault, size))
return -EFAULT;
faults += faultsize;
i++;
}
return 0;
}
long kgsl_ioctl_get_fault_report(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_fault_report *param = data;
u32 size = min_t(u32, sizeof(struct kgsl_fault), param->faultsize);
void __user *ptr = u64_to_user_ptr(param->faultlist);
struct kgsl_context *context;
int i, ret = 0;
context = kgsl_context_get_owner(dev_priv, param->context_id);
if (!context)
return -EINVAL;
/* This IOCTL is valid for invalidated contexts only */
if (!(context->flags & KGSL_CONTEXT_FAULT_INFO) ||
!kgsl_context_invalid(context)) {
ret = -EINVAL;
goto err;
}
/* Return the number of fault types */
if (!param->faultlist) {
param->faultnents = KGSL_FAULT_TYPE_MAX;
kgsl_context_put(context);
return 0;
}
/* Check if it's a request to get fault counts or to fill the fault information */
for (i = 0; i < param->faultnents; i++) {
struct kgsl_fault fault = {0};
if (copy_from_user(&fault, ptr, size)) {
ret = -EFAULT;
goto err;
}
if (fault.fault)
break;
ptr += param->faultsize;
}
ptr = u64_to_user_ptr(param->faultlist);
if (i == param->faultnents)
ret = kgsl_update_fault_count(context, ptr, param->faultnents,
param->faultsize);
else
ret = kgsl_update_fault_details(context, ptr, param->faultnents,
param->faultsize);
err:
kgsl_context_put(context);
return ret;
}
int kgsl_add_fault(struct kgsl_context *context, u32 type, void *priv)
{
struct kgsl_fault_node *fault, *p, *tmp;
int length = 0;
ktime_t tout;
if (kgsl_context_is_bad(context))
return -EINVAL;
fault = kmalloc(sizeof(struct kgsl_fault_node), GFP_KERNEL);
if (!fault)
return -ENOMEM;
fault->type = type;
fault->priv = priv;
fault->time = ktime_get();
tout = ktime_sub_ms(ktime_get(), KGSL_MAX_FAULT_TIME_THRESHOLD);
mutex_lock(&context->fault_lock);
list_for_each_entry_safe(p, tmp, &context->faults, node) {
if (ktime_compare(p->time, tout) > 0) {
length++;
continue;
}
list_del(&p->node);
kfree(p->priv);
kfree(p);
}
if (length == KGSL_MAX_FAULT_ENTRIES) {
tmp = list_first_entry(&context->faults, struct kgsl_fault_node, node);
list_del(&tmp->node);
kfree(tmp->priv);
kfree(tmp);
}
list_add_tail(&fault->node, &context->faults);
mutex_unlock(&context->fault_lock);
return 0;
}
#ifdef CONFIG_ARM64
static uint64_t kgsl_filter_cachemode(uint64_t flags)
{
/*
* WRITETHROUGH is not supported in arm64, so we tell the user that we
* use WRITEBACK which is the default caching policy.
*/
if (FIELD_GET(KGSL_CACHEMODE_MASK, flags) == KGSL_CACHEMODE_WRITETHROUGH) {
flags &= ~((uint64_t) KGSL_CACHEMODE_MASK);
flags |= FIELD_PREP(KGSL_CACHEMODE_MASK, KGSL_CACHEMODE_WRITEBACK);
}
return flags;
}
#else
static uint64_t kgsl_filter_cachemode(uint64_t flags)
{
return flags;
}
#endif
/* The largest allowable alignment for a GPU object is 32MB */
#define KGSL_MAX_ALIGN (32 * SZ_1M)
static u64 cap_alignment(struct kgsl_device *device, u64 flags)
{
u32 align = FIELD_GET(KGSL_MEMALIGN_MASK, flags);
if (align >= ilog2(KGSL_MAX_ALIGN)) {
/* Cap the alignment bits to the highest number we can handle */
dev_err(device->dev,
"Alignment too large; restricting to %dK\n",
KGSL_MAX_ALIGN >> 10);
align = ilog2(KGSL_MAX_ALIGN);
}
flags &= ~((u64) KGSL_MEMALIGN_MASK);
return flags | FIELD_PREP(KGSL_MEMALIGN_MASK, align);
}
static u64 gpumem_max_va_size(struct kgsl_pagetable *pt, u64 flags)
{
if (flags & KGSL_MEMFLAGS_FORCE_32BIT)
return pt->compat_va_end - pt->compat_va_start;
return pt->va_end - pt->va_start;
}
static struct kgsl_mem_entry *
gpumem_alloc_vbo_entry(struct kgsl_device_private *dev_priv,
u64 size, u64 flags)
{
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_device *device = dev_priv->device;
struct kgsl_memdesc *memdesc;
struct kgsl_mem_entry *entry;
struct kgsl_pagetable *pt;
int ret;
/* Disallow specific flags */
if (flags & (KGSL_MEMFLAGS_GPUREADONLY | KGSL_CACHEMODE_MASK))
return ERR_PTR(-EINVAL);
if (flags & (KGSL_MEMFLAGS_USE_CPU_MAP | KGSL_MEMFLAGS_IOCOHERENT))
return ERR_PTR(-EINVAL);
/* Quietly ignore the other flags that aren't this list */
flags &= KGSL_MEMFLAGS_SECURE |
KGSL_MEMFLAGS_VBO |
KGSL_MEMFLAGS_VBO_NO_MAP_ZERO |
KGSL_MEMTYPE_MASK |
KGSL_MEMALIGN_MASK |
KGSL_MEMFLAGS_FORCE_32BIT;
if ((flags & KGSL_MEMFLAGS_SECURE) && !check_and_warn_secured(device))
return ERR_PTR(-EOPNOTSUPP);
pt = (flags & KGSL_MEMFLAGS_SECURE) ?
device->mmu.securepagetable : private->pagetable;
if (!size || (size > gpumem_max_va_size(pt, flags)))
return ERR_PTR(-EINVAL);
flags = cap_alignment(device, flags);
entry = kgsl_mem_entry_create();
if (!entry)
return ERR_PTR(-ENOMEM);
memdesc = &entry->memdesc;
ret = kgsl_sharedmem_allocate_vbo(device, memdesc, size, flags);
if (ret) {
kfree(entry);
return ERR_PTR(ret);
}
if (flags & KGSL_MEMFLAGS_SECURE)
entry->memdesc.priv |= KGSL_MEMDESC_SECURE;
ret = kgsl_mem_entry_attach_to_process(device, private, entry);
if (ret)
goto out;
/* Map the zero page unless explicitly asked not to */
if (!(flags & KGSL_MEMFLAGS_VBO_NO_MAP_ZERO))
ret = kgsl_mmu_map_zero_page_to_range(memdesc->pagetable,
memdesc, 0, memdesc->size);
if (!ret) {
trace_kgsl_mem_alloc(entry);
kgsl_mem_entry_commit_process(entry);
return entry;
}
out:
kgsl_sharedmem_free(memdesc);
kfree(entry);
return ERR_PTR(ret);
}
struct kgsl_mem_entry *gpumem_alloc_entry(
struct kgsl_device_private *dev_priv,
uint64_t size, uint64_t flags)
{
int ret;
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_mem_entry *entry;
struct kgsl_device *device = dev_priv->device;
u32 cachemode;
/* For 32-bit kernel world nothing to do with this flag */
if (BITS_PER_LONG == 32)
flags &= ~((uint64_t) KGSL_MEMFLAGS_FORCE_32BIT);
if (flags & KGSL_MEMFLAGS_VBO)
return gpumem_alloc_vbo_entry(dev_priv, size, flags);
flags &= KGSL_MEMFLAGS_GPUREADONLY
| KGSL_CACHEMODE_MASK
| KGSL_MEMTYPE_MASK
| KGSL_MEMALIGN_MASK
| KGSL_MEMFLAGS_USE_CPU_MAP
| KGSL_MEMFLAGS_SECURE
| KGSL_MEMFLAGS_FORCE_32BIT
| KGSL_MEMFLAGS_IOCOHERENT
| KGSL_MEMFLAGS_GUARD_PAGE;
/* Return not supported error if secure memory isn't enabled */
if ((flags & KGSL_MEMFLAGS_SECURE) && !check_and_warn_secured(device))
return ERR_PTR(-EOPNOTSUPP);
flags = cap_alignment(device, flags);
/* For now only allow allocations up to 4G */
if (size == 0 || size > UINT_MAX)
return ERR_PTR(-EINVAL);
flags = kgsl_filter_cachemode(flags);
entry = kgsl_mem_entry_create();
if (entry == NULL)
return ERR_PTR(-ENOMEM);
if (IS_ENABLED(CONFIG_QCOM_KGSL_IOCOHERENCY_DEFAULT) &&
kgsl_cachemode_is_cached(flags))
flags |= KGSL_MEMFLAGS_IOCOHERENT;
ret = kgsl_allocate_user(device, &entry->memdesc,
size, flags, 0);
if (ret != 0)
goto err;
ret = kgsl_mem_entry_attach_and_map(device, private, entry);
if (ret != 0) {
kgsl_sharedmem_free(&entry->memdesc);
goto err;
}
cachemode = kgsl_memdesc_get_cachemode(&entry->memdesc);
/*
* Secure buffers cannot be reclaimed. For IO-COHERENT devices cached
* buffers can safely reclaimed. But avoid reclaim cached buffers of
* non IO-COHERENT devices as we could get request for cache operations
* on these buffers when they are reclaimed.
*/
if (!(flags & KGSL_MEMFLAGS_SECURE) &&
(((flags & KGSL_MEMFLAGS_IOCOHERENT) &&
!(cachemode == KGSL_CACHEMODE_WRITETHROUGH)) ||
(!(flags & KGSL_MEMFLAGS_IOCOHERENT) &&
!(cachemode == KGSL_CACHEMODE_WRITEBACK) &&
!(cachemode == KGSL_CACHEMODE_WRITETHROUGH))))
entry->memdesc.priv |= KGSL_MEMDESC_CAN_RECLAIM;
kgsl_process_add_stats(private,
kgsl_memdesc_usermem_type(&entry->memdesc),
entry->memdesc.size);
trace_kgsl_mem_alloc(entry);
kgsl_mem_entry_commit_process(entry);
return entry;
err:
kfree(entry);
return ERR_PTR(ret);
}
static void copy_metadata(struct kgsl_mem_entry *entry, uint64_t metadata,
unsigned int len)
{
unsigned int i, size;
if (len == 0)
return;
size = min_t(unsigned int, len, sizeof(entry->metadata) - 1);
if (copy_from_user(entry->metadata, u64_to_user_ptr(metadata), size)) {
memset(entry->metadata, 0, sizeof(entry->metadata));
return;
}
/* Clean up non printable characters in the string */
for (i = 0; i < size && entry->metadata[i] != 0; i++) {
if (!isprint(entry->metadata[i]))
entry->metadata[i] = '?';
}
}
long kgsl_ioctl_gpuobj_alloc(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_gpuobj_alloc *param = data;
struct kgsl_mem_entry *entry;
entry = gpumem_alloc_entry(dev_priv, param->size, param->flags);
if (IS_ERR(entry))
return PTR_ERR(entry);
copy_metadata(entry, param->metadata, param->metadata_len);
param->size = entry->memdesc.size;
param->flags = entry->memdesc.flags;
param->mmapsize = kgsl_memdesc_footprint(&entry->memdesc);
param->id = entry->id;
/* Put the extra ref from kgsl_mem_entry_create() */
kgsl_mem_entry_put(entry);
return 0;
}
long kgsl_ioctl_gpumem_alloc(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_gpumem_alloc *param = data;
struct kgsl_mem_entry *entry;
uint64_t flags = param->flags;
/* Legacy functions doesn't support these advanced features */
flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP);
if (is_compat_task())
flags |= KGSL_MEMFLAGS_FORCE_32BIT;
entry = gpumem_alloc_entry(dev_priv, (uint64_t) param->size, flags);
if (IS_ERR(entry))
return PTR_ERR(entry);
param->gpuaddr = (unsigned long) entry->memdesc.gpuaddr;
param->size = (size_t) entry->memdesc.size;
param->flags = (unsigned int) entry->memdesc.flags;
/* Put the extra ref from kgsl_mem_entry_create() */
kgsl_mem_entry_put(entry);
return 0;
}
long kgsl_ioctl_gpumem_alloc_id(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_gpumem_alloc_id *param = data;
struct kgsl_mem_entry *entry;
uint64_t flags = param->flags;
if (is_compat_task())
flags |= KGSL_MEMFLAGS_FORCE_32BIT;
entry = gpumem_alloc_entry(dev_priv, (uint64_t) param->size, flags);
if (IS_ERR(entry))
return PTR_ERR(entry);
param->id = entry->id;
param->flags = (unsigned int) entry->memdesc.flags;
param->size = (size_t) entry->memdesc.size;
param->mmapsize = (size_t) kgsl_memdesc_footprint(&entry->memdesc);
param->gpuaddr = (unsigned long) entry->memdesc.gpuaddr;
/* Put the extra ref from kgsl_mem_entry_create() */
kgsl_mem_entry_put(entry);
return 0;
}
long kgsl_ioctl_gpumem_get_info(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_gpumem_get_info *param = data;
struct kgsl_mem_entry *entry = NULL;
int result = 0;
if (param->id != 0)
entry = kgsl_sharedmem_find_id(private, param->id);
else if (param->gpuaddr != 0)
entry = kgsl_sharedmem_find(private, (uint64_t) param->gpuaddr);
if (entry == NULL)
return -EINVAL;
/*
* If any of the 64 bit address / sizes would end up being
* truncated, return -ERANGE. That will signal the user that they
* should use a more modern API
*/
if (entry->memdesc.gpuaddr > ULONG_MAX)
result = -ERANGE;
param->gpuaddr = (unsigned long) entry->memdesc.gpuaddr;
param->id = entry->id;
param->flags = (unsigned int) entry->memdesc.flags;
param->size = (size_t) entry->memdesc.size;
param->mmapsize = (size_t) kgsl_memdesc_footprint(&entry->memdesc);
/*
* Entries can have multiple user mappings so thre isn't any one address
* we can report. Plus, the user should already know their mappings, so
* there isn't any value in reporting it back to them.
*/
param->useraddr = 0;
kgsl_mem_entry_put(entry);
return result;
}
long kgsl_ioctl_gpuobj_info(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_gpuobj_info *param = data;
struct kgsl_mem_entry *entry;
if (param->id == 0)
return -EINVAL;
entry = kgsl_sharedmem_find_id(private, param->id);
if (entry == NULL)
return -EINVAL;
param->id = entry->id;
param->gpuaddr = entry->memdesc.gpuaddr;
param->flags = entry->memdesc.flags;
param->size = entry->memdesc.size;
/* VBOs cannot be mapped, so don't report a va_len */
if (entry->memdesc.flags & KGSL_MEMFLAGS_VBO)
param->va_len = 0;
else
param->va_len = kgsl_memdesc_footprint(&entry->memdesc);
/*
* Entries can have multiple user mappings so thre isn't any one address
* we can report. Plus, the user should already know their mappings, so
* there isn't any value in reporting it back to them.
*/
param->va_addr = 0;
kgsl_mem_entry_put(entry);
return 0;
}
long kgsl_ioctl_gpuobj_set_info(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_gpuobj_set_info *param = data;
struct kgsl_mem_entry *entry;
int ret = 0;
if (param->id == 0)
return -EINVAL;
entry = kgsl_sharedmem_find_id(private, param->id);
if (entry == NULL)
return -EINVAL;
if (param->flags & KGSL_GPUOBJ_SET_INFO_METADATA)
copy_metadata(entry, param->metadata, param->metadata_len);
if (param->flags & KGSL_GPUOBJ_SET_INFO_TYPE) {
if (FIELD_FIT(KGSL_MEMTYPE_MASK, param->type)) {
entry->memdesc.flags &= ~((uint64_t) KGSL_MEMTYPE_MASK);
entry->memdesc.flags |=
FIELD_PREP(KGSL_MEMTYPE_MASK, param->type);
} else
ret = -EINVAL;
}
kgsl_mem_entry_put(entry);
return ret;
}
/**
* kgsl_ioctl_timestamp_event - Register a new timestamp event from userspace
* @dev_priv - pointer to the private device structure
* @cmd - the ioctl cmd passed from kgsl_ioctl
* @data - the user data buffer from kgsl_ioctl
* @returns 0 on success or error code on failure
*/
long kgsl_ioctl_timestamp_event(struct kgsl_device_private *dev_priv,
unsigned int cmd, void *data)
{
struct kgsl_timestamp_event *param = data;
int ret;
switch (param->type) {
case KGSL_TIMESTAMP_EVENT_FENCE:
ret = kgsl_add_fence_event(dev_priv->device,
param->context_id, param->timestamp, param->priv,
param->len, dev_priv);
break;
default:
ret = -EINVAL;
}
return ret;
}
static vm_fault_t
kgsl_memstore_vm_fault(struct vm_fault *vmf)
{
struct kgsl_memdesc *memdesc = vmf->vma->vm_private_data;
return memdesc->ops->vmfault(memdesc, vmf->vma, vmf);
}
static const struct vm_operations_struct kgsl_memstore_vm_ops = {
.fault = kgsl_memstore_vm_fault,
};
static inline void kgsl_vm_flags_clear(struct vm_area_struct *vma, vm_flags_t flags)
{
#if (KERNEL_VERSION(6, 1, 25) <= LINUX_VERSION_CODE)
vm_flags_clear(vma, flags);
#else
vma->vm_flags &= ~flags;
#endif
}
static inline void kgsl_vm_flags_set(struct vm_area_struct *vma, vm_flags_t flags)
{
#if (KERNEL_VERSION(6, 1, 25) <= LINUX_VERSION_CODE)
vm_flags_set(vma, flags);
#else
vma->vm_flags |= flags;
#endif
}
static int
kgsl_mmap_memstore(struct file *file, struct kgsl_device *device,
struct vm_area_struct *vma)
{
struct kgsl_memdesc *memdesc = device->memstore;
unsigned int vma_size = vma->vm_end - vma->vm_start;
/* The memstore can only be mapped as read only */
if (vma->vm_flags & VM_WRITE)
return -EPERM;
kgsl_vm_flags_clear(vma, VM_MAYWRITE);
if (memdesc->size != vma_size) {
dev_err(device->dev, "Cannot partially map the memstore\n");
return -EINVAL;
}
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
vma->vm_private_data = memdesc;
kgsl_vm_flags_set(vma, memdesc->ops->vmflags);
vma->vm_ops = &kgsl_memstore_vm_ops;
vma->vm_file = file;
return 0;
}
/*
* kgsl_gpumem_vm_open is called whenever a vma region is copied or split.
* Increase the refcount to make sure that the accounting stays correct
*/
static void kgsl_gpumem_vm_open(struct vm_area_struct *vma)
{
struct kgsl_mem_entry *entry = vma->vm_private_data;
if (!kgsl_mem_entry_get(entry))
vma->vm_private_data = NULL;
atomic_inc(&entry->map_count);
}
static vm_fault_t
kgsl_gpumem_vm_fault(struct vm_fault *vmf)
{
struct kgsl_mem_entry *entry = vmf->vma->vm_private_data;
if (!entry)
return VM_FAULT_SIGBUS;
if (!entry->memdesc.ops || !entry->memdesc.ops->vmfault)
return VM_FAULT_SIGBUS;
return entry->memdesc.ops->vmfault(&entry->memdesc, vmf->vma, vmf);
}
static void
kgsl_gpumem_vm_close(struct vm_area_struct *vma)
{
struct kgsl_mem_entry *entry = vma->vm_private_data;
if (!entry)
return;
/*
* Remove the memdesc from the mapped stat once all the mappings have
* gone away
*/
if (!atomic_dec_return(&entry->map_count))
atomic64_sub(entry->memdesc.size, &entry->priv->gpumem_mapped);
kgsl_mem_entry_put(entry);
}
static const struct vm_operations_struct kgsl_gpumem_vm_ops = {
.open = kgsl_gpumem_vm_open,
.fault = kgsl_gpumem_vm_fault,
.close = kgsl_gpumem_vm_close,
};
static int
get_mmap_entry(struct kgsl_process_private *private,
struct kgsl_mem_entry **out_entry, unsigned long pgoff,
unsigned long len)
{
int ret = 0;
struct kgsl_mem_entry *entry;
entry = kgsl_sharedmem_find_id(private, pgoff);
if (entry == NULL)
entry = kgsl_sharedmem_find(private, pgoff << PAGE_SHIFT);
if (!entry)
return -EINVAL;
if (!entry->memdesc.ops ||
!entry->memdesc.ops->vmflags ||
!entry->memdesc.ops->vmfault) {
ret = -EINVAL;
goto err_put;
}
/* Don't allow ourselves to remap user memory */
if (entry->memdesc.flags & KGSL_MEMFLAGS_USERMEM_ADDR) {
ret = -EBUSY;
goto err_put;
}
if (kgsl_memdesc_use_cpu_map(&entry->memdesc)) {
if (len != kgsl_memdesc_footprint(&entry->memdesc)) {
ret = -ERANGE;
goto err_put;
}
} else if (len != kgsl_memdesc_footprint(&entry->memdesc) &&
len != entry->memdesc.size) {
/*
* If cpu_map != gpumap then user can map either the
* footprint or the entry size
*/
ret = -ERANGE;
goto err_put;
}
*out_entry = entry;
return 0;
err_put:
kgsl_mem_entry_put(entry);
return ret;
}
static unsigned long _gpu_set_svm_region(struct kgsl_process_private *private,
struct kgsl_mem_entry *entry, unsigned long addr,
unsigned long size)
{
int ret;
/*
* Protect access to the gpuaddr here to prevent multiple vmas from
* trying to map a SVM region at the same time
*/
spin_lock(&entry->memdesc.lock);
if (entry->memdesc.gpuaddr) {
spin_unlock(&entry->memdesc.lock);
return (unsigned long) -EBUSY;
}
ret = kgsl_mmu_set_svm_region(private->pagetable, (uint64_t) addr,
(uint64_t) size);
if (ret != 0) {
spin_unlock(&entry->memdesc.lock);
return (unsigned long) ret;
}
entry->memdesc.gpuaddr = (uint64_t) addr;
spin_unlock(&entry->memdesc.lock);
entry->memdesc.pagetable = private->pagetable;
ret = kgsl_mmu_map(private->pagetable, &entry->memdesc);
if (ret) {
kgsl_mmu_put_gpuaddr(private->pagetable, &entry->memdesc);
return (unsigned long) ret;
}
kgsl_memfree_purge(private->pagetable, entry->memdesc.gpuaddr,
entry->memdesc.size);
return addr;
}
static unsigned long get_align(struct kgsl_mem_entry *entry)
{
int bit = kgsl_memdesc_get_align(&entry->memdesc);
if (bit >= ilog2(SZ_2M))
return SZ_2M;
else if (bit >= ilog2(SZ_1M))
return SZ_1M;
else if (bit >= ilog2(SZ_64K))
return SZ_64K;
return SZ_4K;
}
static unsigned long set_svm_area(struct file *file,
struct kgsl_mem_entry *entry,
unsigned long addr, unsigned long len,
unsigned long flags)
{
struct kgsl_device_private *dev_priv = file->private_data;
struct kgsl_process_private *private = dev_priv->process_priv;
unsigned long ret;
/*
* Do additoinal constraints checking on the address. Passing MAP_FIXED
* ensures that the address we want gets checked
*/
ret = current->mm->get_unmapped_area(file, addr, len, 0,
flags & MAP_FIXED);
/* If it passes, attempt to set the region in the SVM */
if (!IS_ERR_VALUE(ret))
return _gpu_set_svm_region(private, entry, addr, len);
return ret;
}
static unsigned long get_svm_unmapped_area(struct file *file,
struct kgsl_mem_entry *entry,
unsigned long addr, unsigned long len,
unsigned long flags)
{
struct kgsl_device_private *dev_priv = file->private_data;
struct kgsl_process_private *private = dev_priv->process_priv;
unsigned long align = get_align(entry);
unsigned long ret, iova;
u64 start = 0, end = 0;
struct vm_area_struct *vma;
if (flags & MAP_FIXED) {
/* Even fixed addresses need to obey alignment */
if (!IS_ALIGNED(addr, align))
return -EINVAL;
return set_svm_area(file, entry, addr, len, flags);
}
/* If a hint was provided, try to use that first */
if (addr) {
if (IS_ALIGNED(addr, align)) {
ret = set_svm_area(file, entry, addr, len, flags);
if (!IS_ERR_VALUE(ret))
return ret;
}
}
/* Get the SVM range for the current process */
if (kgsl_mmu_svm_range(private->pagetable, &start, &end,
entry->memdesc.flags))
return -ERANGE;
/* Find the first gap in the iova map */
iova = kgsl_mmu_find_svm_region(private->pagetable, start, end,
len, align);
while (!IS_ERR_VALUE(iova)) {
vma = find_vma_intersection(current->mm, iova, iova + len - 1);
if (vma) {
iova = vma->vm_start;
} else {
ret = set_svm_area(file, entry, iova, len, flags);
if (!IS_ERR_VALUE(ret))
return ret;
/*
* set_svm_area will return -EBUSY if we tried to set up
* SVM on an object that already has a GPU address. If
* that happens don't bother walking the rest of the
* region
*/
if ((long) ret == -EBUSY)
return -EBUSY;
}
iova = kgsl_mmu_find_svm_region(private->pagetable,
start, iova - 1, len, align);
}
return -ENOMEM;
}
static unsigned long
kgsl_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
unsigned long val;
unsigned long vma_offset = pgoff << PAGE_SHIFT;
struct kgsl_device_private *dev_priv = file->private_data;
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_device *device = dev_priv->device;
struct kgsl_mem_entry *entry = NULL;
if (vma_offset == (unsigned long) KGSL_MEMSTORE_TOKEN_ADDRESS)
return get_unmapped_area(NULL, addr, len, pgoff, flags);
val = get_mmap_entry(private, &entry, pgoff, len);
if (val)
return val;
/* Do not allow CPU mappings for secure buffers */
if (kgsl_memdesc_is_secured(&entry->memdesc)) {
kgsl_mem_entry_put(entry);
return (unsigned long) -EPERM;
}
if (!kgsl_memdesc_use_cpu_map(&entry->memdesc)) {
val = current->mm->get_unmapped_area(file, addr, len, 0, flags);
if (IS_ERR_VALUE(val))
dev_err_ratelimited(device->dev,
"get_unmapped_area: pid %d addr %lx pgoff %lx len %ld failed error %d\n",
pid_nr(private->pid), addr, pgoff, len,
(int) val);
} else {
val = get_svm_unmapped_area(file, entry, addr, len, flags);
/* if OOM, retry once after flushing lockless_workqueue */
if (val == -ENOMEM) {
flush_workqueue(kgsl_driver.lockless_workqueue);
val = get_svm_unmapped_area(file, entry, addr, len, flags);
}
if (IS_ERR_VALUE(val))
dev_err_ratelimited(device->dev,
"_get_svm_area: pid %d addr %lx pgoff %lx len %ld failed error %d\n",
pid_nr(private->pid), addr, pgoff, len,
(int) val);
}
kgsl_mem_entry_put(entry);
return val;
}
static int kgsl_mmap(struct file *file, struct vm_area_struct *vma)
{
unsigned int cache;
unsigned long vma_offset = vma->vm_pgoff << PAGE_SHIFT;
struct kgsl_device_private *dev_priv = file->private_data;
struct kgsl_process_private *private = dev_priv->process_priv;
struct kgsl_mem_entry *entry = NULL;
struct kgsl_device *device = dev_priv->device;
uint64_t flags;
int ret;
/* Handle leagacy behavior for memstore */
if (vma_offset == (unsigned long) KGSL_MEMSTORE_TOKEN_ADDRESS)
return kgsl_mmap_memstore(file, device, vma);
/*
* The reference count on the entry that we get from
* get_mmap_entry() will be held until kgsl_gpumem_vm_close().
*/
ret = get_mmap_entry(private, &entry, vma->vm_pgoff,
vma->vm_end - vma->vm_start);
if (ret)
return ret;
kgsl_vm_flags_set(vma, entry->memdesc.ops->vmflags);
vma->vm_private_data = entry;
/* Determine user-side caching policy */
cache = kgsl_memdesc_get_cachemode(&entry->memdesc);
switch (cache) {
case KGSL_CACHEMODE_WRITETHROUGH:
vma->vm_page_prot = pgprot_writethroughcache(vma->vm_page_prot);
if (pgprot_val(vma->vm_page_prot) ==
pgprot_val(pgprot_writebackcache(vma->vm_page_prot)))
WARN_ONCE(1, "WRITETHROUGH is deprecated for arm64");
break;
case KGSL_CACHEMODE_WRITEBACK:
vma->vm_page_prot = pgprot_writebackcache(vma->vm_page_prot);
break;
case KGSL_CACHEMODE_UNCACHED:
case KGSL_CACHEMODE_WRITECOMBINE:
default:
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
break;
}
vma->vm_ops = &kgsl_gpumem_vm_ops;
flags = entry->memdesc.flags;
if (!(flags & KGSL_MEMFLAGS_IOCOHERENT) &&
(cache == KGSL_CACHEMODE_WRITEBACK ||
cache == KGSL_CACHEMODE_WRITETHROUGH)) {
int i;
unsigned long addr = vma->vm_start;
struct kgsl_memdesc *m = &entry->memdesc;
for (i = 0; i < m->page_count; i++) {
struct page *page = m->pages[i];
vm_insert_page(vma, addr, page);
addr += PAGE_SIZE;
}
}
if (entry->memdesc.shmem_filp) {
fput(vma->vm_file);
vma->vm_file = get_file(entry->memdesc.shmem_filp);
}
/*
* kgsl gets the entry id or the gpu address through vm_pgoff.
* It is used during mmap and never needed again. But this vm_pgoff
* has different meaning at other parts of kernel. Not setting to
* zero will let way for wrong assumption when tried to unmap a page
* from this vma.
*/
vma->vm_pgoff = 0;
if (atomic_inc_return(&entry->map_count) == 1)
atomic64_add(entry->memdesc.size, &entry->priv->gpumem_mapped);
trace_kgsl_mem_mmap(entry, vma->vm_start);
return 0;
}
#define KGSL_READ_MESSAGE "OH HAI GPU\n"
static ssize_t kgsl_read(struct file *filep, char __user *buf, size_t count,
loff_t *pos)
{
return simple_read_from_buffer(buf, count, pos,
KGSL_READ_MESSAGE, strlen(KGSL_READ_MESSAGE) + 1);
}
static const struct file_operations kgsl_fops = {
.owner = THIS_MODULE,
.release = kgsl_release,
.open = kgsl_open,
.mmap = kgsl_mmap,
.read = kgsl_read,
.get_unmapped_area = kgsl_get_unmapped_area,
.unlocked_ioctl = kgsl_ioctl,
.compat_ioctl = kgsl_compat_ioctl,
};
struct kgsl_driver kgsl_driver = {
.process_mutex = __MUTEX_INITIALIZER(kgsl_driver.process_mutex),
.proclist_lock = __RW_LOCK_UNLOCKED(kgsl_driver.proclist_lock),
.ptlock = __SPIN_LOCK_UNLOCKED(kgsl_driver.ptlock),
.wp_list_lock = __SPIN_LOCK_UNLOCKED(kgsl_driver.wp_list_lock),
.devlock = __MUTEX_INITIALIZER(kgsl_driver.devlock),
/*
* Full cache flushes are faster than line by line on at least
* 8064 and 8974 once the region to be flushed is > 16mb.
*/
.full_cache_threshold = SZ_16M,
.stats.vmalloc = ATOMIC_LONG_INIT(0),
.stats.vmalloc_max = ATOMIC_LONG_INIT(0),
.stats.page_alloc = ATOMIC_LONG_INIT(0),
.stats.page_alloc_max = ATOMIC_LONG_INIT(0),
.stats.coherent = ATOMIC_LONG_INIT(0),
.stats.coherent_max = ATOMIC_LONG_INIT(0),
.stats.secure = ATOMIC_LONG_INIT(0),
.stats.secure_max = ATOMIC_LONG_INIT(0),
.stats.mapped = ATOMIC_LONG_INIT(0),
.stats.mapped_max = ATOMIC_LONG_INIT(0),
};
static void _unregister_device(struct kgsl_device *device)
{
int minor;
if (device->gpu_sysfs_kobj.state_initialized)
kobject_put(&device->gpu_sysfs_kobj);
mutex_lock(&kgsl_driver.devlock);
for (minor = 0; minor < ARRAY_SIZE(kgsl_driver.devp); minor++) {
if (device == kgsl_driver.devp[minor]) {
device_destroy(kgsl_driver.class,
MKDEV(MAJOR(kgsl_driver.major), minor));
kgsl_driver.devp[minor] = NULL;
break;
}
}
mutex_unlock(&kgsl_driver.devlock);
}
/* sysfs_ops for the /sys/kernel/gpu kobject */
static ssize_t kgsl_gpu_sysfs_attr_show(struct kobject *kobj,
struct attribute *__attr, char *buf)
{
struct kgsl_gpu_sysfs_attr *attr = container_of(__attr,
struct kgsl_gpu_sysfs_attr, attr);
struct kgsl_device *device = container_of(kobj,
struct kgsl_device, gpu_sysfs_kobj);
if (attr->show)
return attr->show(device, buf);
return -EIO;
}
static ssize_t kgsl_gpu_sysfs_attr_store(struct kobject *kobj,
struct attribute *__attr, const char *buf, size_t count)
{
struct kgsl_gpu_sysfs_attr *attr = container_of(__attr,
struct kgsl_gpu_sysfs_attr, attr);
struct kgsl_device *device = container_of(kobj,
struct kgsl_device, gpu_sysfs_kobj);
if (attr->store)
return attr->store(device, buf, count);
return -EIO;
}
/* Dummy release function - we have nothing to do here */
static void kgsl_gpu_sysfs_release(struct kobject *kobj)
{
}
static const struct sysfs_ops kgsl_gpu_sysfs_ops = {
.show = kgsl_gpu_sysfs_attr_show,
.store = kgsl_gpu_sysfs_attr_store,
};
static struct kobj_type kgsl_gpu_sysfs_ktype = {
.sysfs_ops = &kgsl_gpu_sysfs_ops,
.release = kgsl_gpu_sysfs_release,
};
static int _register_device(struct kgsl_device *device)
{
static u64 dma_mask = DMA_BIT_MASK(64);
static struct device_dma_parameters dma_parms;
int minor, ret;
dev_t dev;
/* Find a minor for the device */
mutex_lock(&kgsl_driver.devlock);
for (minor = 0; minor < ARRAY_SIZE(kgsl_driver.devp); minor++) {
if (kgsl_driver.devp[minor] == NULL) {
kgsl_driver.devp[minor] = device;
break;
}
}
mutex_unlock(&kgsl_driver.devlock);
if (minor == ARRAY_SIZE(kgsl_driver.devp)) {
pr_err("kgsl: minor devices exhausted\n");
return -ENODEV;
}
/* Create the device */
dev = MKDEV(MAJOR(kgsl_driver.major), minor);
device->dev = device_create(kgsl_driver.class,
&device->pdev->dev,
dev, device,
device->name);
if (IS_ERR(device->dev)) {
mutex_lock(&kgsl_driver.devlock);
kgsl_driver.devp[minor] = NULL;
mutex_unlock(&kgsl_driver.devlock);
ret = PTR_ERR(device->dev);
pr_err("kgsl: device_create(%s): %d\n", device->name, ret);
return ret;
}
device->dev->dma_mask = &dma_mask;
device->dev->dma_parms = &dma_parms;
dma_set_max_seg_size(device->dev, DMA_BIT_MASK(32));
set_dma_ops(device->dev, NULL);
WARN_ON(kobject_init_and_add(&device->gpu_sysfs_kobj, &kgsl_gpu_sysfs_ktype,
kernel_kobj, "gpu"));
return 0;
}
int kgsl_request_irq(struct platform_device *pdev, const char *name,
irq_handler_t handler, void *data)
{
int ret, num = platform_get_irq_byname(pdev, name);
if (num < 0)
return num;
ret = devm_request_irq(&pdev->dev, num, handler, IRQF_TRIGGER_HIGH,
name, data);
if (ret) {
dev_err(&pdev->dev, "Unable to get interrupt %s: %d\n",
name, ret);
return ret;
}
disable_irq(num);
return num;
}
int kgsl_request_irq_optional(struct platform_device *pdev, const char *name,
irq_handler_t handler, void *data)
{
int ret, num = platform_get_irq_byname_optional(pdev, name);
if (num < 0)
return num;
ret = devm_request_irq(&pdev->dev, num, handler, IRQF_TRIGGER_HIGH,
name, data);
if (ret) {
dev_err(&pdev->dev, "Unable to get interrupt %s: %d\n",
name, ret);
return ret;
}
disable_irq(num);
return num;
}
int kgsl_of_property_read_ddrtype(struct device_node *node, const char *base,
u32 *ptr)
{
char str[32];
int ddr = of_fdt_get_ddrtype();
/* of_fdt_get_ddrtype returns error if the DDR type isn't determined */
if (ddr >= 0) {
int ret;
/* Construct expanded string for the DDR type */
ret = snprintf(str, sizeof(str), "%s-ddr%d", base, ddr);
/* WARN_ON() if the array size was too small for the string */
if (WARN_ON(ret > sizeof(str)))
return -ENOMEM;
/* Read the expanded string */
if (!of_property_read_u32(node, str, ptr))
return 0;
}
/* Read the default string */
return of_property_read_u32(node, base, ptr);
}
int kgsl_device_platform_probe(struct kgsl_device *device)
{
struct platform_device *pdev = device->pdev;
int status = -EINVAL;
status = _register_device(device);
if (status)
return status;
/* Can return -EPROBE_DEFER */
status = kgsl_pwrctrl_init(device);
if (status)
goto error;
device->events_worker = kthread_create_worker(0, "kgsl-events");
if (IS_ERR(device->events_worker)) {
status = PTR_ERR(device->events_worker);
dev_err(device->dev, "Failed to create events worker ret=%d\n", status);
goto error_pwrctrl_close;
}
sched_set_fifo(device->events_worker->task);
status = kgsl_reclaim_init();
if (status)
goto error_pwrctrl_close;
rwlock_init(&device->context_lock);
spin_lock_init(&device->submit_lock);
idr_init(&device->timelines);
spin_lock_init(&device->timelines_lock);
kgsl_device_debugfs_init(device);
dma_set_coherent_mask(&pdev->dev, KGSL_DMA_BIT_MASK);
/* Set up the GPU events for the device */
kgsl_device_events_probe(device);
/* Initialize common sysfs entries */
kgsl_pwrctrl_init_sysfs(device);
timer_setup(&device->work_period_timer, kgsl_work_period_timer, 0);
spin_lock_init(&device->work_period_lock);
INIT_WORK(&device->work_period_ws, _log_gpu_work_events);
return 0;
error_pwrctrl_close:
if (!IS_ERR(device->events_worker))
kthread_destroy_worker(device->events_worker);
kgsl_pwrctrl_close(device);
error:
_unregister_device(device);
return status;
}
void kgsl_device_platform_remove(struct kgsl_device *device)
{
del_timer(&device->work_period_timer);
kthread_destroy_worker(device->events_worker);
kgsl_device_snapshot_close(device);
idr_destroy(&device->context_idr);
idr_destroy(&device->timelines);
kgsl_device_events_remove(device);
kgsl_free_globals(device);
kgsl_pwrctrl_close(device);
kgsl_device_debugfs_close(device);
_unregister_device(device);
}
void kgsl_core_exit(void)
{
kgsl_exit_page_pools();
kgsl_eventlog_exit();
if (kgsl_driver.workqueue) {
destroy_workqueue(kgsl_driver.workqueue);
kgsl_driver.workqueue = NULL;
}
if (kgsl_driver.lockless_workqueue) {
destroy_workqueue(kgsl_driver.lockless_workqueue);
kgsl_driver.lockless_workqueue = NULL;
}
kgsl_events_exit();
kgsl_core_debugfs_close();
kgsl_reclaim_close();
/*
* We call device_unregister()
* only if kgsl_driver.virtdev has been populated.
* We check at least one member of kgsl_driver.virtdev to
* see if it is not NULL (and thus, has been populated).
*/
if (kgsl_driver.virtdev.class)
device_unregister(&kgsl_driver.virtdev);
if (kgsl_driver.class) {
class_destroy(kgsl_driver.class);
kgsl_driver.class = NULL;
}
kgsl_drawobjs_cache_exit();
kfree(memfree.list);
memset(&memfree, 0, sizeof(memfree));
unregister_chrdev_region(kgsl_driver.major,
ARRAY_SIZE(kgsl_driver.devp));
sysstats_unregister_kgsl_stats_cb();
}
int __init kgsl_core_init(void)
{
int result = 0;
KGSL_BOOT_MARKER("KGSL Init");
/* alloc major and minor device numbers */
result = alloc_chrdev_region(&kgsl_driver.major, 0,
ARRAY_SIZE(kgsl_driver.devp), "kgsl");
if (result < 0) {
pr_err("kgsl: alloc_chrdev_region failed err = %d\n", result);
goto err;
}
cdev_init(&kgsl_driver.cdev, &kgsl_fops);
kgsl_driver.cdev.owner = THIS_MODULE;
kgsl_driver.cdev.ops = &kgsl_fops;
result = cdev_add(&kgsl_driver.cdev, MKDEV(MAJOR(kgsl_driver.major), 0),
ARRAY_SIZE(kgsl_driver.devp));
if (result) {
pr_err("kgsl: cdev_add() failed, dev_num= %d,result= %d\n",
kgsl_driver.major, result);
goto err;
}
kgsl_driver.class = class_create(THIS_MODULE, "kgsl");
if (IS_ERR(kgsl_driver.class)) {
result = PTR_ERR(kgsl_driver.class);
pr_err("kgsl: failed to create class for kgsl\n");
goto err;
}
/*
* Make a virtual device for managing core related things
* in sysfs
*/
kgsl_driver.virtdev.class = kgsl_driver.class;
dev_set_name(&kgsl_driver.virtdev, "kgsl");
result = device_register(&kgsl_driver.virtdev);
if (result) {
put_device(&kgsl_driver.virtdev);
pr_err("kgsl: driver_register failed\n");
goto err;
}
/* Make kobjects in the virtual device for storing statistics */
kgsl_driver.ptkobj =
kobject_create_and_add("pagetables",
&kgsl_driver.virtdev.kobj);
kgsl_driver.prockobj =
kobject_create_and_add("proc",
&kgsl_driver.virtdev.kobj);
kgsl_core_debugfs_init();
kgsl_sharedmem_init_sysfs();
/* Initialize the memory pools */
kgsl_probe_page_pools();
kgsl_register_shmem_callback();
INIT_LIST_HEAD(&kgsl_driver.process_list);
INIT_LIST_HEAD(&kgsl_driver.pagetable_list);
INIT_LIST_HEAD(&kgsl_driver.wp_list);
kgsl_driver.workqueue = alloc_workqueue("kgsl-workqueue",
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
if (!kgsl_driver.workqueue) {
pr_err("kgsl: Failed to allocate kgsl workqueue\n");
result = -ENOMEM;
goto err;
}
/*
* The lockless workqueue is used to perform work which doesn't need to
* take the device mutex
*/
kgsl_driver.lockless_workqueue = alloc_workqueue("kgsl-lockless-work",
WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
if (!kgsl_driver.lockless_workqueue) {
pr_err("kgsl: Failed to allocate lockless workqueue\n");
result = -ENOMEM;
goto err;
}
kgsl_eventlog_init();
kgsl_events_init();
result = kgsl_drawobjs_cache_init();
if (result)
goto err;
memfree.list = kcalloc(MEMFREE_ENTRIES, sizeof(struct memfree_entry),
GFP_KERNEL);
sysstats_register_kgsl_stats_cb(kgsl_get_stats);
KGSL_BOOT_MARKER("KGSL Ready");
return 0;
err:
kgsl_core_exit();
return result;
}