android_kernel_samsung_sm86.../qcom/opensource/graphics-kernel/adreno_gen8_snapshot.c
David Wronek 880d405719 Add 'qcom/opensource/graphics-kernel/' from commit 'b4fdc4c04295ac59109ae19d64747522740c3f14'
git-subtree-dir: qcom/opensource/graphics-kernel
git-subtree-mainline: 992813d9c1
git-subtree-split: b4fdc4c042
Change-Id:
repo: https://git.codelinaro.org/clo/la/platform/vendor/qcom/opensource/graphics-kernel
tag: GRAPHICS.LA.14.0.r1-07700-lanai.0
2024-10-06 16:44:56 +02:00

1803 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include "adreno.h"
#include "adreno_gen8_3_0_snapshot.h"
#include "adreno_snapshot.h"
static struct kgsl_memdesc *gen8_capturescript;
static struct kgsl_memdesc *gen8_crashdump_registers;
static u32 *gen8_cd_reg_end;
static const struct gen8_snapshot_block_list *gen8_snapshot_block_list;
static bool gen8_crashdump_timedout;
/* Starting kernel virtual address for QDSS TMC register block */
static void __iomem *tmc_virt;
const struct gen8_snapshot_block_list gen8_3_0_snapshot_block_list = {
.pre_crashdumper_regs = gen8_3_0_ahb_registers,
.num_pre_crashdumper_regs = ARRAY_SIZE(gen8_3_0_ahb_registers),
.debugbus_blocks = gen8_3_0_debugbus_blocks,
.debugbus_blocks_len = ARRAY_SIZE(gen8_3_0_debugbus_blocks),
.gbif_debugbus_blocks = gen8_gbif_debugbus_blocks,
.gbif_debugbus_blocks_len = ARRAY_SIZE(gen8_gbif_debugbus_blocks),
.cx_debugbus_blocks = gen8_cx_debugbus_blocks,
.cx_debugbus_blocks_len = ARRAY_SIZE(gen8_cx_debugbus_blocks),
.external_core_regs = gen8_3_0_external_core_regs,
.num_external_core_regs = ARRAY_SIZE(gen8_3_0_external_core_regs),
.gmu_cx_unsliced_regs = gen8_3_0_gmu_registers,
.gmu_gx_regs = gen8_3_0_gmu_gx_regs,
.num_gmu_gx_regs = ARRAY_SIZE(gen8_3_0_gmu_gx_regs),
.rscc_regs = gen8_3_0_rscc_rsc_registers,
.reg_list = gen8_3_0_reg_list,
.cx_misc_regs = gen8_3_0_cx_misc_registers,
.shader_blocks = gen8_3_0_shader_blocks,
.num_shader_blocks = ARRAY_SIZE(gen8_3_0_shader_blocks),
.cp_clusters = gen8_3_0_cp_clusters,
.num_cp_clusters = ARRAY_SIZE(gen8_3_0_cp_clusters),
.clusters = gen8_3_0_mvc_clusters,
.num_clusters = ARRAY_SIZE(gen8_3_0_mvc_clusters),
.sptp_clusters = gen8_3_0_sptp_clusters,
.num_sptp_clusters = ARRAY_SIZE(gen8_3_0_sptp_clusters),
.index_registers = gen8_3_0_cp_indexed_reg_list,
.index_registers_len = ARRAY_SIZE(gen8_3_0_cp_indexed_reg_list),
.mempool_index_registers = gen8_3_0_cp_mempool_reg_list,
.mempool_index_registers_len = ARRAY_SIZE(gen8_3_0_cp_mempool_reg_list),
};
#define GEN8_SP_READ_SEL_VAL(_sliceid, _location, _pipe, _statetype, _usptp, _sptp) \
(FIELD_PREP(GENMASK(25, 21), _sliceid) | \
FIELD_PREP(GENMASK(20, 18), _location) | \
FIELD_PREP(GENMASK(17, 16), _pipe) | \
FIELD_PREP(GENMASK(15, 8), _statetype) | \
FIELD_PREP(GENMASK(7, 4), _usptp) | \
FIELD_PREP(GENMASK(3, 0), _sptp))
#define GEN8_CP_APERTURE_REG_VAL(_sliceid, _pipe, _cluster, _context) \
(FIELD_PREP(GENMASK(23, 23), 1) | \
FIELD_PREP(GENMASK(18, 16), _sliceid) | \
FIELD_PREP(GENMASK(15, 12), _pipe) | \
FIELD_PREP(GENMASK(11, 8), _cluster) | \
FIELD_PREP(GENMASK(5, 4), _context))
#define GEN8_DEBUGBUS_SECTION_SIZE (sizeof(struct kgsl_snapshot_debugbus) \
+ (GEN8_DEBUGBUS_BLOCK_SIZE << 3))
#define CD_REG_END 0xaaaaaaaa
static u32 CD_WRITE(u64 *ptr, u32 offset, u64 val)
{
ptr[0] = val;
ptr[1] = FIELD_PREP(GENMASK(63, 44), offset) | BIT(21) | BIT(0);
return 2;
}
static u32 CD_READ(u64 *ptr, u32 offset, u32 size, u64 target)
{
ptr[0] = target;
ptr[1] = FIELD_PREP(GENMASK(63, 44), offset) | size;
return 2;
}
static void CD_FINISH(u64 *ptr, u32 offset)
{
gen8_cd_reg_end = gen8_crashdump_registers->hostptr + offset;
*gen8_cd_reg_end = CD_REG_END;
ptr[0] = gen8_crashdump_registers->gpuaddr + offset;
ptr[1] = FIELD_PREP(GENMASK(63, 44), GEN8_CP_CRASH_DUMP_STATUS) | BIT(0);
ptr[2] = 0;
ptr[3] = 0;
}
static bool CD_SCRIPT_CHECK(struct kgsl_device *device)
{
return (adreno_smmu_is_stalled(ADRENO_DEVICE(device)) ||
(!device->snapshot_crashdumper) ||
IS_ERR_OR_NULL(gen8_capturescript) ||
IS_ERR_OR_NULL(gen8_crashdump_registers) ||
gen8_crashdump_timedout);
}
static bool _gen8_do_crashdump(struct kgsl_device *device)
{
u32 reg = 0;
ktime_t timeout;
if (CD_SCRIPT_CHECK(device))
return false;
kgsl_regwrite(device, GEN8_CP_CRASH_DUMP_SCRIPT_BASE_LO,
lower_32_bits(gen8_capturescript->gpuaddr));
kgsl_regwrite(device, GEN8_CP_CRASH_DUMP_SCRIPT_BASE_HI,
upper_32_bits(gen8_capturescript->gpuaddr));
kgsl_regwrite(device, GEN8_CP_CRASH_DUMP_CNTL, 1);
timeout = ktime_add_ms(ktime_get(), CP_CRASH_DUMPER_TIMEOUT);
if (!device->snapshot_atomic)
might_sleep();
for (;;) {
/* make sure we're reading the latest value */
rmb();
if ((*gen8_cd_reg_end) != CD_REG_END)
break;
if (ktime_compare(ktime_get(), timeout) > 0)
break;
/* Wait 1msec to avoid unnecessary looping */
if (!device->snapshot_atomic)
usleep_range(100, 1000);
}
kgsl_regread(device, GEN8_CP_CRASH_DUMP_STATUS, &reg);
/*
* Writing to the GEN8_CP_CRASH_DUMP_CNTL also resets the
* GEN8_CP_CRASH_DUMP_STATUS. Make sure the read above is
* complete before we change the value
*/
rmb();
kgsl_regwrite(device, GEN8_CP_CRASH_DUMP_CNTL, 0);
if (WARN(!(reg & 0x2), "Crashdumper timed out\n")) {
/*
* Gen7 crash dumper script is broken down into multiple chunks
* and script will be invoked multiple times to capture snapshot
* of different sections of GPU. If crashdumper fails once, it is
* highly likely it will fail subsequently as well. Hence update
* gen8_crashdump_timedout variable to avoid running crashdumper
* after it fails once.
*/
gen8_crashdump_timedout = true;
return false;
}
return true;
}
size_t gen8_legacy_snapshot_registers(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
struct gen8_reg_list_info *info = (struct gen8_reg_list_info *)priv;
const u32 *ptr = info->regs->regs;
struct kgsl_snapshot_mvc_regs_v3 *header =
(struct kgsl_snapshot_mvc_regs_v3 *)buf;
u32 *data = (u32 *)(buf + sizeof(*header));
u32 size = (adreno_snapshot_regs_count(ptr) * sizeof(*data)) + sizeof(*header);
u32 count, k;
if (remain < size) {
SNAPSHOT_ERR_NOMEM(device, "REGISTERS");
return 0;
}
header->ctxt_id = 0;
header->cluster_id = CLUSTER_NONE;
header->pipe_id = PIPE_NONE;
header->location_id = UINT_MAX;
header->sp_id = UINT_MAX;
header->usptp_id = UINT_MAX;
header->slice_id = info->slice_id;
if (info->regs->sel)
kgsl_regwrite(device, info->regs->sel->host_reg, info->regs->sel->val);
if (info->regs->slice_region)
kgsl_regwrite(device, GEN8_CP_APERTURE_CNTL_HOST, GEN8_CP_APERTURE_REG_VAL
(info->slice_id, 0, 0, 0));
/* Make sure the previous writes are posted before reading */
mb();
for (ptr = info->regs->regs; ptr[0] != UINT_MAX; ptr += 2) {
count = REG_COUNT(ptr);
if (count == 1)
*data++ = ptr[0];
else {
*data++ = ptr[0] | (1 << 31);
*data++ = ptr[1];
}
for (k = ptr[0]; k <= ptr[1]; k++)
kgsl_regread(device, k, data++);
}
return size;
}
static size_t gen8_snapshot_registers(struct kgsl_device *device, u8 *buf,
size_t remain, void *priv)
{
struct gen8_reg_list_info *info = (struct gen8_reg_list_info *)priv;
const u32 *ptr = info->regs->regs;
struct kgsl_snapshot_mvc_regs_v3 *header =
(struct kgsl_snapshot_mvc_regs_v3 *)buf;
u32 *data = (u32 *)(buf + sizeof(*header));
u32 *src;
u32 cnt;
u32 size = (adreno_snapshot_regs_count(ptr) * sizeof(*data)) + sizeof(*header);
if (remain < size) {
SNAPSHOT_ERR_NOMEM(device, "REGISTERS");
return 0;
}
header->ctxt_id = 0;
header->cluster_id = CLUSTER_NONE;
header->pipe_id = PIPE_NONE;
header->location_id = UINT_MAX;
header->sp_id = UINT_MAX;
header->usptp_id = UINT_MAX;
header->slice_id = info->slice_id;
src = gen8_crashdump_registers->hostptr + info->offset;
for (ptr = info->regs->regs; ptr[0] != UINT_MAX; ptr += 2) {
cnt = REG_COUNT(ptr);
if (cnt == 1)
*data++ = ptr[0];
else {
*data++ = BIT(31) | ptr[0];
*data++ = ptr[1];
}
memcpy(data, src, cnt << 2);
data += cnt;
src += cnt;
}
/* Return the size of the section */
return size;
}
static size_t gen8_legacy_snapshot_shader(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
struct kgsl_snapshot_shader_v3 *header =
(struct kgsl_snapshot_shader_v3 *) buf;
struct gen8_shader_block_info *info = (struct gen8_shader_block_info *) priv;
struct gen8_shader_block *block = info->block;
u32 *data = (u32 *)(buf + sizeof(*header));
u32 read_sel, i;
if (remain < (sizeof(*header) + (block->size << 2))) {
SNAPSHOT_ERR_NOMEM(device, "SHADER MEMORY");
return 0;
}
header->type = block->statetype;
header->slice_id = info->slice_id;
header->sp_index = info->sp_id;
header->usptp = info->usptp;
header->pipe_id = block->pipeid;
header->location = block->location;
header->ctxt_id = 1;
header->size = block->size;
read_sel = GEN8_SP_READ_SEL_VAL(info->slice_id, block->location, block->pipeid,
block->statetype, info->usptp, info->sp_id);
kgsl_regwrite(device, GEN8_SP_READ_SEL, read_sel);
/*
* An explicit barrier is needed so that reads do not happen before
* the register write.
*/
mb();
for (i = 0; i < block->size; i++)
data[i] = kgsl_regmap_read(&device->regmap, GEN8_SP_AHB_READ_APERTURE + i);
return (sizeof(*header) + (block->size << 2));
}
static size_t gen8_snapshot_shader_memory(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
struct kgsl_snapshot_shader_v3 *header =
(struct kgsl_snapshot_shader_v3 *) buf;
struct gen8_shader_block_info *info = (struct gen8_shader_block_info *) priv;
struct gen8_shader_block *block = info->block;
u32 *data = (u32 *) (buf + sizeof(*header));
if (remain < (sizeof(*header) + (block->size << 2))) {
SNAPSHOT_ERR_NOMEM(device, "SHADER MEMORY");
return 0;
}
header->type = block->statetype;
header->slice_id = info->slice_id;
header->sp_index = info->sp_id;
header->usptp = info->usptp;
header->pipe_id = block->pipeid;
header->location = block->location;
header->ctxt_id = 1;
header->size = block->size;
memcpy(data, gen8_crashdump_registers->hostptr + info->offset,
(block->size << 2));
return (sizeof(*header) + (block->size << 2));
}
static void qdss_regwrite(void __iomem *regbase, u32 offsetbytes, u32 value)
{
void __iomem *reg;
reg = regbase + offsetbytes;
/* Ensure previous write is committed */
wmb();
__raw_writel(value, reg);
}
static u32 qdss_regread(void __iomem *regbase, u32 offsetbytes)
{
void __iomem *reg;
u32 val;
reg = regbase + offsetbytes;
val = __raw_readl(reg);
/* Make sure memory is updated before next access */
rmb();
return val;
}
static size_t gen8_snapshot_trace_buffer_gfx_trace(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
u32 start_idx = 0, status = 0, count = 0, wrap_count = 0, write_ptr = 0;
struct kgsl_snapshot_trace_buffer *header =
(struct kgsl_snapshot_trace_buffer *) buf;
u32 *data = (u32 *)(buf + sizeof(*header));
struct gen8_trace_buffer_info *info =
(struct gen8_trace_buffer_info *) priv;
if (remain < SZ_2K + sizeof(*header)) {
SNAPSHOT_ERR_NOMEM(device, "TRACE 2K BUFFER");
return 0;
}
memcpy(header->ping_blk, info->ping_blk, sizeof(header->ping_blk));
memcpy(header->ping_idx, info->ping_idx, sizeof(header->ping_idx));
header->granularity = info->granularity;
header->segment = info->segment;
header->dbgc_ctrl = info->dbgc_ctrl;
/* Read the status of trace buffer to determine if it's full or empty */
kgsl_regread(device, GEN8_DBGC_TRACE_BUFFER_STATUS, &status);
/*
* wrap_count and write ptr are part of status.
* if status is 0 => wrap_count = 0 and write ptr = 0 buffer is empty.
* if status is non zero and wrap count is 0 read partial buffer.
* if wrap count in non zero read entier 2k buffer.
* Always read the oldest data available.
*/
/* if status is 0 then buffer is empty */
if (!status) {
header->size = 0;
return sizeof(*header);
}
/* Number of times the circular buffer has wrapped around */
wrap_count = FIELD_GET(GENMASK(31, 12), status);
write_ptr = FIELD_GET(GENMASK(8, 0), status);
/* Read partial buffer starting from 0 */
if (!wrap_count) {
/* No of dwords to read : (write ptr - 0) of indexed register */
count = write_ptr;
header->size = count << 2;
start_idx = 0;
} else {
/* Read entire 2k buffer starting from write ptr */
start_idx = write_ptr + 1;
count = SZ_512;
header->size = SZ_2K;
}
kgsl_regmap_read_indexed_interleaved(&device->regmap,
GEN8_DBGC_DBG_TRACE_BUFFER_RD_ADDR, GEN8_DBGC_DBG_TRACE_BUFFER_RD_DATA, data,
start_idx, count);
return (sizeof(*header) + header->size);
}
static size_t gen8_snapshot_trace_buffer_etb(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
u32 read_ptr, count, write_ptr, val, idx = 0;
struct kgsl_snapshot_trace_buffer *header = (struct kgsl_snapshot_trace_buffer *) buf;
u32 *data = (u32 *)(buf + sizeof(*header));
struct gen8_trace_buffer_info *info = (struct gen8_trace_buffer_info *) priv;
/* Unlock ETB buffer */
qdss_regwrite(tmc_virt, QDSS_AOSS_APB_TMC_LAR, 0xC5ACCE55);
/* Make sure unlock goes through before proceeding further */
mb();
/* Flush the QDSS pipeline to ensure completion of pending write to buffer */
val = qdss_regread(tmc_virt, QDSS_AOSS_APB_TMC_FFCR);
qdss_regwrite(tmc_virt, QDSS_AOSS_APB_TMC_FFCR, val | 0x40);
/* Make sure pipeline is flushed before we get read and write pointers */
mb();
/* Disable ETB */
qdss_regwrite(tmc_virt, QDSS_AOSS_APB_TMC_CTRL, 0);
/* Set to circular mode */
qdss_regwrite(tmc_virt, QDSS_AOSS_APB_TMC_MODE, 0);
/* Ensure buffer is set to circular mode before accessing it */
mb();
/* Size of buffer is specified in register TMC_RSZ */
count = qdss_regread(tmc_virt, QDSS_AOSS_APB_TMC_RSZ) << 2;
read_ptr = qdss_regread(tmc_virt, QDSS_AOSS_APB_TMC_RRP);
write_ptr = qdss_regread(tmc_virt, QDSS_AOSS_APB_TMC_RWP);
/* ETB buffer if full read_ptr will be equal to write_ptr else write_ptr leads read_ptr */
count = (read_ptr == write_ptr) ? count : (write_ptr - read_ptr);
if (remain < count + sizeof(*header)) {
SNAPSHOT_ERR_NOMEM(device, "ETB BUFFER");
return 0;
}
/*
* Read pointer is 4 byte aligned and write pointer is 2 byte aligned
* We read 4 bytes of data in one iteration below so aligin it down
* to 4 bytes.
*/
count = ALIGN_DOWN(count, 4);
header->size = count;
header->dbgc_ctrl = info->dbgc_ctrl;
memcpy(header->ping_blk, info->ping_blk, sizeof(header->ping_blk));
memcpy(header->ping_idx, info->ping_idx, sizeof(header->ping_idx));
header->granularity = info->granularity;
header->segment = info->segment;
while (count != 0) {
/* This indexed register auto increments index as we read */
data[idx++] = qdss_regread(tmc_virt, QDSS_AOSS_APB_TMC_RRD);
count = count - 4;
}
return (sizeof(*header) + header->size);
}
static void gen8_snapshot_trace_buffer(struct kgsl_device *device,
struct kgsl_snapshot *snapshot)
{
u32 val_tmc_ctrl = 0, val_etr_ctrl = 0, val_etr1_ctrl = 0;
u32 i = 0, sel_gx = 0, sel_cx = 0, val_gx = 0, val_cx = 0, val = 0;
struct gen8_trace_buffer_info info;
struct resource *res1, *res2;
struct clk *clk;
int ret;
void __iomem *etr_virt;
/*
* Data can be collected from CX_DBGC or DBGC and it's mutually exclusive.
* Read the necessary select registers and determine the source of data.
* This loop reads SEL_A to SEL_D of both CX_DBGC and DBGC and accordingly
* updates the header information of trace buffer section.
*/
for (i = 0; i < TRACE_BUF_NUM_SIG; i++) {
kgsl_regread(device, GEN8_DBGC_CFG_DBGBUS_SEL_A + i, &sel_gx);
kgsl_regread(device, GEN8_CX_DBGC_CFG_DBGBUS_SEL_A + i, &sel_cx);
val_gx |= sel_gx;
val_cx |= sel_cx;
info.ping_idx[i] = FIELD_GET(GENMASK(7, 0), (sel_gx | sel_cx));
info.ping_blk[i] = FIELD_GET(GENMASK(24, 16), (sel_gx | sel_cx));
}
/* Zero the header if not programmed to export any buffer */
if (!val_gx && !val_cx) {
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_TRACE_BUFFER,
snapshot, NULL, &info);
return;
}
/* Enable APB clock to read data from trace buffer */
clk = clk_get(&device->pdev->dev, "apb_pclk");
if (IS_ERR(clk)) {
dev_err(device->dev, "Unable to get QDSS clock\n");
return;
}
ret = clk_prepare_enable(clk);
if (ret) {
dev_err(device->dev, "QDSS Clock enable error: %d\n", ret);
clk_put(clk);
return;
}
res1 = platform_get_resource_byname(device->pdev, IORESOURCE_MEM, "qdss_etr");
res2 = platform_get_resource_byname(device->pdev, IORESOURCE_MEM, "qdss_tmc");
if (!res1 || !res2)
goto err_clk_put;
etr_virt = ioremap(res1->start, resource_size(res1));
tmc_virt = ioremap(res2->start, resource_size(res2));
if (!etr_virt || !tmc_virt)
goto err_unmap;
/*
* Update header information based on source of data, read necessary CNTLT registers
* for granularity and segment information.
*/
if (val_gx) {
info.dbgc_ctrl = GX_DBGC;
kgsl_regread(device, GEN8_DBGC_CFG_DBGBUS_CNTLT, &val);
} else {
info.dbgc_ctrl = CX_DBGC;
kgsl_regread(device, GEN8_CX_DBGC_CFG_DBGBUS_CNTLT, &val);
}
info.granularity = FIELD_GET(GENMASK(14, 12), val);
info.segment = FIELD_GET(GENMASK(31, 28), val);
val_tmc_ctrl = qdss_regread(tmc_virt, QDSS_AOSS_APB_TMC_CTRL);
/*
* Incase TMC CTRL is 0 and val_cx is non zero dump empty buffer.
* Incase TMC CTRL is 0 and val_gx is non zero dump 2k gfx buffer.
* 2k buffer is not present for CX blocks.
* Incase both ETR's CTRL is 0 Dump ETB QDSS buffer and disable QDSS.
* Incase either ETR's CTRL is 1 Disable QDSS dumping ETB buffer to DDR.
*/
if (!val_tmc_ctrl) {
if (val_gx)
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_TRACE_BUFFER,
snapshot, gen8_snapshot_trace_buffer_gfx_trace, &info);
else
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_TRACE_BUFFER,
snapshot, NULL, &info);
} else {
val_etr_ctrl = qdss_regread(etr_virt, QDSS_AOSS_APB_ETR_CTRL);
val_etr1_ctrl = qdss_regread(etr_virt, QDSS_AOSS_APB_ETR1_CTRL);
if (!val_etr_ctrl && !val_etr1_ctrl)
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_TRACE_BUFFER,
snapshot, gen8_snapshot_trace_buffer_etb, &info);
qdss_regwrite(tmc_virt, QDSS_AOSS_APB_TMC_CTRL, 0);
}
err_unmap:
iounmap(tmc_virt);
iounmap(etr_virt);
err_clk_put:
clk_disable_unprepare(clk);
clk_put(clk);
}
static void gen8_snapshot_shader(struct kgsl_device *device,
struct kgsl_snapshot *snapshot)
{
struct gen8_shader_block_info info = {0};
u64 *ptr;
u32 offset = 0;
struct gen8_shader_block *shader_blocks = gen8_snapshot_block_list->shader_blocks;
size_t num_shader_blocks = gen8_snapshot_block_list->num_shader_blocks;
u32 i, sp, usptp, slice;
size_t (*func)(struct kgsl_device *device, u8 *buf, size_t remain,
void *priv) = gen8_legacy_snapshot_shader;
if (CD_SCRIPT_CHECK(device)) {
for (i = 0; i < num_shader_blocks; i++) {
struct gen8_shader_block *block = &shader_blocks[i];
for (slice = 0; slice < block->num_slices; slice++) {
for (sp = 0; sp < block->num_sps; sp++) {
for (usptp = 0; usptp < block->num_usptps; usptp++) {
info.block = block;
info.sp_id = sp;
info.usptp = usptp;
info.slice_id = slice;
info.offset = offset;
offset += block->size << 2;
/* Shader working/shadow memory */
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_SHADER_V3,
snapshot, func, &info);
}
}
}
}
return;
}
for (i = 0; i < num_shader_blocks; i++) {
struct gen8_shader_block *block = &shader_blocks[i];
/* Build the crash script */
ptr = gen8_capturescript->hostptr;
offset = 0;
for (slice = 0; slice < block->num_slices; slice++) {
for (sp = 0; sp < block->num_sps; sp++) {
for (usptp = 0; usptp < block->num_usptps; usptp++) {
/* Program the aperture */
ptr += CD_WRITE(ptr, GEN8_SP_READ_SEL,
GEN8_SP_READ_SEL_VAL(slice, block->location,
block->pipeid, block->statetype, usptp, sp));
/* Read all the data in one chunk */
ptr += CD_READ(ptr, GEN8_SP_AHB_READ_APERTURE, block->size,
gen8_crashdump_registers->gpuaddr + offset);
offset += block->size << 2;
}
}
}
/* Marker for end of script */
CD_FINISH(ptr, offset);
/* Try to run the crash dumper */
func = gen8_legacy_snapshot_shader;
if (_gen8_do_crashdump(device))
func = gen8_snapshot_shader_memory;
offset = 0;
for (slice = 0; slice < block->num_slices; slice++) {
for (sp = 0; sp < block->num_sps; sp++) {
for (usptp = 0; usptp < block->num_usptps; usptp++) {
info.block = block;
info.sp_id = sp;
info.usptp = usptp;
info.slice_id = slice;
info.offset = offset;
offset += block->size << 2;
/* Shader working/shadow memory */
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_SHADER_V3, snapshot, func, &info);
}
}
}
}
}
static void gen8_rmw_aperture(struct kgsl_device *device,
u32 offsetwords, u32 mask, u32 val, u32 pipe, u32 slice_id, u32 use_slice_id)
{
gen8_host_aperture_set(ADRENO_DEVICE(device), pipe, slice_id, use_slice_id);
kgsl_regmap_rmw(&device->regmap, offsetwords, mask, val);
}
static void gen8_snapshot_mempool(struct kgsl_device *device,
struct kgsl_snapshot *snapshot)
{
struct gen8_cp_indexed_reg *cp_indexed_reg;
size_t mempool_index_registers_len = gen8_snapshot_block_list->mempool_index_registers_len;
u32 i, j, slice;
for (i = 0; i < mempool_index_registers_len; i++) {
cp_indexed_reg = &gen8_snapshot_block_list->mempool_index_registers[i];
slice = NUMBER_OF_SLICES(cp_indexed_reg->slice_region);
for (j = 0; j < slice; j++) {
/* set CP_CHICKEN_DBG[StabilizeMVC] to stabilize it while dumping */
gen8_rmw_aperture(device, GEN8_CP_CHICKEN_DBG_PIPE, 0x4, 0x4,
cp_indexed_reg->pipe_id, 0, 0);
gen8_rmw_aperture(device, GEN8_CP_SLICE_CHICKEN_DBG_PIPE, 0x4, 0x4,
cp_indexed_reg->pipe_id, j, 1);
kgsl_snapshot_indexed_registers_v2(device, snapshot,
cp_indexed_reg->addr, cp_indexed_reg->data,
0, cp_indexed_reg->size, cp_indexed_reg->pipe_id,
SLICE_ID(cp_indexed_reg->slice_region, j));
/* Reset CP_CHICKEN_DBG[StabilizeMVC] once we are done */
gen8_rmw_aperture(device, GEN8_CP_CHICKEN_DBG_PIPE, 0x4, 0x0,
cp_indexed_reg->pipe_id, 0, 0);
gen8_rmw_aperture(device, GEN8_CP_SLICE_CHICKEN_DBG_PIPE, 0x4, 0x0,
cp_indexed_reg->pipe_id, j, 1);
}
}
/* Clear aperture register */
gen8_host_aperture_set(ADRENO_DEVICE(device), 0, 0, 0);
}
static u32 gen8_read_dbgahb(struct kgsl_device *device,
u32 regbase, u32 reg)
{
u32 val;
kgsl_regread(device, (GEN8_SP_AHB_READ_APERTURE + reg - regbase), &val);
return val;
}
static size_t gen8_legacy_snapshot_cluster_dbgahb(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
struct kgsl_snapshot_mvc_regs_v3 *header =
(struct kgsl_snapshot_mvc_regs_v3 *)buf;
struct gen8_sptp_cluster_registers_info *info =
(struct gen8_sptp_cluster_registers_info *)priv;
const u32 *ptr = info->cluster->regs;
u32 *data = (u32 *)(buf + sizeof(*header));
u32 read_sel, j;
u32 size = adreno_snapshot_regs_count(ptr) * sizeof(*data);
if (remain < (sizeof(*header) + size)) {
SNAPSHOT_ERR_NOMEM(device, "MVC REGISTERS");
return 0;
}
header->ctxt_id = info->context_id;
header->cluster_id = info->cluster_id;
header->pipe_id = info->pipe_id;
header->location_id = info->location_id;
header->sp_id = info->sp_id;
header->usptp_id = info->usptp_id;
header->slice_id = info->slice_id;
read_sel = GEN8_SP_READ_SEL_VAL(info->slice_id, info->location_id,
info->pipe_id, info->statetype_id, info->usptp_id, info->sp_id);
kgsl_regwrite(device, GEN8_SP_READ_SEL, read_sel);
/*
* An explicit barrier is needed so that reads do not happen before
* the register write.
*/
mb();
for (; ptr[0] != UINT_MAX; ptr += 2) {
u32 count = REG_COUNT(ptr);
if (count == 1)
*data++ = ptr[0];
else {
*data++ = ptr[0] | (1 << 31);
*data++ = ptr[1];
}
for (j = ptr[0]; j <= ptr[1]; j++)
*data++ = gen8_read_dbgahb(device, info->cluster->regbase, j);
}
return (size + sizeof(*header));
}
static size_t gen8_snapshot_cluster_dbgahb(struct kgsl_device *device, u8 *buf,
size_t remain, void *priv)
{
struct kgsl_snapshot_mvc_regs_v3 *header =
(struct kgsl_snapshot_mvc_regs_v3 *)buf;
struct gen8_sptp_cluster_registers_info *info =
(struct gen8_sptp_cluster_registers_info *)priv;
const u32 *ptr = info->cluster->regs;
u32 *data = (u32 *)(buf + sizeof(*header));
u32 *src;
u32 size = adreno_snapshot_regs_count(ptr) * sizeof(*data);
if (remain < (sizeof(*header) + size)) {
SNAPSHOT_ERR_NOMEM(device, "REGISTERS");
return 0;
}
header->ctxt_id = info->context_id;
header->cluster_id = info->cluster_id;
header->pipe_id = info->pipe_id;
header->location_id = info->location_id;
header->sp_id = info->sp_id;
header->usptp_id = info->usptp_id;
header->slice_id = info->slice_id;
src = gen8_crashdump_registers->hostptr + info->offset;
for (ptr = info->cluster->regs; ptr[0] != UINT_MAX; ptr += 2) {
u32 cnt = REG_COUNT(ptr);
if (cnt == 1)
*data++ = ptr[0];
else {
*data++ = ptr[0] | (1 << 31);
*data++ = ptr[1];
}
memcpy(data, src, cnt << 2);
data += cnt;
src += cnt;
}
return (size + sizeof(*header));
}
static void gen8_snapshot_dbgahb_regs(struct kgsl_device *device,
struct kgsl_snapshot *snapshot)
{
u32 i, j, sp, usptp, count, slice;
u64 *ptr, offset = 0;
struct gen8_sptp_cluster_registers_info info = {0};
struct gen8_sptp_cluster_registers *sptp_clusters = gen8_snapshot_block_list->sptp_clusters;
size_t num_sptp_clusters = gen8_snapshot_block_list->num_sptp_clusters;
size_t (*func)(struct kgsl_device *device, u8 *buf, size_t remain,
void *priv) = gen8_legacy_snapshot_cluster_dbgahb;
if (CD_SCRIPT_CHECK(device)) {
for (i = 0; i < num_sptp_clusters; i++) {
struct gen8_sptp_cluster_registers *cluster = &sptp_clusters[i];
slice = NUMBER_OF_SLICES(cluster->slice_region);
for (sp = 0; sp < cluster->num_sps; sp++) {
for (usptp = 0; usptp < cluster->num_usptps; usptp++) {
for (j = 0; j < slice; j++) {
info.cluster = cluster;
info.location_id = cluster->location_id;
info.pipe_id = cluster->pipe_id;
info.usptp_id = usptp;
info.sp_id = sp;
info.slice_id = SLICE_ID(cluster->slice_region, j);
info.statetype_id = cluster->statetype;
info.cluster_id = cluster->cluster_id;
info.context_id = cluster->context_id;
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_MVC_V3, snapshot,
func, &info);
}
}
}
}
return;
}
for (i = 0; i < num_sptp_clusters; i++) {
struct gen8_sptp_cluster_registers *cluster = &sptp_clusters[i];
slice = NUMBER_OF_SLICES(cluster->slice_region);
cluster->offset = offset;
for (sp = 0; sp < cluster->num_sps; sp++) {
for (usptp = 0; usptp < cluster->num_usptps; usptp++) {
for (j = 0; j < slice; j++) {
const u32 *regs = cluster->regs;
info.cluster = cluster;
info.location_id = cluster->location_id;
info.pipe_id = cluster->pipe_id;
info.usptp_id = usptp;
info.sp_id = sp;
info.slice_id = SLICE_ID(cluster->slice_region, j);
info.statetype_id = cluster->statetype;
info.cluster_id = cluster->cluster_id;
info.context_id = cluster->context_id;
info.offset = offset;
/* Build the crash script */
ptr = gen8_capturescript->hostptr;
/* Program the aperture */
ptr += CD_WRITE(ptr, GEN8_SP_READ_SEL, GEN8_SP_READ_SEL_VAL
(j, cluster->location_id, cluster->pipe_id,
cluster->statetype, usptp, sp));
for (; regs[0] != UINT_MAX; regs += 2) {
count = REG_COUNT(regs);
ptr += CD_READ(ptr, (GEN8_SP_AHB_READ_APERTURE +
regs[0] - cluster->regbase), count,
(gen8_crashdump_registers->gpuaddr +
offset));
offset += count * sizeof(u32);
}
/* Marker for end of script */
CD_FINISH(ptr, offset);
func = gen8_legacy_snapshot_cluster_dbgahb;
/* Try to run the crash dumper */
if (_gen8_do_crashdump(device))
func = gen8_snapshot_cluster_dbgahb;
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_MVC_V3, snapshot,
func, &info);
}
}
}
}
}
static size_t gen8_legacy_snapshot_mvc(struct kgsl_device *device, u8 *buf,
size_t remain, void *priv)
{
struct kgsl_snapshot_mvc_regs_v3 *header =
(struct kgsl_snapshot_mvc_regs_v3 *)buf;
u32 *data = (u32 *)(buf + sizeof(*header));
struct gen8_cluster_registers_info *info =
(struct gen8_cluster_registers_info *)priv;
const u32 *ptr = info->cluster->regs;
u32 size = adreno_snapshot_regs_count(ptr) * sizeof(*data);
u32 j;
if (remain < (sizeof(*header) + size)) {
SNAPSHOT_ERR_NOMEM(device, "MVC REGISTERS");
return 0;
}
header->ctxt_id = (info->context_id == STATE_FORCE_CTXT_1) ? 1 : 0;
header->cluster_id = info->cluster_id;
header->pipe_id = info->pipe_id;
header->location_id = UINT_MAX;
header->sp_id = UINT_MAX;
header->usptp_id = UINT_MAX;
header->slice_id = info->slice_id;
/*
* Set the AHB control for the Host to read from the
* cluster/context for this iteration.
*/
kgsl_regwrite(device, GEN8_CP_APERTURE_CNTL_HOST, GEN8_CP_APERTURE_REG_VAL
(info->slice_id, info->pipe_id, info->cluster_id, info->context_id));
if (info->cluster->sel)
kgsl_regwrite(device, info->cluster->sel->host_reg, info->cluster->sel->val);
/* Make sure the previous writes are posted before reading */
mb();
for (; ptr[0] != UINT_MAX; ptr += 2) {
u32 count = REG_COUNT(ptr);
if (count == 1)
*data++ = ptr[0];
else {
*data++ = ptr[0] | (1 << 31);
*data++ = ptr[1];
}
for (j = ptr[0]; j <= ptr[1]; j++)
kgsl_regread(device, j, data++);
}
return (size + sizeof(*header));
}
static size_t gen8_snapshot_mvc(struct kgsl_device *device, u8 *buf,
size_t remain, void *priv)
{
struct kgsl_snapshot_mvc_regs_v3 *header =
(struct kgsl_snapshot_mvc_regs_v3 *)buf;
struct gen8_cluster_registers_info *info =
(struct gen8_cluster_registers_info *)priv;
const u32 *ptr = info->cluster->regs;
u32 *data = (u32 *)(buf + sizeof(*header));
u32 *src;
u32 cnt;
u32 size = adreno_snapshot_regs_count(ptr) * sizeof(*data);
if (remain < (sizeof(*header) + size)) {
SNAPSHOT_ERR_NOMEM(device, "MVC REGISTERS");
return 0;
}
header->ctxt_id = (info->context_id == STATE_FORCE_CTXT_1) ? 1 : 0;
header->cluster_id = info->cluster_id;
header->pipe_id = info->pipe_id;
header->location_id = UINT_MAX;
header->sp_id = UINT_MAX;
header->usptp_id = UINT_MAX;
header->slice_id = info->slice_id;
src = gen8_crashdump_registers->hostptr + info->offset;
for (; ptr[0] != UINT_MAX; ptr += 2) {
cnt = REG_COUNT(ptr);
if (cnt == 1)
*data++ = ptr[0];
else {
*data++ = ptr[0] | (1 << 31);
*data++ = ptr[1];
}
memcpy(data, src, cnt << 2);
src += cnt;
data += cnt;
}
return (size + sizeof(*header));
}
static void gen8_snapshot_mvc_regs(struct kgsl_device *device,
struct kgsl_snapshot *snapshot,
struct gen8_cluster_registers *clusters,
size_t num_cluster)
{
u32 i, j;
u64 *ptr, offset = 0;
u32 count, slice;
struct gen8_cluster_registers_info info = {0};
size_t (*func)(struct kgsl_device *device, u8 *buf,
size_t remain, void *priv) = gen8_legacy_snapshot_mvc;
if (CD_SCRIPT_CHECK(device)) {
for (i = 0; i < num_cluster; i++) {
struct gen8_cluster_registers *cluster = &clusters[i];
slice = NUMBER_OF_SLICES(cluster->slice_region);
for (j = 0; j < slice; j++) {
info.cluster = cluster;
info.pipe_id = cluster->pipe_id;
info.cluster_id = cluster->cluster_id;
info.context_id = cluster->context_id;
info.slice_id = SLICE_ID(cluster->slice_region, j);
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_MVC_V3, snapshot, func, &info);
}
}
return;
}
for (i = 0; i < num_cluster; i++) {
struct gen8_cluster_registers *cluster = &clusters[i];
slice = NUMBER_OF_SLICES(cluster->slice_region);
cluster->offset = offset;
for (j = 0; j < slice; j++) {
const u32 *regs = cluster->regs;
info.cluster = cluster;
info.pipe_id = cluster->pipe_id;
info.cluster_id = cluster->cluster_id;
info.context_id = cluster->context_id;
info.slice_id = SLICE_ID(cluster->slice_region, j);
info.offset = offset;
/* Build the crash script */
ptr = gen8_capturescript->hostptr;
ptr += CD_WRITE(ptr, GEN8_CP_APERTURE_CNTL_CD, GEN8_CP_APERTURE_REG_VAL
(j, cluster->pipe_id, cluster->cluster_id, cluster->context_id));
if (cluster->sel)
ptr += CD_WRITE(ptr, cluster->sel->cd_reg, cluster->sel->val);
for (; regs[0] != UINT_MAX; regs += 2) {
count = REG_COUNT(regs);
ptr += CD_READ(ptr, regs[0],
count, (gen8_crashdump_registers->gpuaddr + offset));
offset += count * sizeof(u32);
}
/* Marker for end of script */
CD_FINISH(ptr, offset);
func = gen8_legacy_snapshot_mvc;
/* Try to run the crash dumper */
if (_gen8_do_crashdump(device))
func = gen8_snapshot_mvc;
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_MVC_V3, snapshot, func, &info);
}
}
}
/* gen8_dbgc_debug_bus_read() - Read data from trace bus */
static void gen8_dbgc_debug_bus_read(struct kgsl_device *device,
u32 block_id, u32 index, u32 *val)
{
u32 reg;
reg = FIELD_PREP(GENMASK(7, 0), index) |
FIELD_PREP(GENMASK(24, 16), block_id);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_SEL_A, reg);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_SEL_B, reg);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_SEL_C, reg);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_SEL_D, reg);
/*
* There needs to be a delay of 1 us to ensure enough time for correct
* data is funneled into the trace buffer
*/
udelay(1);
kgsl_regread(device, GEN8_DBGC_CFG_DBGBUS_TRACE_BUF2, val);
val++;
kgsl_regread(device, GEN8_DBGC_CFG_DBGBUS_TRACE_BUF1, val);
}
/* gen8_snapshot_dbgc_debugbus_block() - Capture debug data for a gpu block */
static size_t gen8_snapshot_dbgc_debugbus_block(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
struct kgsl_snapshot_debugbus *header =
(struct kgsl_snapshot_debugbus *)buf;
const u32 *block = priv;
u32 i;
u32 *data = (u32 *)(buf + sizeof(*header));
if (remain < GEN8_DEBUGBUS_SECTION_SIZE) {
SNAPSHOT_ERR_NOMEM(device, "DEBUGBUS");
return 0;
}
header->id = *block;
header->count = GEN8_DEBUGBUS_BLOCK_SIZE * 2;
for (i = 0; i < GEN8_DEBUGBUS_BLOCK_SIZE; i++)
gen8_dbgc_debug_bus_read(device, *block, i, &data[i*2]);
return GEN8_DEBUGBUS_SECTION_SIZE;
}
static void gen8_dbgc_side_debug_bus_read(struct kgsl_device *device,
u32 block_id, u32 index, u32 *val)
{
u32 reg = FIELD_PREP(GENMASK(7, 0), index) |
FIELD_PREP(GENMASK(24, 16), block_id);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_SEL_A, reg);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_SEL_B, reg);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_SEL_C, reg);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_SEL_D, reg);
/*
* There needs to be a delay of 1 us to ensure enough time for correct
* data is funneled into the trace buffer
*/
udelay(1);
reg = kgsl_regmap_read(&device->regmap, GEN8_DBGC_CFG_DBGBUS_OVER);
*val = FIELD_GET(GENMASK(27, 24), reg);
}
static size_t gen8_snapshot_dbgc_side_debugbus_block(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
struct kgsl_snapshot_side_debugbus *header =
(struct kgsl_snapshot_side_debugbus *)buf;
const u32 *block = priv;
int i;
u32 *data = (u32 *)(buf + sizeof(*header));
size_t size = (GEN8_DEBUGBUS_BLOCK_SIZE * sizeof(u32)) + sizeof(*header);
if (remain < size) {
SNAPSHOT_ERR_NOMEM(device, "DEBUGBUS");
return 0;
}
header->id = *block;
header->size = GEN8_DEBUGBUS_BLOCK_SIZE;
header->valid_data = 0x4;
for (i = 0; i < GEN8_DEBUGBUS_BLOCK_SIZE; i++)
gen8_dbgc_side_debug_bus_read(device, *block, i, &data[i]);
return size;
}
/* gen8_cx_dbgc_debug_bus_read() - Read data from trace bus */
static void gen8_cx_debug_bus_read(struct kgsl_device *device,
u32 block_id, u32 index, u32 *val)
{
u32 reg = FIELD_PREP(GENMASK(7, 0), index) |
FIELD_PREP(GENMASK(24, 16), block_id);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_SEL_A, reg);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_SEL_B, reg);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_SEL_C, reg);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_SEL_D, reg);
/*
* There needs to be a delay of 1 us to ensure enough time for correct
* data is funneled into the trace buffer
*/
udelay(1);
kgsl_regread(device, GEN8_CX_DBGC_CFG_DBGBUS_TRACE_BUF2, val);
val++;
kgsl_regread(device, GEN8_CX_DBGC_CFG_DBGBUS_TRACE_BUF1, val);
}
/*
* gen8_snapshot_cx_dbgc_debugbus_block() - Capture debug data for a gpu
* block from the CX DBGC block
*/
static size_t gen8_snapshot_cx_dbgc_debugbus_block(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
struct kgsl_snapshot_debugbus *header =
(struct kgsl_snapshot_debugbus *)buf;
const u32 *block = priv;
int i;
u32 *data = (u32 *)(buf + sizeof(*header));
if (remain < GEN8_DEBUGBUS_SECTION_SIZE) {
SNAPSHOT_ERR_NOMEM(device, "DEBUGBUS");
return 0;
}
header->id = *block;
header->count = GEN8_DEBUGBUS_BLOCK_SIZE * 2;
for (i = 0; i < GEN8_DEBUGBUS_BLOCK_SIZE; i++)
gen8_cx_debug_bus_read(device, *block, i, &data[i*2]);
return GEN8_DEBUGBUS_SECTION_SIZE;
}
/* gen8_cx_side_dbgc_debug_bus_read() - Read data from trace bus */
static void gen8_cx_side_debug_bus_read(struct kgsl_device *device,
u32 block_id, u32 index, u32 *val)
{
u32 reg = FIELD_PREP(GENMASK(7, 0), index) |
FIELD_PREP(GENMASK(24, 16), block_id);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_SEL_A, reg);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_SEL_B, reg);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_SEL_C, reg);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_SEL_D, reg);
/*
* There needs to be a delay of 1 us to ensure enough time for correct
* data is funneled into the trace buffer
*/
udelay(1);
kgsl_regread(device, GEN8_CX_DBGC_CFG_DBGBUS_OVER, &reg);
*val = FIELD_GET(GENMASK(27, 24), reg);
}
/*
* gen8_snapshot_cx_dbgc_debugbus_block() - Capture debug data for a gpu
* block from the CX DBGC block
*/
static size_t gen8_snapshot_cx_side_dbgc_debugbus_block(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
struct kgsl_snapshot_side_debugbus *header =
(struct kgsl_snapshot_side_debugbus *)buf;
const u32 *block = priv;
int i;
u32 *data = (u32 *)(buf + sizeof(*header));
size_t size = (GEN8_DEBUGBUS_BLOCK_SIZE * sizeof(u32)) + sizeof(*header);
if (remain < size) {
SNAPSHOT_ERR_NOMEM(device, "DEBUGBUS");
return 0;
}
header->id = *block;
header->size = GEN8_DEBUGBUS_BLOCK_SIZE;
header->valid_data = 0x4;
for (i = 0; i < GEN8_DEBUGBUS_BLOCK_SIZE; i++)
gen8_cx_side_debug_bus_read(device, *block, i, &data[i]);
return size;
}
static void gen8_snapshot_cx_debugbus(struct adreno_device *adreno_dev,
struct kgsl_snapshot *snapshot)
{
u32 i;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_CNTLT,
FIELD_PREP(GENMASK(31, 28), 0xf));
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_CNTLM,
FIELD_PREP(GENMASK(27, 24), 0xf));
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_IVTL_0, 0);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_IVTL_1, 0);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_IVTL_2, 0);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_IVTL_3, 0);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_BYTEL_0,
FIELD_PREP(GENMASK(3, 0), 0x0) |
FIELD_PREP(GENMASK(7, 4), 0x1) |
FIELD_PREP(GENMASK(11, 8), 0x2) |
FIELD_PREP(GENMASK(15, 12), 0x3) |
FIELD_PREP(GENMASK(19, 16), 0x4) |
FIELD_PREP(GENMASK(23, 20), 0x5) |
FIELD_PREP(GENMASK(27, 24), 0x6) |
FIELD_PREP(GENMASK(31, 28), 0x7));
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_BYTEL_1,
FIELD_PREP(GENMASK(3, 0), 0x8) |
FIELD_PREP(GENMASK(7, 4), 0x9) |
FIELD_PREP(GENMASK(11, 8), 0xa) |
FIELD_PREP(GENMASK(15, 12), 0xb) |
FIELD_PREP(GENMASK(19, 16), 0xc) |
FIELD_PREP(GENMASK(23, 20), 0xd) |
FIELD_PREP(GENMASK(27, 24), 0xe) |
FIELD_PREP(GENMASK(31, 28), 0xf));
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_MASKL_0, 0);
kgsl_regwrite(device, GEN8_CX_DBGC_CFG_DBGBUS_MASKL_1, 0);
/* Dump the CX debugbus data if the block exists */
if (!kgsl_regmap_valid_offset(&device->regmap, GEN8_CX_DBGC_CFG_DBGBUS_SEL_A))
return;
for (i = 0; i < gen8_snapshot_block_list->cx_debugbus_blocks_len; i++) {
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_DEBUGBUS,
snapshot, gen8_snapshot_cx_dbgc_debugbus_block,
(void *) &gen8_snapshot_block_list->cx_debugbus_blocks[i]);
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_SIDE_DEBUGBUS,
snapshot, gen8_snapshot_cx_side_dbgc_debugbus_block,
(void *) &gen8_snapshot_block_list->cx_debugbus_blocks[i]);
}
}
/* gen8_snapshot_debugbus() - Capture debug bus data */
static void gen8_snapshot_debugbus(struct adreno_device *adreno_dev,
struct kgsl_snapshot *snapshot)
{
u32 i;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_CNTLT,
FIELD_PREP(GENMASK(31, 28), 0xf));
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_CNTLM,
FIELD_PREP(GENMASK(27, 24), 0xf));
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_IVTL_0, 0);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_IVTL_1, 0);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_IVTL_2, 0);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_IVTL_3, 0);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_BYTEL_0,
FIELD_PREP(GENMASK(3, 0), 0x0) |
FIELD_PREP(GENMASK(7, 4), 0x1) |
FIELD_PREP(GENMASK(11, 8), 0x2) |
FIELD_PREP(GENMASK(15, 12), 0x3) |
FIELD_PREP(GENMASK(19, 16), 0x4) |
FIELD_PREP(GENMASK(23, 20), 0x5) |
FIELD_PREP(GENMASK(27, 24), 0x6) |
FIELD_PREP(GENMASK(31, 28), 0x7));
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_BYTEL_1,
FIELD_PREP(GENMASK(3, 0), 0x8) |
FIELD_PREP(GENMASK(7, 4), 0x9) |
FIELD_PREP(GENMASK(11, 8), 0xa) |
FIELD_PREP(GENMASK(15, 12), 0xb) |
FIELD_PREP(GENMASK(19, 16), 0xc) |
FIELD_PREP(GENMASK(23, 20), 0xd) |
FIELD_PREP(GENMASK(27, 24), 0xe) |
FIELD_PREP(GENMASK(31, 28), 0xf));
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_MASKL_0, 0);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_MASKL_1, 0);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_MASKL_2, 0);
kgsl_regwrite(device, GEN8_DBGC_CFG_DBGBUS_MASKL_3, 0);
for (i = 0; i < gen8_snapshot_block_list->debugbus_blocks_len; i++) {
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_DEBUGBUS,
snapshot, gen8_snapshot_dbgc_debugbus_block,
(void *) &gen8_snapshot_block_list->debugbus_blocks[i]);
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_SIDE_DEBUGBUS,
snapshot, gen8_snapshot_dbgc_side_debugbus_block,
(void *) &gen8_snapshot_block_list->debugbus_blocks[i]);
}
for (i = 0; i < gen8_snapshot_block_list->gbif_debugbus_blocks_len; i++) {
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_DEBUGBUS,
snapshot, gen8_snapshot_dbgc_debugbus_block,
(void *) &gen8_snapshot_block_list->gbif_debugbus_blocks[i]);
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_SIDE_DEBUGBUS,
snapshot, gen8_snapshot_dbgc_side_debugbus_block,
(void *) &gen8_snapshot_block_list->gbif_debugbus_blocks[i]);
}
}
/* gen8_snapshot_sqe() - Dump SQE data in snapshot */
static size_t gen8_snapshot_sqe(struct kgsl_device *device, u8 *buf,
size_t remain, void *priv)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct kgsl_snapshot_debug *header = (struct kgsl_snapshot_debug *)buf;
u32 *data = (u32 *)(buf + sizeof(*header));
struct adreno_firmware *fw = ADRENO_FW(adreno_dev, ADRENO_FW_SQE);
if (remain < DEBUG_SECTION_SZ(GEN8_SQE_FW_SNAPSHOT_DWORDS)) {
SNAPSHOT_ERR_NOMEM(device, "SQE VERSION DEBUG");
return 0;
}
/* Dump the SQE firmware version */
header->type = SNAPSHOT_DEBUG_SQE_VERSION;
header->size = GEN8_SQE_FW_SNAPSHOT_DWORDS;
memcpy(data, fw->memdesc->hostptr, (GEN8_SQE_FW_SNAPSHOT_DWORDS * sizeof(u32)));
return DEBUG_SECTION_SZ(GEN8_SQE_FW_SNAPSHOT_DWORDS);
}
/* gen8_snapshot_aqe() - Dump AQE data in snapshot */
static size_t gen8_snapshot_aqe(struct kgsl_device *device, u8 *buf,
size_t remain, void *priv)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct kgsl_snapshot_debug *header = (struct kgsl_snapshot_debug *)buf;
u32 *data = (u32 *)(buf + sizeof(*header));
struct adreno_firmware *fw = ADRENO_FW(adreno_dev, ADRENO_FW_AQE);
if (!ADRENO_FEATURE(adreno_dev, ADRENO_AQE))
return 0;
if (remain < DEBUG_SECTION_SZ(1)) {
SNAPSHOT_ERR_NOMEM(device, "AQE VERSION DEBUG");
return 0;
}
/* Dump the AQE firmware version */
header->type = SNAPSHOT_DEBUG_AQE_VERSION;
header->size = 1;
*data = fw->version;
return DEBUG_SECTION_SZ(1);
}
/* Snapshot the preemption related buffers */
static size_t snapshot_preemption_record(struct kgsl_device *device,
u8 *buf, size_t remain, void *priv)
{
struct kgsl_memdesc *memdesc = priv;
struct kgsl_snapshot_gpu_object_v2 *header =
(struct kgsl_snapshot_gpu_object_v2 *)buf;
u8 *ptr = buf + sizeof(*header);
u64 ctxt_record_size = max_t(u64, GEN8_SNAPSHOT_CTXRECORD_SIZE_IN_BYTES,
device->snapshot_ctxt_record_size);
if (remain < (ctxt_record_size + sizeof(*header))) {
SNAPSHOT_ERR_NOMEM(device, "PREEMPTION RECORD");
return 0;
}
header->size = ctxt_record_size >> 2;
header->gpuaddr = memdesc->gpuaddr;
header->ptbase =
kgsl_mmu_pagetable_get_ttbr0(device->mmu.defaultpagetable);
header->type = SNAPSHOT_GPU_OBJECT_GLOBAL;
memcpy(ptr, memdesc->hostptr, ctxt_record_size);
return ctxt_record_size + sizeof(*header);
}
static void gen8_reglist_snapshot(struct kgsl_device *device,
struct kgsl_snapshot *snapshot)
{
u64 *ptr, offset = 0;
u32 i, j, r, slices;
struct gen8_reg_list *reg_list = gen8_snapshot_block_list->reg_list;
size_t (*func)(struct kgsl_device *device, u8 *buf, size_t remain,
void *priv) = gen8_legacy_snapshot_registers;
struct gen8_reg_list_info info = {0};
if (CD_SCRIPT_CHECK(device)) {
for (i = 0; reg_list[i].regs; i++) {
struct gen8_reg_list *regs = &reg_list[i];
slices = NUMBER_OF_SLICES(regs->slice_region);
for (j = 0; j < slices; j++) {
info.regs = regs;
info.slice_id = SLICE_ID(regs->slice_region, j);
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_MVC_V3,
snapshot, func, &info);
}
}
return;
}
for (i = 0; reg_list[i].regs; i++) {
struct gen8_reg_list *regs = &reg_list[i];
slices = NUMBER_OF_SLICES(regs->slice_region);
regs->offset = offset;
for (j = 0; j < slices; j++) {
const u32 *regs_ptr = regs->regs;
/* Build the crash script */
ptr = gen8_capturescript->hostptr;
ptr += CD_WRITE(ptr, GEN8_CP_APERTURE_CNTL_CD, GEN8_CP_APERTURE_REG_VAL
(j, 0, 0, 0));
/* Program the SEL_CNTL_CD register appropriately */
if (regs->sel)
ptr += CD_WRITE(ptr, regs->sel->cd_reg, regs->sel->val);
info.regs = regs;
info.slice_id = SLICE_ID(regs->slice_region, j);
info.offset = offset;
for (; regs_ptr[0] != UINT_MAX; regs_ptr += 2) {
r = REG_COUNT(regs_ptr);
ptr += CD_READ(ptr, regs_ptr[0], r,
(gen8_crashdump_registers->gpuaddr + offset));
offset += r * sizeof(u32);
}
/* Marker for end of script */
CD_FINISH(ptr, offset);
func = gen8_legacy_snapshot_registers;
/* Try to run the crash dumper */
if (_gen8_do_crashdump(device))
func = gen8_snapshot_registers;
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_MVC_V3,
snapshot, func, &info);
}
}
}
static size_t gen8_snapshot_cx_misc_registers(struct kgsl_device *device, u8 *buf,
size_t remain, void *priv)
{
const u32 *ptr = (u32 *)priv;
u32 *src, *data = (unsigned int *)buf;
size_t size = adreno_snapshot_regs_count(ptr) * sizeof(u32);
if (remain < size) {
SNAPSHOT_ERR_NOMEM(device, "CX_MISC REGISTERS");
return 0;
}
src = gen8_crashdump_registers->hostptr;
for (; ptr[0] != UINT_MAX; ptr += 2) {
u32 cnt = REG_COUNT(ptr);
if (cnt == 1)
*data++ = BIT(31) | ptr[0];
else {
*data++ = ptr[0];
*data++ = cnt;
}
memcpy(data, src, cnt << 2);
data += cnt;
src += cnt;
}
/* Return the size of the section */
return size;
}
static void gen8_cx_misc_regs_snapshot(struct kgsl_device *device,
struct kgsl_snapshot *snapshot)
{
u64 *ptr, offset = 0;
const u32 *regs_ptr = (const u32 *)gen8_snapshot_block_list->cx_misc_regs;
if (CD_SCRIPT_CHECK(device) || !gen8_gmu_rpmh_pwr_state_is_active(device)
|| !gen8_gmu_gx_is_on(ADRENO_DEVICE(device)))
goto legacy_snapshot;
/* Build the crash script */
ptr = (u64 *)gen8_capturescript->hostptr;
for (; regs_ptr[0] != UINT_MAX; regs_ptr += 2) {
u32 r = REG_COUNT(regs_ptr);
ptr += CD_READ(ptr, regs_ptr[0], r,
(gen8_crashdump_registers->gpuaddr + offset));
offset += r * sizeof(u32);
}
/* Marker for end of script */
CD_FINISH(ptr, offset);
/* Try to run the crash dumper */
if (_gen8_do_crashdump(device)) {
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_REGS_V2,
snapshot, gen8_snapshot_cx_misc_registers,
(void *)gen8_snapshot_block_list->cx_misc_regs);
return;
}
legacy_snapshot:
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_REGS_V2,
snapshot, adreno_snapshot_cx_misc_registers,
(void *)gen8_snapshot_block_list->cx_misc_regs);
}
void gen8_snapshot_external_core_regs(struct kgsl_device *device,
struct kgsl_snapshot *snapshot)
{
const u32 **external_core_regs;
u32 i, num_external_core_regs;
const struct adreno_gen8_core *gpucore = to_gen8_core(ADRENO_DEVICE(device));
gen8_snapshot_block_list = gpucore->gen8_snapshot_block_list;
external_core_regs = gen8_snapshot_block_list->external_core_regs;
num_external_core_regs = gen8_snapshot_block_list->num_external_core_regs;
for (i = 0; i < num_external_core_regs; i++)
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_REGS_V2,
snapshot, adreno_snapshot_registers_v2,
(void *) external_core_regs[i]);
}
/*
* gen8_snapshot() - GEN8 GPU snapshot function
* @adreno_dev: Device being snapshotted
* @snapshot: Pointer to the snapshot instance
*
* This is where all of the GEN8 specific bits and pieces are grabbed
* into the snapshot memory
*/
void gen8_snapshot(struct adreno_device *adreno_dev,
struct kgsl_snapshot *snapshot)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_ringbuffer *rb;
u32 i;
const struct adreno_gen8_core *gpucore = to_gen8_core(ADRENO_DEVICE(device));
int is_current_rt;
gen8_crashdump_timedout = false;
gen8_snapshot_block_list = gpucore->gen8_snapshot_block_list;
/* External registers are dumped in the beginning of gmu snapshot */
if (!gmu_core_isenabled(device))
gen8_snapshot_external_core_regs(device, snapshot);
gen8_cx_misc_regs_snapshot(device, snapshot);
gen8_snapshot_cx_debugbus(adreno_dev, snapshot);
if (!gen8_gmu_rpmh_pwr_state_is_active(device) ||
!gen8_gmu_gx_is_on(adreno_dev))
return;
/* SQE Firmware */
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_DEBUG,
snapshot, gen8_snapshot_sqe, NULL);
/* AQE Firmware */
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_DEBUG,
snapshot, gen8_snapshot_aqe, NULL);
gen8_snapshot_trace_buffer(device, snapshot);
gen8_snapshot_debugbus(adreno_dev, snapshot);
is_current_rt = rt_task(current);
if (is_current_rt)
sched_set_normal(current, 0);
gen8_regread64_aperture(device, GEN8_CP_IB1_BASE_LO_PIPE,
GEN8_CP_IB1_BASE_HI_PIPE, &snapshot->ib1base, PIPE_BR, 0, 0);
gen8_regread64_aperture(device, GEN8_CP_IB2_BASE_LO_PIPE,
GEN8_CP_IB2_BASE_HI_PIPE, &snapshot->ib2base, PIPE_BR, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB1_REM_SIZE_PIPE,
&snapshot->ib1size, PIPE_BR, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB2_REM_SIZE_PIPE,
&snapshot->ib2size, PIPE_BR, 0, 0);
if (ADRENO_FEATURE(adreno_dev, ADRENO_LPAC)) {
gen8_regread64_aperture(device, GEN8_CP_IB1_BASE_LO_PIPE,
GEN8_CP_IB1_BASE_HI_PIPE, &snapshot->ib1base_lpac, PIPE_LPAC, 0, 0);
gen8_regread64_aperture(device, GEN8_CP_IB2_BASE_LO_PIPE,
GEN8_CP_IB2_BASE_HI_PIPE, &snapshot->ib2base_lpac, PIPE_LPAC, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB1_REM_SIZE_PIPE,
&snapshot->ib1size_lpac, PIPE_LPAC, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB2_REM_SIZE_PIPE,
&snapshot->ib2size_lpac, PIPE_LPAC, 0, 0);
}
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
/* Assert the isStatic bit before triggering snapshot */
kgsl_regwrite(device, GEN8_RBBM_SNAPSHOT_STATUS, 0x1);
/* Dump the registers which get affected by crash dumper trigger */
for (i = 0; i < gen8_snapshot_block_list->num_pre_crashdumper_regs; i++) {
struct gen8_reg_list *regs = &gen8_snapshot_block_list->pre_crashdumper_regs[i];
struct gen8_reg_list_info info = {0};
u32 j, slices;
slices = NUMBER_OF_SLICES(regs->slice_region);
for (j = 0; j < slices; j++) {
info.regs = regs;
info.slice_id = SLICE_ID(regs->slice_region, j);
kgsl_snapshot_add_section(device, KGSL_SNAPSHOT_SECTION_MVC_V3,
snapshot, gen8_legacy_snapshot_registers, &info);
}
}
gen8_reglist_snapshot(device, snapshot);
for (i = 0; i < gen8_snapshot_block_list->index_registers_len; i++) {
kgsl_regwrite(device, GEN8_CP_APERTURE_CNTL_HOST, GEN8_CP_APERTURE_REG_VAL
(0, gen8_snapshot_block_list->index_registers[i].pipe_id, 0, 0));
kgsl_snapshot_indexed_registers_v2(device, snapshot,
gen8_snapshot_block_list->index_registers[i].addr,
gen8_snapshot_block_list->index_registers[i].data, 0,
gen8_snapshot_block_list->index_registers[i].size,
gen8_snapshot_block_list->index_registers[i].pipe_id, UINT_MAX);
}
/* Mempool debug data */
gen8_snapshot_mempool(device, snapshot);
/* CP MVC register section */
gen8_snapshot_mvc_regs(device, snapshot,
gen8_snapshot_block_list->cp_clusters, gen8_snapshot_block_list->num_cp_clusters);
/* MVC register section */
gen8_snapshot_mvc_regs(device, snapshot,
gen8_snapshot_block_list->clusters, gen8_snapshot_block_list->num_clusters);
/* registers dumped through DBG AHB */
gen8_snapshot_dbgahb_regs(device, snapshot);
/* Shader memory */
gen8_snapshot_shader(device, snapshot);
kgsl_regwrite(device, GEN8_RBBM_SNAPSHOT_STATUS, 0x0);
/* Preemption record */
if (adreno_is_preemption_enabled(adreno_dev)) {
FOR_EACH_RINGBUFFER(adreno_dev, rb, i) {
kgsl_snapshot_add_section(device,
KGSL_SNAPSHOT_SECTION_GPU_OBJECT_V2,
snapshot, snapshot_preemption_record,
rb->preemption_desc);
}
}
if (is_current_rt)
sched_set_fifo(current);
}
void gen8_crashdump_init(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
ret = adreno_allocate_global(device, &gen8_capturescript,
50 * PAGE_SIZE, 0, KGSL_MEMFLAGS_GPUREADONLY,
KGSL_MEMDESC_PRIVILEGED, "capturescript");
if (!ret)
ret = adreno_allocate_global(device, &gen8_crashdump_registers,
200 * PAGE_SIZE, 0, 0,
KGSL_MEMDESC_PRIVILEGED, "capturescript_regs");
if (ret)
dev_err(device->dev, "Failed to init crashdumper err = %d\n", ret);
}