android_kernel_samsung_sm86.../qcom/opensource/graphics-kernel/adreno_gen8.c
David Wronek 880d405719 Add 'qcom/opensource/graphics-kernel/' from commit 'b4fdc4c04295ac59109ae19d64747522740c3f14'
git-subtree-dir: qcom/opensource/graphics-kernel
git-subtree-mainline: 992813d9c1
git-subtree-split: b4fdc4c042
Change-Id:
repo: https://git.codelinaro.org/clo/la/platform/vendor/qcom/opensource/graphics-kernel
tag: GRAPHICS.LA.14.0.r1-07700-lanai.0
2024-10-06 16:44:56 +02:00

2778 lines
88 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_device.h>
#include <linux/regulator/consumer.h>
#include <linux/soc/qcom/llcc-qcom.h>
#include <soc/qcom/of_common.h>
#include "adreno.h"
#include "adreno_gen8.h"
#include "adreno_gen8_hwsched.h"
#include "adreno_pm4types.h"
#include "adreno_trace.h"
#include "kgsl_pwrscale.h"
#include "kgsl_trace.h"
#include "kgsl_util.h"
/* IFPC & Preemption static powerup restore list */
static const u32 gen8_3_0_pwrup_reglist[] = {
GEN8_UCHE_MODE_CNTL,
GEN8_UCHE_VARB_IDLE_TIMEOUT,
GEN8_UCHE_GBIF_GX_CONFIG,
GEN8_UCHE_CACHE_WAYS,
GEN8_UCHE_CCHE_MODE_CNTL,
GEN8_UCHE_CCHE_CACHE_WAYS,
GEN8_UCHE_CCHE_GC_GMEM_RANGE_MIN_LO,
GEN8_UCHE_CCHE_GC_GMEM_RANGE_MIN_HI,
GEN8_UCHE_WRITE_THRU_BASE_LO,
GEN8_UCHE_WRITE_THRU_BASE_HI,
GEN8_UCHE_TRAP_BASE_LO,
GEN8_UCHE_TRAP_BASE_HI,
GEN8_UCHE_CLIENT_PF,
GEN8_VSC_BIN_SIZE,
GEN8_RB_CMP_NC_MODE_CNTL,
GEN8_SP_HLSQ_TIMEOUT_THRESHOLD_DP,
GEN8_SP_HLSQ_GC_GMEM_RANGE_MIN_LO,
GEN8_SP_HLSQ_GC_GMEM_RANGE_MIN_HI,
GEN8_SP_READ_SEL,
};
/* IFPC only static powerup restore list */
static const u32 gen8_3_0_ifpc_pwrup_reglist[] = {
GEN8_RBBM_NC_MODE_CNTL,
GEN8_RBBM_SLICE_INTERFACE_HANG_INT_CNTL,
GEN8_RBBM_SLICE_NC_MODE_CNTL,
GEN8_SP_NC_MODE_CNTL,
GEN8_SP_CHICKEN_BITS_2,
GEN8_SP_CHICKEN_BITS_3,
GEN8_SP_PERFCTR_SHADER_MASK,
GEN8_TPL1_NC_MODE_CNTL,
GEN8_TPL1_DBG_ECO_CNTL,
GEN8_TPL1_DBG_ECO_CNTL1,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_1,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_2,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_3,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_4,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_5,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_6,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_7,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_8,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_9,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_10,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_11,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_12,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_13,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_14,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_15,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_16,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_17,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_18,
GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_19,
GEN8_CP_PROTECT_REG_GLOBAL,
GEN8_CP_PROTECT_REG_GLOBAL + 1,
GEN8_CP_PROTECT_REG_GLOBAL + 2,
GEN8_CP_PROTECT_REG_GLOBAL + 3,
GEN8_CP_PROTECT_REG_GLOBAL + 4,
GEN8_CP_PROTECT_REG_GLOBAL + 5,
GEN8_CP_PROTECT_REG_GLOBAL + 6,
GEN8_CP_PROTECT_REG_GLOBAL + 7,
GEN8_CP_PROTECT_REG_GLOBAL + 8,
GEN8_CP_PROTECT_REG_GLOBAL + 9,
GEN8_CP_PROTECT_REG_GLOBAL + 10,
GEN8_CP_PROTECT_REG_GLOBAL + 11,
GEN8_CP_PROTECT_REG_GLOBAL + 12,
GEN8_CP_PROTECT_REG_GLOBAL + 13,
GEN8_CP_PROTECT_REG_GLOBAL + 14,
GEN8_CP_PROTECT_REG_GLOBAL + 15,
GEN8_CP_PROTECT_REG_GLOBAL + 16,
GEN8_CP_PROTECT_REG_GLOBAL + 17,
GEN8_CP_PROTECT_REG_GLOBAL + 18,
GEN8_CP_PROTECT_REG_GLOBAL + 19,
GEN8_CP_PROTECT_REG_GLOBAL + 20,
GEN8_CP_PROTECT_REG_GLOBAL + 21,
GEN8_CP_PROTECT_REG_GLOBAL + 22,
GEN8_CP_PROTECT_REG_GLOBAL + 23,
GEN8_CP_PROTECT_REG_GLOBAL + 24,
GEN8_CP_PROTECT_REG_GLOBAL + 25,
GEN8_CP_PROTECT_REG_GLOBAL + 26,
GEN8_CP_PROTECT_REG_GLOBAL + 27,
GEN8_CP_PROTECT_REG_GLOBAL + 28,
GEN8_CP_PROTECT_REG_GLOBAL + 29,
GEN8_CP_PROTECT_REG_GLOBAL + 30,
GEN8_CP_PROTECT_REG_GLOBAL + 31,
GEN8_CP_PROTECT_REG_GLOBAL + 32,
GEN8_CP_PROTECT_REG_GLOBAL + 33,
GEN8_CP_PROTECT_REG_GLOBAL + 34,
GEN8_CP_PROTECT_REG_GLOBAL + 35,
GEN8_CP_PROTECT_REG_GLOBAL + 36,
GEN8_CP_PROTECT_REG_GLOBAL + 37,
GEN8_CP_PROTECT_REG_GLOBAL + 38,
GEN8_CP_PROTECT_REG_GLOBAL + 39,
GEN8_CP_PROTECT_REG_GLOBAL + 40,
GEN8_CP_PROTECT_REG_GLOBAL + 41,
GEN8_CP_PROTECT_REG_GLOBAL + 42,
GEN8_CP_PROTECT_REG_GLOBAL + 43,
GEN8_CP_PROTECT_REG_GLOBAL + 44,
GEN8_CP_PROTECT_REG_GLOBAL + 45,
GEN8_CP_PROTECT_REG_GLOBAL + 63,
};
static const struct gen8_pwrup_extlist gen8_3_0_pwrup_extlist[] = {
{ GEN8_CP_PROTECT_CNTL_PIPE, BIT(PIPE_BR) | BIT(PIPE_BV) },
{ GEN8_CP_PROTECT_REG_PIPE + 15, BIT(PIPE_BR) | BIT(PIPE_BV) },
{ GEN8_GRAS_TSEFE_DBG_ECO_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_GRAS_NC_MODE_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_GRAS_DBG_ECO_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_RB_CCU_CNTL, BIT(PIPE_BR)},
{ GEN8_RB_CCU_NC_MODE_CNTL, BIT(PIPE_BR)},
{ GEN8_RB_CMP_NC_MODE_CNTL, BIT(PIPE_BR)},
{ GEN8_RB_RESOLVE_PREFETCH_CNTL, BIT(PIPE_BR)},
{ GEN8_RB_CMP_DBG_ECO_CNTL, BIT(PIPE_BR)},
{ GEN8_RB_GC_GMEM_PROTECT, BIT(PIPE_BR)},
{ GEN8_RB_CONTEXT_SWITCH_GMEM_SAVE_RESTORE, BIT(PIPE_BR)},
{ GEN8_VPC_FLATSHADE_MODE_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_PC_CHICKEN_BITS_1, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_PC_CHICKEN_BITS_2, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_PC_CHICKEN_BITS_3, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_PC_CHICKEN_BITS_4, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_PC_AUTO_VERTEX_STRIDE, BIT(PIPE_BR) | BIT(PIPE_BV)},
{ GEN8_PC_VIS_STREAM_CNTL, BIT(PIPE_BR) | BIT(PIPE_BV)},
{ GEN8_PC_CONTEXT_SWITCH_STABILIZE_CNTL_1, BIT(PIPE_BR) | BIT(PIPE_BV)},
{ GEN8_VFD_CB_BV_THRESHOLD, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_VFD_CB_BR_THRESHOLD, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_VFD_CB_BUSY_REQ_CNT, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_VFD_CB_LP_REQ_CNT, BIT(PIPE_BV) | BIT(PIPE_BR)},
{ GEN8_VFD_DBG_ECO_CNTL, BIT(PIPE_BR) | BIT(PIPE_BV)},
};
struct gen8_nonctxt_overrides gen8_nc_overrides[] = {
{ GEN8_UCHE_MODE_CNTL, BIT(PIPE_NONE), 0, 0, 0, },
{ GEN8_UCHE_CACHE_WAYS, BIT(PIPE_NONE), 0, 0, 0, },
{ GEN8_UCHE_CLIENT_PF, BIT(PIPE_NONE), 0, 0, 0, },
{ GEN8_UCHE_DBG_ECO_CNTL_0, BIT(PIPE_NONE), 0, 0, 2, },
{ GEN8_UCHE_HW_DBG_CNTL, BIT(PIPE_NONE), 0, 0, 2, },
{ GEN8_UCHE_CCHE_HW_DBG_CNTL, BIT(PIPE_NONE), 0, 0, 2, },
{ GEN8_GRAS_NC_MODE_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_GRAS_DBG_ECO_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_RB_DBG_ECO_CNTL, BIT(PIPE_BR), 0, 0, 3, },
{ GEN8_RB_CCU_DBG_ECO_CNTL, BIT(PIPE_BR), 0, 0, 3, },
{ GEN8_RB_CCU_CNTL, BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_RB_CCU_NC_MODE_CNTL, BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_RB_SLICE_UFC_PREFETCH_CNTL, BIT(PIPE_BR), 0, 0, 3, },
{ GEN8_RB_SLICE_UFC_DBG_CNTL, BIT(PIPE_BR), 0, 0, 3, },
{ GEN8_RB_CMP_NC_MODE_CNTL, BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_RB_RESOLVE_PREFETCH_CNTL, BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_RB_CMP_DBG_ECO_CNTL, BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_RB_UFC_DBG_CNTL, BIT(PIPE_BR), 0, 0, 3, },
{ GEN8_PC_CHICKEN_BITS_1, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_PC_CHICKEN_BITS_2, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_PC_CHICKEN_BITS_3, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_PC_CHICKEN_BITS_4, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_PC_CHICKEN_BITS_5, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 2, },
{ GEN8_PC_DBG_ECO_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 3, },
{ GEN8_VFD_DBG_ECO_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_VFD_CB_BV_THRESHOLD, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_VFD_CB_BR_THRESHOLD, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_VFD_CB_LP_REQ_CNT, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_VFD_CB_BUSY_REQ_CNT, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_VPC_DBG_ECO_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 2, },
{ GEN8_VPC_DBG_ECO_CNTL_1, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 2, },
{ GEN8_VPC_DBG_ECO_CNTL_2, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 1, },
{ GEN8_VPC_DBG_ECO_CNTL_3, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 2, },
{ GEN8_VPC_FLATSHADE_MODE_CNTL, BIT(PIPE_BV) | BIT(PIPE_BR), 0, 0, 0, },
{ GEN8_SP_DBG_ECO_CNTL, BIT(PIPE_NONE), 0, 0, 1, },
{ GEN8_SP_NC_MODE_CNTL, BIT(PIPE_NONE), 0, 0, 0, },
{ GEN8_SP_CHICKEN_BITS, BIT(PIPE_NONE), 0, 0, 1, },
{ GEN8_SP_NC_MODE_CNTL_2, BIT(PIPE_NONE), 0, 0, 1, },
{ GEN8_SP_CHICKEN_BITS_1, BIT(PIPE_NONE), 0, 0, 0, },
{ GEN8_SP_CHICKEN_BITS_2, BIT(PIPE_NONE), 0, 0, 0, },
{ GEN8_SP_CHICKEN_BITS_3, BIT(PIPE_NONE), 0, 0, 0, },
{ GEN8_SP_CHICKEN_BITS_4, BIT(PIPE_NONE), 0, 0, 1, },
{ GEN8_SP_DISPATCH_CNTL, BIT(PIPE_NONE), 0, 0, 1, },
{ GEN8_SP_HLSQ_DBG_ECO_CNTL, BIT(PIPE_NONE), 0, 0, 1, },
{ GEN8_SP_DBG_CNTL, BIT(PIPE_NONE), 0, 0, 1, },
{ GEN8_TPL1_NC_MODE_CNTL, BIT(PIPE_NONE), 0, 0, 1, },
{ GEN8_TPL1_DBG_ECO_CNTL, BIT(PIPE_NONE), 0, 0, 0, },
{ GEN8_TPL1_DBG_ECO_CNTL1, BIT(PIPE_NONE), 0, 0, 0, },
{ 0 }
};
static int acd_calibrate_set(void *data, u64 val)
{
struct kgsl_device *device = data;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
u32 debug_val = (u32) val;
int ret;
mutex_lock(&device->mutex);
ret = adreno_active_count_get(adreno_dev);
if (ret)
goto err;
ret = gen8_hfi_send_set_value(adreno_dev, HFI_VALUE_DBG,
F_PWR_ACD_CALIBRATE, debug_val);
if (!ret)
gmu->acd_debug_val = debug_val;
adreno_active_count_put(adreno_dev);
err:
mutex_unlock(&device->mutex);
return ret;
}
static int acd_calibrate_get(void *data, u64 *val)
{
struct kgsl_device *device = data;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev);
*val = (u64) gmu->acd_debug_val;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(acd_cal_fops, acd_calibrate_get, acd_calibrate_set, "%llu\n");
static ssize_t nc_override_get(struct file *filep,
char __user *user_buf, size_t len, loff_t *off)
{
struct kgsl_device *device = (struct kgsl_device *) filep->private_data;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct gen8_device *gen8_dev = container_of(adreno_dev,
struct gen8_device, adreno_dev);
struct gen8_nonctxt_overrides *nc_overrides = gen8_dev->nc_overrides;
u32 i, max_size = PAGE_SIZE;
char *buf, *pos;
ssize_t size = 0;
if (!gen8_dev->nc_overrides_enabled || !nc_overrides)
return 0;
buf = kzalloc(max_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
pos = buf;
mutex_lock(&gen8_dev->nc_mutex);
/* Copy all assignments from list to str */
for (i = 0; nc_overrides[i].offset; i++) {
if (nc_overrides[i].set) {
len = scnprintf(pos, max_size, "0x%x:0x%8.8x\n",
nc_overrides[i].offset, nc_overrides[i].val);
/* If we run out of space len will be zero */
if (len == 0)
break;
max_size -= len;
pos += len;
}
}
mutex_unlock(&gen8_dev->nc_mutex);
size = simple_read_from_buffer(user_buf, len, off, buf, pos - buf);
kfree(buf);
return size;
}
static void nc_override_cb(struct adreno_device *adreno_dev, void *priv)
{
struct gen8_device *gen8_dev = container_of(adreno_dev, struct gen8_device, adreno_dev);
gen8_dev->nc_overrides_enabled = true;
/* Force to update and make new patched reglist */
adreno_dev->patch_reglist = false;
}
static ssize_t nc_override_set(struct file *filep,
const char __user *user_buf, size_t len, loff_t *off)
{
struct kgsl_device *device = (struct kgsl_device *) filep->private_data;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct gen8_device *gen8_dev = container_of(adreno_dev, struct gen8_device, adreno_dev);
struct gen8_nonctxt_overrides *nc_overrides = gen8_dev->nc_overrides;
u32 i, offset, val;
int ret = -EINVAL;
ssize_t size = 0;
char *buf;
if (!nc_overrides)
return 0;
if ((len >= PAGE_SIZE) || (len == 0))
return -EINVAL;
buf = kzalloc(len + 1, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
if (copy_from_user(buf, user_buf, len)) {
ret = -EFAULT;
goto err;
}
/* For sanity and parsing, ensure it is null terminated */
buf[len] = '\0';
size = sscanf(buf, "0x%x:0x%x", &offset, &val);
if (size == 0)
goto err;
size = 0;
mutex_lock(&gen8_dev->nc_mutex);
for (i = 0; nc_overrides[i].offset; i++) {
if (nc_overrides[i].offset == offset) {
nc_overrides[i].val = val;
nc_overrides[i].set = true;
size = len;
break;
}
}
mutex_unlock(&gen8_dev->nc_mutex);
if (size > 0) {
ret = adreno_power_cycle(ADRENO_DEVICE(device), nc_override_cb, NULL);
if (!ret)
ret = size;
}
err:
kfree(buf);
return ret;
}
static const struct file_operations nc_override_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = nc_override_get,
.write = nc_override_set,
.llseek = noop_llseek,
};
void gen8_cp_init_cmds(struct adreno_device *adreno_dev, u32 *cmds)
{
u32 i = 0, mask = 0;
/* Disable concurrent binning before sending CP init */
cmds[i++] = cp_type7_packet(CP_THREAD_CONTROL, 1);
cmds[i++] = BIT(27);
/* Use multiple HW contexts */
mask |= BIT(0);
/* Enable error detection */
mask |= BIT(1);
/* Set default reset state */
mask |= BIT(3);
/* Disable save/restore of performance counters across preemption */
mask |= BIT(6);
/* Enable the register init list with the spinlock */
mask |= BIT(8);
cmds[i++] = cp_type7_packet(CP_ME_INIT, 7);
/* Enabled ordinal mask */
cmds[i++] = mask;
cmds[i++] = 0x00000003; /* Set number of HW contexts */
cmds[i++] = 0x20000000; /* Enable error detection */
cmds[i++] = 0x00000002; /* Operation mode mask */
/* Register initialization list with spinlock */
cmds[i++] = lower_32_bits(adreno_dev->pwrup_reglist->gpuaddr);
cmds[i++] = upper_32_bits(adreno_dev->pwrup_reglist->gpuaddr);
/*
* Gen8 targets with concurrent binning are expected to have a dynamic
* power up list with triplets which contains the pipe id in it.
* Bit 31 of POWER_UP_REGISTER_LIST_LENGTH is reused here to let CP
* know if the power up contains the triplets. If
* REGISTER_INIT_LIST_WITH_SPINLOCK is set and bit 31 below is set,
* CP expects a dynamic list with triplets.
*/
cmds[i++] = BIT(31);
}
int gen8_fenced_write(struct adreno_device *adreno_dev, u32 offset,
u32 value, u32 mask)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
u32 status, i;
u64 ts1, ts2;
kgsl_regwrite(device, offset, value);
ts1 = gpudev->read_alwayson(adreno_dev);
for (i = 0; i < GMU_CORE_LONG_WAKEUP_RETRY_LIMIT; i++) {
/*
* Make sure the previous register write is posted before
* checking the fence status
*/
mb();
gmu_core_regread(device, GEN8_GMUAO_AHB_FENCE_STATUS, &status);
/*
* If !writedropped0/1, then the write to fenced register
* was successful
*/
if (!(status & mask))
break;
/* Wait a small amount of time before trying again */
udelay(GMU_CORE_WAKEUP_DELAY_US);
/* Try to write the fenced register again */
kgsl_regwrite(device, offset, value);
}
if (i < GMU_CORE_SHORT_WAKEUP_RETRY_LIMIT)
return 0;
if (i == GMU_CORE_LONG_WAKEUP_RETRY_LIMIT) {
ts2 = gpudev->read_alwayson(adreno_dev);
dev_err(device->dev,
"Timed out waiting %d usecs to write fenced register 0x%x, timestamps: %llx %llx\n",
i * GMU_CORE_WAKEUP_DELAY_US, offset, ts1, ts2);
return -ETIMEDOUT;
}
dev_info(device->dev,
"Waited %d usecs to write fenced register 0x%x\n",
i * GMU_CORE_WAKEUP_DELAY_US, offset);
return 0;
}
int gen8_init(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct gen8_device *gen8_dev = container_of(adreno_dev,
struct gen8_device, adreno_dev);
const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev);
u64 freq = gen8_core->gmu_hub_clk_freq;
adreno_dev->highest_bank_bit = gen8_core->highest_bank_bit;
adreno_dev->gmu_hub_clk_freq = freq ? freq : 150000000;
adreno_dev->ahb_timeout_val = adreno_get_ahb_timeout_val(adreno_dev,
gen8_core->noc_timeout_us);
adreno_dev->bcl_data = gen8_core->bcl_data;
adreno_dev->cooperative_reset = ADRENO_FEATURE(adreno_dev,
ADRENO_COOP_RESET);
/* If the memory type is DDR 4, override the existing configuration */
if (of_fdt_get_ddrtype() == 0x7)
adreno_dev->highest_bank_bit = 14;
gen8_crashdump_init(adreno_dev);
gen8_dev->nc_overrides = gen8_nc_overrides;
mutex_init(&gen8_dev->nc_mutex);
/* Debugfs node for noncontext registers override */
debugfs_create_file("nc_override", 0644, device->d_debugfs, device, &nc_override_fops);
return adreno_allocate_global(device, &adreno_dev->pwrup_reglist,
PAGE_SIZE, 0, 0, KGSL_MEMDESC_PRIVILEGED,
"powerup_register_list");
}
#define CX_TIMER_INIT_SAMPLES 16
void gen8_cx_timer_init(struct adreno_device *adreno_dev)
{
u64 seed_val, tmr, skew = 0;
int i;
unsigned long flags;
/* Set it up during first boot or after suspend resume */
if (test_bit(ADRENO_DEVICE_CX_TIMER_INITIALIZED, &adreno_dev->priv))
return;
/* Disable irqs to get accurate timings */
local_irq_save(flags);
/* Calculate the overhead of timer reads and register writes */
for (i = 0; i < CX_TIMER_INIT_SAMPLES; i++) {
u64 tmr1, tmr2, tmr3;
/* Measure time for two reads of the CPU timer */
tmr1 = arch_timer_read_counter();
tmr2 = arch_timer_read_counter();
/* Write to the register and time it */
adreno_cx_misc_regwrite(adreno_dev,
GEN8_GPU_CX_MISC_AO_COUNTER_LO,
lower_32_bits(tmr2));
adreno_cx_misc_regwrite(adreno_dev,
GEN8_GPU_CX_MISC_AO_COUNTER_HI,
upper_32_bits(tmr2));
/* Barrier to make sure the write completes before timing it */
mb();
tmr3 = arch_timer_read_counter();
/* Calculate difference between register write and CPU timer */
skew += (tmr3 - tmr2) - (tmr2 - tmr1);
}
local_irq_restore(flags);
/* Get the average over all our readings, to the closest integer */
skew = (skew + CX_TIMER_INIT_SAMPLES / 2) / CX_TIMER_INIT_SAMPLES;
local_irq_save(flags);
tmr = arch_timer_read_counter();
seed_val = tmr + skew;
/* Seed the GPU CX counter with the adjusted timer */
adreno_cx_misc_regwrite(adreno_dev,
GEN8_GPU_CX_MISC_AO_COUNTER_LO, lower_32_bits(seed_val));
adreno_cx_misc_regwrite(adreno_dev,
GEN8_GPU_CX_MISC_AO_COUNTER_HI, upper_32_bits(seed_val));
local_irq_restore(flags);
set_bit(ADRENO_DEVICE_CX_TIMER_INITIALIZED, &adreno_dev->priv);
}
void gen8_get_gpu_feature_info(struct adreno_device *adreno_dev)
{
u32 feature_fuse = 0;
/* Get HW feature soft fuse value */
adreno_cx_misc_regread(adreno_dev, GEN8_GPU_CX_MISC_SW_FUSE_VALUE,
&feature_fuse);
adreno_dev->fastblend_enabled = feature_fuse & BIT(GEN8_FASTBLEND_SW_FUSE);
adreno_dev->raytracing_enabled = feature_fuse & BIT(GEN8_RAYTRACING_SW_FUSE);
/* If software enables LPAC without HW support, disable it */
if (ADRENO_FEATURE(adreno_dev, ADRENO_LPAC))
adreno_dev->lpac_enabled = feature_fuse & BIT(GEN8_LPAC_SW_FUSE);
adreno_dev->feature_fuse = feature_fuse;
}
void gen8_host_aperture_set(struct adreno_device *adreno_dev, u32 pipe_id,
u32 slice_id, u32 use_slice_id)
{
struct gen8_device *gen8_dev = container_of(adreno_dev,
struct gen8_device, adreno_dev);
u32 aperture_val = (FIELD_PREP(GENMASK(15, 12), pipe_id) |
FIELD_PREP(GENMASK(18, 16), slice_id) |
FIELD_PREP(GENMASK(23, 23), use_slice_id));
/* Check if we already set the aperture */
if (gen8_dev->aperture == aperture_val)
return;
kgsl_regwrite(KGSL_DEVICE(adreno_dev), GEN8_CP_APERTURE_CNTL_HOST, aperture_val);
/* Make sure the aperture write goes through before reading the registers */
mb();
gen8_dev->aperture = aperture_val;
}
void gen8_regread64_aperture(struct kgsl_device *device,
u32 offsetwords_lo, u32 offsetwords_hi, u64 *value, u32 pipe,
u32 slice_id, u32 use_slice_id)
{
u32 val_lo = 0, val_hi = 0;
gen8_host_aperture_set(ADRENO_DEVICE(device), pipe, slice_id, use_slice_id);
val_lo = kgsl_regmap_read(&device->regmap, offsetwords_lo);
val_hi = kgsl_regmap_read(&device->regmap, offsetwords_hi);
*value = (((u64)val_hi << 32) | val_lo);
}
void gen8_regread_aperture(struct kgsl_device *device,
u32 offsetwords, u32 *value, u32 pipe, u32 slice_id, u32 use_slice_id)
{
gen8_host_aperture_set(ADRENO_DEVICE(device), pipe, slice_id, use_slice_id);
*value = kgsl_regmap_read(&device->regmap, offsetwords);
}
static inline void gen8_regwrite_aperture(struct kgsl_device *device,
u32 offsetwords, u32 value, u32 pipe, u32 slice_id, u32 use_slice_id)
{
gen8_host_aperture_set(ADRENO_DEVICE(device), pipe, slice_id, use_slice_id);
kgsl_regmap_write(&device->regmap, value, offsetwords);
}
#define GEN8_CP_PROTECT_DEFAULT (FIELD_PREP(GENMASK(31, 16), 0xffff) | BIT(0) | BIT(1) | BIT(3))
static void gen8_protect_init(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev);
const struct gen8_protected_regs *regs = gen8_core->protected_regs;
u32 count = 0;
int i;
/*
* Enable access protection to privileged registers, fault on an access
* protect violation and select the last span to protect from the start
* address all the way to the end of the register address space
*/
gen8_regwrite_aperture(device, GEN8_CP_PROTECT_CNTL_PIPE,
GEN8_CP_PROTECT_DEFAULT, PIPE_BR, 0, 0);
gen8_regwrite_aperture(device, GEN8_CP_PROTECT_CNTL_PIPE,
GEN8_CP_PROTECT_DEFAULT, PIPE_BV, 0, 0);
if (adreno_dev->lpac_enabled)
gen8_regwrite_aperture(device, GEN8_CP_PROTECT_CNTL_PIPE,
GEN8_CP_PROTECT_DEFAULT, PIPE_LPAC, 0, 0);
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
/* Program each register defined by the core definition */
for (i = 0; regs[i].reg; i++) {
/*
* This is the offset of the end register as counted from the
* start, i.e. # of registers in the range - 1
*/
count = regs[i].end - regs[i].start;
kgsl_regwrite(device, regs[i].reg,
FIELD_PREP(GENMASK(17, 0), regs[i].start) |
FIELD_PREP(GENMASK(30, 18), count) |
FIELD_PREP(BIT(31), regs[i].noaccess));
}
/*
* Last span setting is only being applied to the last pipe specific
* register. Hence duplicate the last span from protect reg into the
* BR, BV and LPAC protect reg pipe 15.
*/
i--;
gen8_regwrite_aperture(device, GEN8_CP_PROTECT_REG_PIPE + 15,
FIELD_PREP(GENMASK(17, 0), regs[i].start) |
FIELD_PREP(GENMASK(30, 18), count) |
FIELD_PREP(BIT(31), regs[i].noaccess),
PIPE_BR, 0, 0);
gen8_regwrite_aperture(device, GEN8_CP_PROTECT_REG_PIPE + 15,
FIELD_PREP(GENMASK(17, 0), regs[i].start) |
FIELD_PREP(GENMASK(30, 18), count) |
FIELD_PREP(BIT(31), regs[i].noaccess),
PIPE_BV, 0, 0);
if (adreno_dev->lpac_enabled)
gen8_regwrite_aperture(device, GEN8_CP_PROTECT_REG_PIPE + 15,
FIELD_PREP(GENMASK(17, 0), regs[i].start) |
FIELD_PREP(GENMASK(30, 18), count) |
FIELD_PREP(BIT(31), regs[i].noaccess),
PIPE_LPAC, 0, 0);
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
}
static void gen8_nonctxt_regconfig(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev);
const struct gen8_nonctxt_regs *regs = gen8_core->nonctxt_regs;
struct gen8_device *gen8_dev = container_of(adreno_dev,
struct gen8_device, adreno_dev);
u32 i, pipe_id;
unsigned long pipe;
/* Program non context registers for all pipes */
for (pipe_id = PIPE_NONE; pipe_id <= PIPE_AQE1; pipe_id++) {
if ((pipe_id == PIPE_LPAC) && !ADRENO_FEATURE(adreno_dev, ADRENO_LPAC))
continue;
else if (((pipe_id == PIPE_AQE0) || (pipe_id == PIPE_AQE1)) &&
!ADRENO_FEATURE(adreno_dev, ADRENO_AQE))
continue;
for (i = 0; regs[i].offset; i++) {
pipe = (unsigned long)regs[i].pipelines;
if (test_bit(pipe_id, &pipe))
gen8_regwrite_aperture(device, regs[i].offset,
regs[i].val, pipe_id, 0, 0);
}
}
/* Program non context registers overrides for all pipes */
if (gen8_dev->nc_overrides_enabled) {
struct gen8_nonctxt_overrides *nc_overrides = gen8_dev->nc_overrides;
mutex_lock(&gen8_dev->nc_mutex);
for (pipe_id = PIPE_NONE; pipe_id <= PIPE_AQE1; pipe_id++) {
if ((pipe_id == PIPE_LPAC) && !ADRENO_FEATURE(adreno_dev, ADRENO_LPAC))
continue;
else if (((pipe_id == PIPE_AQE0) || (pipe_id == PIPE_AQE1)) &&
!ADRENO_FEATURE(adreno_dev, ADRENO_AQE))
continue;
for (i = 0; nc_overrides[i].offset; i++) {
if (!nc_overrides[i].set)
continue;
pipe = (unsigned long)nc_overrides[i].pipelines;
if (test_bit(pipe_id, &pipe))
gen8_regwrite_aperture(device, nc_overrides[i].offset,
nc_overrides[i].val, pipe_id, 0, 0);
}
}
mutex_unlock(&gen8_dev->nc_mutex);
}
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
}
#define RBBM_CLOCK_CNTL_ON 0x8aa8aa82
static void gen8_hwcg_set(struct adreno_device *adreno_dev, bool on)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev);
u32 value;
int i;
/* Increase clock keep-on hysteresis from 5 cycles to 8 cycles */
if (!adreno_is_gen8_3_0(adreno_dev) && on)
kgsl_regwrite(device, GEN8_RBBM_CGC_0_PC, 0x00000702);
if (!adreno_dev->hwcg_enabled)
on = false;
for (i = 0; i < gen8_core->ao_hwcg_count; i++)
gmu_core_regwrite(device, gen8_core->ao_hwcg[i].offset,
on ? gen8_core->ao_hwcg[i].val : 0);
kgsl_regwrite(device, GEN8_RBBM_CLOCK_CNTL_GLOBAL, 1);
kgsl_regwrite(device, GEN8_RBBM_CGC_GLOBAL_LOAD_CMD, on ? 1 : 0);
if (on) {
u32 retry = 3;
kgsl_regwrite(device, GEN8_RBBM_CGC_P2S_TRIG_CMD, 1);
/* Poll for the TXDONE:BIT(0) status */
do {
/* Wait for small amount of time for TXDONE status*/
udelay(1);
kgsl_regread(device, GEN8_RBBM_CGC_P2S_STATUS, &value);
} while (!(value & BIT(0)) && --retry);
if (!(value & BIT(0))) {
dev_err(device->dev, "RBBM_CGC_P2S_STATUS:TXDONE Poll failed\n");
kgsl_device_snapshot(device, NULL, NULL, false);
return;
}
kgsl_regwrite(device, GEN8_RBBM_CLOCK_CNTL_GLOBAL, 0);
}
}
static void gen8_patch_pwrup_reglist(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct gen8_device *gen8_dev = container_of(adreno_dev,
struct gen8_device, adreno_dev);
struct adreno_reglist_list reglist[3];
void *ptr = adreno_dev->pwrup_reglist->hostptr;
struct cpu_gpu_lock *lock = ptr;
u32 items = 0, i, j, pipe_id;
u32 *dest = ptr + sizeof(*lock);
struct gen8_nonctxt_overrides *nc_overrides = gen8_dev->nc_overrides;
/* Static IFPC restore only registers */
reglist[items].regs = gen8_3_0_ifpc_pwrup_reglist;
reglist[items].count = ARRAY_SIZE(gen8_3_0_ifpc_pwrup_reglist);
lock->ifpc_list_len = reglist[items].count;
items++;
/* Static IFPC + preemption registers */
reglist[items].regs = gen8_3_0_pwrup_reglist;
reglist[items].count = ARRAY_SIZE(gen8_3_0_pwrup_reglist);
lock->preemption_list_len = reglist[items].count;
items++;
/*
* For each entry in each of the lists, write the offset and the current
* register value into the GPU buffer
*/
for (i = 0; i < items; i++) {
const u32 *r = reglist[i].regs;
for (j = 0; j < reglist[i].count; j++) {
*dest++ = r[j];
kgsl_regread(device, r[j], dest++);
}
mutex_lock(&gen8_dev->nc_mutex);
for (j = 0; j < nc_overrides[j].offset; j++) {
unsigned long pipe = (unsigned long)nc_overrides[j].pipelines;
if (!(test_bit(PIPE_NONE, &pipe) && nc_overrides[j].set &&
nc_overrides[j].list_type))
continue;
if ((reglist[i].regs == gen8_3_0_ifpc_pwrup_reglist) &&
(nc_overrides[j].list_type == 1)) {
*dest++ = nc_overrides[j].offset;
kgsl_regread(device, nc_overrides[j].offset, dest++);
lock->ifpc_list_len++;
} else if ((reglist[i].regs == gen8_3_0_pwrup_reglist) &&
(nc_overrides[j].list_type == 2)) {
*dest++ = nc_overrides[j].offset;
kgsl_regread(device, nc_overrides[j].offset, dest++);
lock->preemption_list_len++;
}
}
mutex_unlock(&gen8_dev->nc_mutex);
}
/*
* The overall register list is composed of
* 1. Static IFPC-only registers
* 2. Static IFPC + preemption registers
* 3. Dynamic IFPC + preemption registers (ex: perfcounter selects)
*
* The first two lists are static. Size of these lists are stored as
* number of pairs in ifpc_list_len and preemption_list_len
* respectively. With concurrent binning, Some of the perfcounter
* registers being virtualized, CP needs to know the pipe id to program
* the aperture inorder to restore the same. Thus, third list is a
* dynamic list with triplets as
* (<aperture, shifted 12 bits> <address> <data>), and the length is
* stored as number for triplets in dynamic_list_len.
*
* Starting with Gen8, some of the registers that are initialized statically
* by the kernel are pipe-specific. Because only the dynamic list is able to
* support specifying a pipe ID, these registers are bundled along with any
* dynamic entries such as perf counter selects into a single dynamic list.
*/
gen8_dev->ext_pwrup_list_len = 0;
/*
* Write external pipe specific regs (<aperture> <address> <value> - triplets)
* offset and the current value into GPU buffer
*/
for (pipe_id = PIPE_BR; pipe_id <= PIPE_LPAC; pipe_id++) {
for (i = 0; i < ARRAY_SIZE(gen8_3_0_pwrup_extlist); i++) {
unsigned long pipe = (unsigned long)gen8_3_0_pwrup_extlist[i].pipelines;
if (!test_bit(pipe_id, &pipe))
continue;
*dest++ = FIELD_PREP(GENMASK(15, 12), pipe_id);
*dest++ = gen8_3_0_pwrup_extlist[i].offset;
gen8_regread_aperture(device, gen8_3_0_pwrup_extlist[i].offset,
dest++, pipe_id, 0, 0);
gen8_dev->ext_pwrup_list_len++;
}
}
/*
* Write noncontext override pipe specific regs (<aperture> <address> <value> - triplets)
* offset and the current value into GPU buffer
*/
mutex_lock(&gen8_dev->nc_mutex);
for (pipe_id = PIPE_BR; pipe_id <= PIPE_BV; pipe_id++) {
for (i = 0; i < nc_overrides[i].offset; i++) {
unsigned long pipe = (unsigned long)nc_overrides[i].pipelines;
if (!(test_bit(pipe_id, &pipe) && nc_overrides[i].set &&
nc_overrides[i].list_type))
continue;
*dest++ = FIELD_PREP(GENMASK(15, 12), pipe_id);
*dest++ = nc_overrides[i].offset;
gen8_regread_aperture(device, nc_overrides[i].offset,
dest++, pipe_id, 0, 0);
gen8_dev->ext_pwrup_list_len++;
}
}
mutex_unlock(&gen8_dev->nc_mutex);
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
lock->dynamic_list_len = gen8_dev->ext_pwrup_list_len;
}
/* _llc_configure_gpu_scid() - Program the sub-cache ID for all GPU blocks */
static void _llc_configure_gpu_scid(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 gpu_scid;
if (IS_ERR_OR_NULL(adreno_dev->gpu_llc_slice) ||
!adreno_dev->gpu_llc_slice_enable)
return;
if (llcc_slice_activate(adreno_dev->gpu_llc_slice))
return;
gpu_scid = llcc_get_slice_id(adreno_dev->gpu_llc_slice);
/* 5 blocks at 6 bits per block */
kgsl_regwrite(device, GEN8_GBIF_SCACHE_CNTL1,
FIELD_PREP(GENMASK(29, 24), gpu_scid) |
FIELD_PREP(GENMASK(23, 18), gpu_scid) |
FIELD_PREP(GENMASK(17, 12), gpu_scid) |
FIELD_PREP(GENMASK(11, 6), gpu_scid) |
FIELD_PREP(GENMASK(5, 0), gpu_scid));
kgsl_regwrite(device, GEN8_GBIF_SCACHE_CNTL0,
FIELD_PREP(GENMASK(15, 10), gpu_scid) |
FIELD_PREP(GENMASK(21, 16), gpu_scid) |
FIELD_PREP(GENMASK(27, 22), gpu_scid) | BIT(8));
}
static void _llc_gpuhtw_slice_activate(struct adreno_device *adreno_dev)
{
if (IS_ERR_OR_NULL(adreno_dev->gpuhtw_llc_slice) ||
!adreno_dev->gpuhtw_llc_slice_enable)
return;
llcc_slice_activate(adreno_dev->gpuhtw_llc_slice);
}
static void _set_secvid(struct kgsl_device *device)
{
kgsl_regwrite(device, GEN8_RBBM_SECVID_TSB_CNTL, 0x0);
kgsl_regwrite(device, GEN8_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
lower_32_bits(KGSL_IOMMU_SECURE_BASE32));
kgsl_regwrite(device, GEN8_RBBM_SECVID_TSB_TRUSTED_BASE_HI,
upper_32_bits(KGSL_IOMMU_SECURE_BASE32));
kgsl_regwrite(device, GEN8_RBBM_SECVID_TSB_TRUSTED_SIZE,
FIELD_PREP(GENMASK(31, 12),
(KGSL_IOMMU_SECURE_SIZE(&device->mmu) / SZ_4K)));
}
/* Set UCHE_TRAP_BASE to a page below the top of the memory space */
#define GEN8_UCHE_TRAP_BASE 0x1FFFFFFFFF000ULL
static u64 gen8_get_uche_trap_base(void)
{
return GEN8_UCHE_TRAP_BASE;
}
/*
* All Gen8 targets support marking certain transactions as always privileged
* which allows us to mark more memory as privileged without having to
* explicitly set the APRIV bit. Choose the following transactions to be
* privileged by default:
* CDWRITE [6:6] - Crashdumper writes
* CDREAD [5:5] - Crashdumper reads
* RBRPWB [3:3] - RPTR shadow writes
* RBPRIVLEVEL [2:2] - Memory accesses from PM4 packets in the ringbuffer
* RBFETCH [1:1] - Ringbuffer reads
* ICACHE [0:0] - Instruction cache fetches
*/
#define GEN8_APRIV_DEFAULT (BIT(3) | BIT(2) | BIT(1) | BIT(0))
/* Add crashdumper permissions for the BR APRIV */
#define GEN8_BR_APRIV_DEFAULT (GEN8_APRIV_DEFAULT | BIT(6) | BIT(5))
static const struct kgsl_regmap_list gen8_3_0_bicubic_regs[] = {
/*GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_0 default and recomended values are same */
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_1, 0x3fe05ff4 },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_2, 0x3fa0ebee },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_3, 0x3f5193ed },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_4, 0x3f0243f0 },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_5, 0x00000000 },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_6, 0x3fd093e8 },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_7, 0x3f4133dc },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_8, 0x3ea1dfdb },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_9, 0x3e0283e0 },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_10, 0x0000ac2b },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_11, 0x0000f01d },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_12, 0x00114412 },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_13, 0x0021980a },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_14, 0x0051ec05 },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_15, 0x0000380e },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_16, 0x3ff09001 },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_17, 0x3fc10bfa },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_18, 0x3f9193f7 },
{ GEN8_TPL1_BICUBIC_WEIGHTS_TABLE_19, 0x3f7227f7 },
};
void gen8_enable_ahb_timeout_detection(struct adreno_device *adreno_dev)
{
u32 val;
if (!adreno_dev->ahb_timeout_val)
return;
val = (ADRENO_AHB_CNTL_DEFAULT | FIELD_PREP(GENMASK(4, 0),
adreno_dev->ahb_timeout_val));
adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_CX_AHB_AON_CNTL, val);
adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_CX_AHB_GMU_CNTL, val);
adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_CX_AHB_CP_CNTL, val);
adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_CX_AHB_VBIF_SMMU_CNTL, val);
adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_CX_AHB_HOST_CNTL, val);
}
#define MIN_HBB 13
int gen8_start(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev);
u32 mal, mode = 0, mode2 = 0, rgb565_predicator = 0, amsbc = 0;
struct gen8_device *gen8_dev = container_of(adreno_dev,
struct gen8_device, adreno_dev);
/*
* HBB values 13 to 16 can represented LSB of HBB from 0 to 3.
* Any HBB value beyond 16 needs programming MSB of HBB.
* By default highest bank bit is 14, Hence set default HBB LSB
* to "1" and MSB to "0".
*/
u32 hbb_lo = 1, hbb_hi = 0, hbb = 1;
struct cpu_gpu_lock *pwrup_lock = adreno_dev->pwrup_reglist->hostptr;
u64 uche_trap_base = gen8_get_uche_trap_base();
u32 rgba8888_lossless = 0, fp16compoptdis = 0;
/* Reset aperture fields to go through first aperture write check */
gen8_dev->aperture = UINT_MAX;
/* Make all blocks contribute to the GPU BUSY perf counter */
kgsl_regwrite(device, GEN8_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
kgsl_regwrite(device, GEN8_UCHE_CCHE_GC_GMEM_RANGE_MIN_LO,
lower_32_bits(adreno_dev->uche_gmem_base));
kgsl_regwrite(device, GEN8_UCHE_CCHE_GC_GMEM_RANGE_MIN_HI,
upper_32_bits(adreno_dev->uche_gmem_base));
kgsl_regwrite(device, GEN8_SP_HLSQ_GC_GMEM_RANGE_MIN_LO,
lower_32_bits(adreno_dev->uche_gmem_base));
kgsl_regwrite(device, GEN8_SP_HLSQ_GC_GMEM_RANGE_MIN_HI,
upper_32_bits(adreno_dev->uche_gmem_base));
if (adreno_dev->lpac_enabled) {
gen8_regwrite_aperture(device, GEN8_RB_LPAC_GMEM_PROTECT,
0x0c000000, PIPE_BR, 0, 0);
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
kgsl_regwrite(device, GEN8_UCHE_CCHE_LPAC_GMEM_RANGE_MIN_LO,
lower_32_bits(adreno_dev->uche_gmem_base));
kgsl_regwrite(device, GEN8_UCHE_CCHE_LPAC_GMEM_RANGE_MIN_HI,
upper_32_bits(adreno_dev->uche_gmem_base));
kgsl_regwrite(device, GEN8_SP_HLSQ_LPAC_GMEM_RANGE_MIN_LO,
lower_32_bits(adreno_dev->uche_gmem_base));
kgsl_regwrite(device, GEN8_SP_HLSQ_LPAC_GMEM_RANGE_MIN_HI,
upper_32_bits(adreno_dev->uche_gmem_base));
}
/*
* Set UCHE_WRITE_THRU_BASE to the UCHE_TRAP_BASE effectively
* disabling L2 bypass
*/
kgsl_regwrite(device, GEN8_UCHE_TRAP_BASE_LO, lower_32_bits(uche_trap_base));
kgsl_regwrite(device, GEN8_UCHE_TRAP_BASE_HI, upper_32_bits(uche_trap_base));
kgsl_regwrite(device, GEN8_UCHE_WRITE_THRU_BASE_LO, lower_32_bits(uche_trap_base));
kgsl_regwrite(device, GEN8_UCHE_WRITE_THRU_BASE_HI, upper_32_bits(uche_trap_base));
/*
* CP takes care of the restore during IFPC exit. We need to restore at slumber
* boundary as well
*/
if (pwrup_lock->dynamic_list_len - gen8_dev->ext_pwrup_list_len > 0) {
kgsl_regwrite(device, GEN8_RBBM_PERFCTR_CNTL, 0x1);
kgsl_regwrite(device, GEN8_RBBM_SLICE_PERFCTR_CNTL, 0x1);
}
/* Turn on the IFPC counter (countable 4 on XOCLK4) */
kgsl_regwrite(device, GEN8_GMUCX_POWER_COUNTER_SELECT_XOCLK_1,
FIELD_PREP(GENMASK(7, 0), 0x4));
/* Turn on counter to count total time spent in BCL throttle */
if (adreno_dev->bcl_enabled)
kgsl_regrmw(device, GEN8_GMUCX_POWER_COUNTER_SELECT_XOCLK_1, GENMASK(15, 8),
FIELD_PREP(GENMASK(15, 8), 0x26));
if (of_property_read_u32(device->pdev->dev.of_node, "qcom,min-access-length", &mal))
mal = 32;
of_property_read_u32(device->pdev->dev.of_node, "qcom,ubwc-mode", &mode);
switch (mode) {
case KGSL_UBWC_5_0:
amsbc = 1;
rgb565_predicator = 1;
mode2 = 4;
break;
case KGSL_UBWC_4_0:
amsbc = 1;
rgb565_predicator = 1;
fp16compoptdis = 1;
rgba8888_lossless = 1;
mode2 = 2;
break;
case KGSL_UBWC_3_0:
amsbc = 1;
mode2 = 1;
break;
default:
break;
}
if (!WARN_ON(!adreno_dev->highest_bank_bit)) {
hbb = adreno_dev->highest_bank_bit - MIN_HBB;
hbb_lo = hbb & 3;
hbb_hi = (hbb >> 2) & 1;
}
mal = (mal == 64) ? 1 : 0;
gen8_regwrite_aperture(device, GEN8_GRAS_NC_MODE_CNTL,
FIELD_PREP(GENMASK(8, 5), hbb), PIPE_BV, 0, 0);
gen8_regwrite_aperture(device, GEN8_GRAS_NC_MODE_CNTL,
FIELD_PREP(GENMASK(8, 5), hbb), PIPE_BR, 0, 0);
gen8_regwrite_aperture(device, GEN8_RB_CCU_NC_MODE_CNTL,
FIELD_PREP(GENMASK(3, 3), hbb_hi) |
FIELD_PREP(GENMASK(2, 1), hbb_lo),
PIPE_BR, 0, 0);
gen8_regwrite_aperture(device, GEN8_RB_CMP_NC_MODE_CNTL,
FIELD_PREP(GENMASK(17, 15), mode2) |
FIELD_PREP(GENMASK(4, 4), rgba8888_lossless) |
FIELD_PREP(GENMASK(3, 3), fp16compoptdis) |
FIELD_PREP(GENMASK(2, 2), rgb565_predicator) |
FIELD_PREP(GENMASK(1, 1), amsbc) |
FIELD_PREP(GENMASK(0, 0), mal),
PIPE_BR, 0, 0);
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
kgsl_regwrite(device, GEN8_SP_NC_MODE_CNTL,
FIELD_PREP(GENMASK(11, 10), hbb_hi) |
FIELD_PREP(GENMASK(5, 4), 2) |
FIELD_PREP(GENMASK(3, 3), mal) |
FIELD_PREP(GENMASK(2, 1), hbb_lo));
kgsl_regwrite(device, GEN8_TPL1_NC_MODE_CNTL,
FIELD_PREP(GENMASK(4, 4), hbb_hi) |
FIELD_PREP(GENMASK(3, 3), mal) |
FIELD_PREP(GENMASK(2, 1), hbb_lo));
/* Configure TP bicubic registers */
kgsl_regmap_multi_write(&device->regmap, gen8_3_0_bicubic_regs,
ARRAY_SIZE(gen8_3_0_bicubic_regs));
/* Program noncontext registers */
gen8_nonctxt_regconfig(adreno_dev);
/* Enable hardware hang detection */
kgsl_regwrite(device, GEN8_RBBM_INTERFACE_HANG_INT_CNTL, BIT(30) |
FIELD_PREP(GENMASK(27, 0), gen8_core->hang_detect_cycles));
kgsl_regwrite(device, GEN8_RBBM_SLICE_INTERFACE_HANG_INT_CNTL, BIT(30));
kgsl_regwrite(device, GEN8_UCHE_CLIENT_PF, BIT(7) |
FIELD_PREP(GENMASK(6, 0), adreno_dev->uche_client_pf));
/* Enable the GMEM save/restore feature for preemption */
if (adreno_is_preemption_enabled(adreno_dev)) {
gen8_regwrite_aperture(device,
GEN8_RB_CONTEXT_SWITCH_GMEM_SAVE_RESTORE,
0x1, PIPE_BR, 0, 0);
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
}
/* Enable GMU power counter 0 to count GPU busy */
kgsl_regwrite(device, GEN8_GMUAO_GPU_CX_BUSY_MASK, 0xff000000);
kgsl_regrmw(device, GEN8_GMUCX_POWER_COUNTER_SELECT_XOCLK_0, 0xFF, 0x20);
kgsl_regwrite(device, GEN8_GMUCX_POWER_COUNTER_ENABLE, 0x1);
gen8_protect_init(adreno_dev);
/* Configure LLCC */
_llc_configure_gpu_scid(adreno_dev);
_llc_gpuhtw_slice_activate(adreno_dev);
gen8_regwrite_aperture(device, GEN8_CP_APRIV_CNTL_PIPE,
GEN8_BR_APRIV_DEFAULT, PIPE_BR, 0, 0);
gen8_regwrite_aperture(device, GEN8_CP_APRIV_CNTL_PIPE,
GEN8_APRIV_DEFAULT, PIPE_BV, 0, 0);
if (adreno_dev->lpac_enabled)
gen8_regwrite_aperture(device, GEN8_CP_APRIV_CNTL_PIPE,
GEN8_APRIV_DEFAULT, PIPE_LPAC, 0, 0);
if (ADRENO_FEATURE(adreno_dev, ADRENO_AQE)) {
gen8_regwrite_aperture(device, GEN8_CP_APRIV_CNTL_PIPE,
GEN8_APRIV_DEFAULT, PIPE_AQE0, 0, 0);
gen8_regwrite_aperture(device, GEN8_CP_APRIV_CNTL_PIPE,
GEN8_APRIV_DEFAULT, PIPE_AQE1, 0, 0);
}
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
_set_secvid(device);
/*
* Enable hardware clock gating here to prevent any register access
* issue due to internal clock gating.
*/
gen8_hwcg_set(adreno_dev, true);
/*
* All registers must be written before this point so that we don't
* miss any register programming when we patch the power up register
* list.
*/
if (!adreno_dev->patch_reglist &&
(adreno_dev->pwrup_reglist->gpuaddr != 0)) {
gen8_patch_pwrup_reglist(adreno_dev);
adreno_dev->patch_reglist = true;
}
return 0;
}
/* Offsets into the MX/CX mapped register regions */
#define GEN8_RDPM_MX_OFFSET 0xf00
#define GEN8_RDPM_CX_OFFSET 0xf14
void gen8_rdpm_mx_freq_update(struct gen8_gmu_device *gmu, u32 freq)
{
if (gmu->rdpm_mx_virt) {
writel_relaxed(freq/1000, (gmu->rdpm_mx_virt + GEN8_RDPM_MX_OFFSET));
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
}
}
void gen8_rdpm_cx_freq_update(struct gen8_gmu_device *gmu, u32 freq)
{
if (gmu->rdpm_cx_virt) {
writel_relaxed(freq/1000, (gmu->rdpm_cx_virt + GEN8_RDPM_CX_OFFSET));
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
}
}
int gen8_scm_gpu_init_cx_regs(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 gpu_req = GPU_ALWAYS_EN_REQ;
int ret;
if (ADRENO_FEATURE(adreno_dev, ADRENO_BCL))
gpu_req |= GPU_BCL_EN_REQ;
if (ADRENO_FEATURE(adreno_dev, ADRENO_CLX))
gpu_req |= GPU_CLX_EN_REQ;
gpu_req |= GPU_TSENSE_EN_REQ;
ret = kgsl_scm_gpu_init_regs(&device->pdev->dev, gpu_req);
/*
* For targets that support this scm call to program BCL id , enable BCL.
* For other targets, BCL is enabled after first GMU boot.
*/
if (!ret && ADRENO_FEATURE(adreno_dev, ADRENO_BCL))
adreno_dev->bcl_enabled = true;
/* If programming TZ CLX was successful, then program KMD owned CLX regs */
if (!ret && ADRENO_FEATURE(adreno_dev, ADRENO_CLX))
adreno_dev->clx_enabled = true;
/*
* If scm call returned EOPNOTSUPP, either we are on a kernel version
* lesser than 6.1 where scm call is not supported or we are sending an
* empty request. Ignore the error in such cases.
*/
return (ret == -EOPNOTSUPP) ? 0 : ret;
}
void gen8_spin_idle_debug(struct adreno_device *adreno_dev,
const char *str)
{
struct kgsl_device *device = &adreno_dev->dev;
u32 rptr, wptr, status, intstatus, global_status;
dev_err(device->dev, str);
kgsl_regread(device, GEN8_CP_RB_RPTR_BR, &rptr);
kgsl_regread(device, GEN8_CP_RB_WPTR_GC, &wptr);
kgsl_regread(device, GEN8_RBBM_STATUS, &status);
kgsl_regread(device, GEN8_RBBM_INT_0_STATUS, &intstatus);
kgsl_regread(device, GEN8_CP_INTERRUPT_STATUS_GLOBAL, &global_status);
dev_err(device->dev,
"rb=%d pos=%X/%X rbbm_status=%8.8X int_0_status=%8.8X global_status=%8.8X\n",
adreno_dev->cur_rb ? adreno_dev->cur_rb->id : -1, rptr, wptr,
status, intstatus, global_status);
kgsl_device_snapshot(device, NULL, NULL, false);
}
/*
* gen8_send_cp_init() - Initialize ringbuffer
* @adreno_dev: Pointer to adreno device
* @rb: Pointer to the ringbuffer of device
*
* Submit commands for ME initialization,
*/
static int gen8_send_cp_init(struct adreno_device *adreno_dev,
struct adreno_ringbuffer *rb)
{
u32 *cmds;
int ret;
cmds = adreno_ringbuffer_allocspace(rb, GEN8_CP_INIT_DWORDS);
if (IS_ERR(cmds))
return PTR_ERR(cmds);
gen8_cp_init_cmds(adreno_dev, cmds);
ret = gen8_ringbuffer_submit(rb, NULL);
if (ret)
return ret;
ret = adreno_spin_idle(adreno_dev, 2000);
if (ret) {
gen8_spin_idle_debug(adreno_dev,
"CP initialization failed to idle\n");
rb->wptr = 0;
rb->_wptr = 0;
}
return ret;
}
static int gen8_post_start(struct adreno_device *adreno_dev)
{
int ret;
u32 *cmds;
struct adreno_ringbuffer *rb = adreno_dev->cur_rb;
struct adreno_preemption *preempt = &adreno_dev->preempt;
u64 kmd_postamble_addr;
if (!adreno_is_preemption_enabled(adreno_dev))
return 0;
kmd_postamble_addr = SCRATCH_POSTAMBLE_ADDR(KGSL_DEVICE(adreno_dev));
gen8_preemption_prepare_postamble(adreno_dev);
cmds = adreno_ringbuffer_allocspace(rb,
(preempt->postamble_bootup_len ? 16 : 12));
if (IS_ERR(cmds))
return PTR_ERR(cmds);
*cmds++ = cp_type7_packet(CP_SET_PSEUDO_REGISTER, 6);
*cmds++ = SET_PSEUDO_PRIV_NON_SECURE_SAVE_ADDR;
*cmds++ = lower_32_bits(rb->preemption_desc->gpuaddr);
*cmds++ = upper_32_bits(rb->preemption_desc->gpuaddr);
*cmds++ = SET_PSEUDO_PRIV_SECURE_SAVE_ADDR;
*cmds++ = lower_32_bits(rb->secure_preemption_desc->gpuaddr);
*cmds++ = upper_32_bits(rb->secure_preemption_desc->gpuaddr);
if (preempt->postamble_bootup_len) {
*cmds++ = cp_type7_packet(CP_SET_AMBLE, 3);
*cmds++ = lower_32_bits(kmd_postamble_addr);
*cmds++ = upper_32_bits(kmd_postamble_addr);
*cmds++ = FIELD_PREP(GENMASK(22, 20), CP_KMD_AMBLE_TYPE)
| (FIELD_PREP(GENMASK(19, 0),
adreno_dev->preempt.postamble_bootup_len));
}
*cmds++ = cp_type7_packet(CP_CONTEXT_SWITCH_YIELD, 4);
*cmds++ = 0;
*cmds++ = 0;
*cmds++ = 0;
/* generate interrupt on preemption completion */
*cmds++ = 0;
ret = gen8_ringbuffer_submit(rb, NULL);
if (!ret) {
ret = adreno_spin_idle(adreno_dev, 2000);
if (ret)
gen8_spin_idle_debug(adreno_dev,
"hw preemption initialization failed to idle\n");
}
return ret;
}
int gen8_rb_start(struct adreno_device *adreno_dev)
{
const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev);
struct adreno_firmware *fw = ADRENO_FW(adreno_dev, ADRENO_FW_SQE);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_ringbuffer *rb;
u64 addr;
int ret, i;
u32 *cmds;
/* Clear all the ringbuffers */
FOR_EACH_RINGBUFFER(adreno_dev, rb, i) {
memset(rb->buffer_desc->hostptr, 0xaa, KGSL_RB_SIZE);
kgsl_sharedmem_writel(device->scratch,
SCRATCH_RB_OFFSET(rb->id, rptr), 0);
kgsl_sharedmem_writel(device->scratch,
SCRATCH_RB_OFFSET(rb->id, bv_rptr), 0);
rb->wptr = 0;
rb->_wptr = 0;
rb->wptr_preempt_end = UINT_MAX;
}
gen8_preemption_start(adreno_dev);
/* Set up the current ringbuffer */
rb = ADRENO_CURRENT_RINGBUFFER(adreno_dev);
addr = SCRATCH_RB_GPU_ADDR(device, rb->id, rptr);
kgsl_regwrite(device, GEN8_CP_RB_RPTR_ADDR_LO_BR, lower_32_bits(addr));
kgsl_regwrite(device, GEN8_CP_RB_RPTR_ADDR_HI_BR, upper_32_bits(addr));
addr = SCRATCH_RB_GPU_ADDR(device, rb->id, bv_rptr);
kgsl_regwrite(device, GEN8_CP_RB_RPTR_ADDR_LO_BV, lower_32_bits(addr));
kgsl_regwrite(device, GEN8_CP_RB_RPTR_ADDR_HI_BV, upper_32_bits(addr));
kgsl_regwrite(device, GEN8_CP_RB_CNTL_GC, GEN8_CP_RB_CNTL_DEFAULT);
kgsl_regwrite(device, GEN8_CP_RB_BASE_LO_GC,
lower_32_bits(rb->buffer_desc->gpuaddr));
kgsl_regwrite(device, GEN8_CP_RB_BASE_HI_GC,
upper_32_bits(rb->buffer_desc->gpuaddr));
/* Program the ucode base for CP */
kgsl_regwrite(device, GEN8_CP_SQE_INSTR_BASE_LO,
lower_32_bits(fw->memdesc->gpuaddr));
kgsl_regwrite(device, GEN8_CP_SQE_INSTR_BASE_HI,
upper_32_bits(fw->memdesc->gpuaddr));
/* Clear the SQE_HALT to start the CP engine */
kgsl_regwrite(device, GEN8_CP_SQE_CNTL, 1);
ret = gen8_send_cp_init(adreno_dev, rb);
if (ret)
return ret;
ret = adreno_zap_shader_load(adreno_dev, gen8_core->zap_name);
if (ret)
return ret;
/*
* Take the GPU out of secure mode. Try the zap shader if it is loaded,
* otherwise just try to write directly to the secure control register
*/
if (!adreno_dev->zap_loaded)
kgsl_regwrite(device, GEN8_RBBM_SECVID_TRUST_CNTL, 0);
else {
cmds = adreno_ringbuffer_allocspace(rb, 2);
if (IS_ERR(cmds))
return PTR_ERR(cmds);
*cmds++ = cp_type7_packet(CP_SET_SECURE_MODE, 1);
*cmds++ = 0;
ret = gen8_ringbuffer_submit(rb, NULL);
if (!ret) {
ret = adreno_spin_idle(adreno_dev, 2000);
if (ret) {
gen8_spin_idle_debug(adreno_dev,
"Switch to unsecure failed to idle\n");
return ret;
}
}
}
return gen8_post_start(adreno_dev);
}
/*
* gen8_gpu_keepalive() - GMU reg write to request GPU stays on
* @adreno_dev: Pointer to the adreno device that has the GMU
* @state: State to set: true is ON, false is OFF
*/
static void gen8_gpu_keepalive(struct adreno_device *adreno_dev,
bool state)
{
gmu_core_regwrite(KGSL_DEVICE(adreno_dev),
GEN8_GMUCX_PWR_COL_KEEPALIVE, state);
}
bool gen8_hw_isidle(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 reg;
gmu_core_regread(device, GEN8_GMUAO_GPU_CX_BUSY_STATUS, &reg);
/* Bit 23 is GPUBUSYIGNAHB */
return (reg & BIT(23)) ? false : true;
}
int gen8_microcode_read(struct adreno_device *adreno_dev)
{
struct adreno_firmware *sqe_fw = ADRENO_FW(adreno_dev, ADRENO_FW_SQE);
const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev);
return adreno_get_firmware(adreno_dev, gen8_core->sqefw_name, sqe_fw);
}
/* CP Interrupt bits */
#define GEN8_CP_GLOBAL_INT_HWFAULTBR 0
#define GEN8_CP_GLOBAL_INT_HWFAULTBV 1
#define GEN8_CP_GLOBAL_INT_HWFAULTLPAC 2
#define GEN8_CP_GLOBAL_INT_HWFAULTAQE0 3
#define GEN8_CP_GLOBAL_INT_HWFAULTAQE1 4
#define GEN8_CP_GLOBAL_INT_HWFAULTDDEBR 5
#define GEN8_CP_GLOBAL_INT_HWFAULTDDEBV 6
#define GEN8_CP_GLOBAL_INT_SWFAULTBR 16
#define GEN8_CP_GLOBAL_INT_SWFAULTBV 17
#define GEN8_CP_GLOBAL_INT_SWFAULTLPAC 18
#define GEN8_CP_GLOBAL_INT_SWFAULTAQE0 19
#define GEN8_CP_GLOBAL_INT_SWFAULTAQE1 20
#define GEN8_CP_GLOBAL_INT_SWFAULTDDEBR 21
#define GEN8_CP_GLOBAL_INT_SWFAULTDDEBV 22
/* CP HW Fault status bits */
#define CP_HW_RBFAULT 0
#define CP_HW_IB1FAULT 1
#define CP_HW_IB2FAULT 2
#define CP_HW_IB3FAULT 3
#define CP_HW_SDSFAULT 4
#define CP_HW_MRBFAULT 5
#define CP_HW_VSDFAULT 6
#define CP_HW_SQEREADBRUSTOVF 8
#define CP_HW_EVENTENGINEOVF 9
#define CP_HW_UCODEERROR 10
/* CP SW Fault status bits */
#define CP_SW_CSFRBWRAP 0
#define CP_SW_CSFIB1WRAP 1
#define CP_SW_CSFIB2WRAP 2
#define CP_SW_CSFIB3WRAP 3
#define CP_SW_SDSWRAP 4
#define CP_SW_MRBWRAP 5
#define CP_SW_VSDWRAP 6
#define CP_SW_OPCODEERROR 8
#define CP_SW_VSDPARITYERROR 9
#define CP_SW_REGISTERPROTECTIONERROR 10
#define CP_SW_ILLEGALINSTRUCTION 11
#define CP_SW_SMMUFAULT 12
#define CP_SW_VBIFRESPCLIENT 13
#define CP_SW_VBIFRESPTYPE 19
#define CP_SW_VBIFRESPREAD 21
#define CP_SW_VBIFRESP 22
#define CP_SW_RTWROVF 23
#define CP_SW_LRZRTWROVF 24
#define CP_SW_LRZRTREFCNTOVF 25
#define CP_SW_LRZRTCLRRESMISS 26
static void gen8_get_cp_hwfault_status(struct adreno_device *adreno_dev, u32 status)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 hw_status;
u32 pipe_id = PIPE_NONE;
const char * const table[] = {
[CP_HW_RBFAULT] = "RBFAULT",
[CP_HW_IB1FAULT] = "IB1FAULT",
[CP_HW_IB2FAULT] = "IB2FAULT",
[CP_HW_SDSFAULT] = "SDSFAULT",
[CP_HW_MRBFAULT] = "MRGFAULT",
[CP_HW_VSDFAULT] = "VSDFAULT",
[CP_HW_SQEREADBRUSTOVF] = "SQEREADBRUSTOVF",
[CP_HW_EVENTENGINEOVF] = "EVENTENGINEOVF",
[CP_HW_UCODEERROR] = "UCODEERROR",
};
switch (status) {
case BIT(GEN8_CP_GLOBAL_INT_HWFAULTBR):
pipe_id = PIPE_BR;
break;
case BIT(GEN8_CP_GLOBAL_INT_HWFAULTBV):
pipe_id = PIPE_BV;
break;
case BIT(GEN8_CP_GLOBAL_INT_HWFAULTLPAC):
pipe_id = PIPE_LPAC;
break;
case BIT(GEN8_CP_GLOBAL_INT_HWFAULTAQE0):
pipe_id = PIPE_AQE0;
break;
case BIT(GEN8_CP_GLOBAL_INT_HWFAULTAQE1):
pipe_id = PIPE_AQE1;
break;
case BIT(GEN8_CP_GLOBAL_INT_HWFAULTDDEBR):
pipe_id = PIPE_DDE_BR;
break;
case BIT(GEN8_CP_GLOBAL_INT_HWFAULTDDEBV):
pipe_id = PIPE_DDE_BV;
break;
}
gen8_regread_aperture(device, GEN8_CP_HW_FAULT_STATUS_PIPE, &hw_status,
pipe_id, 0, 0);
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
dev_crit_ratelimited(device->dev, "CP HW Fault pipe_id:%u %s\n", pipe_id,
hw_status < ARRAY_SIZE(table) ? table[hw_status] : "UNKNOWN");
}
static void gen8_get_cp_swfault_status(struct adreno_device *adreno_dev, u32 status)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 sw_status, status1;
u32 opcode, pipe_id = PIPE_NONE;
const char * const table[] = {
[CP_SW_CSFRBWRAP] = "CSFRBWRAP",
[CP_SW_CSFIB1WRAP] = "CSFIB1WRAP",
[CP_SW_CSFIB2WRAP] = "CSFIB2WRAP",
[CP_SW_CSFIB3WRAP] = "CSFIB3WRAP",
[CP_SW_SDSWRAP] = "SDSWRAP",
[CP_SW_MRBWRAP] = "MRBWRAP",
[CP_SW_VSDWRAP] = "VSDWRAP",
[CP_SW_OPCODEERROR] = "OPCODEERROR",
[CP_SW_VSDPARITYERROR] = "VSDPARITYERROR",
[CP_SW_REGISTERPROTECTIONERROR] = "REGISTERPROTECTIONERROR",
[CP_SW_ILLEGALINSTRUCTION] = "ILLEGALINSTRUCTION",
[CP_SW_SMMUFAULT] = "SMMUFAULT",
[CP_SW_VBIFRESPCLIENT] = "VBIFRESPCLIENT",
[CP_SW_VBIFRESPTYPE] = "VBIFRESPTYPE",
[CP_SW_VBIFRESPREAD] = "VBIFRESPREAD",
[CP_SW_VBIFRESP] = "VBIFRESP",
[CP_SW_RTWROVF] = "RTWROVF",
[CP_SW_LRZRTWROVF] = "LRZRTWROVF",
[CP_SW_LRZRTREFCNTOVF] = "LRZRTREFCNTOVF",
[CP_SW_LRZRTCLRRESMISS] = "LRZRTCLRRESMISS",
};
switch (status) {
case BIT(GEN8_CP_GLOBAL_INT_SWFAULTBR):
pipe_id = PIPE_BR;
break;
case BIT(GEN8_CP_GLOBAL_INT_SWFAULTBV):
pipe_id = PIPE_BV;
break;
case BIT(GEN8_CP_GLOBAL_INT_SWFAULTLPAC):
pipe_id = PIPE_LPAC;
break;
case BIT(GEN8_CP_GLOBAL_INT_SWFAULTAQE0):
pipe_id = PIPE_AQE0;
break;
case BIT(GEN8_CP_GLOBAL_INT_SWFAULTAQE1):
pipe_id = PIPE_AQE1;
break;
case BIT(GEN8_CP_GLOBAL_INT_SWFAULTDDEBR):
pipe_id = PIPE_DDE_BR;
break;
case BIT(GEN8_CP_GLOBAL_INT_SWFAULTDDEBV):
pipe_id = PIPE_DDE_BV;
break;
}
gen8_regread_aperture(device, GEN8_CP_INTERRUPT_STATUS_PIPE, &sw_status,
pipe_id, 0, 0);
dev_crit_ratelimited(device->dev, "CP SW Fault pipe_id: %u %s\n", pipe_id,
sw_status < ARRAY_SIZE(table) ? table[sw_status] : "UNKNOWN");
if (sw_status & BIT(CP_SW_OPCODEERROR)) {
gen8_regwrite_aperture(device, GEN8_CP_SQE_STAT_ADDR_PIPE, 1,
pipe_id, 0, 0);
gen8_regread_aperture(device, GEN8_CP_SQE_STAT_DATA_PIPE, &opcode,
pipe_id, 0, 0);
dev_crit_ratelimited(device->dev,
"CP opcode error interrupt | opcode=0x%8.8x\n", opcode);
}
if (sw_status & BIT(CP_SW_REGISTERPROTECTIONERROR)) {
gen8_regread_aperture(device, GEN8_CP_PROTECT_STATUS_PIPE, &status1,
pipe_id, 0, 0);
dev_crit_ratelimited(device->dev,
"CP | Protected mode error | %s | addr=%lx | status=%x\n",
FIELD_GET(GENMASK(20, 20), status1) ? "READ" : "WRITE",
FIELD_GET(GENMASK(17, 0), status1), status1);
}
/* Clear aperture register */
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
}
static void gen8_cp_hw_err_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 global_status;
u32 hw_fault, sw_fault;
kgsl_regread(device, GEN8_CP_INTERRUPT_STATUS_GLOBAL, &global_status);
dev_crit_ratelimited(device->dev, "CP fault int_status_global=0x%x\n", global_status);
hw_fault = FIELD_GET(GENMASK(6, 0), global_status);
sw_fault = FIELD_GET(GENMASK(22, 16), global_status);
if (hw_fault)
gen8_get_cp_hwfault_status(adreno_dev, hw_fault);
else if (sw_fault)
gen8_get_cp_swfault_status(adreno_dev, sw_fault);
}
static void gen8_err_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
switch (bit) {
case GEN8_INT_AHBERROR:
{
u32 err_details_0, err_details_1;
kgsl_regread(device, GEN8_CP_RL_ERROR_DETAILS_0, &err_details_0);
kgsl_regread(device, GEN8_CP_RL_ERROR_DETAILS_1, &err_details_1);
dev_crit_ratelimited(device->dev,
"CP: AHB bus error, CP_RL_ERROR_DETAILS_0:0x%x CP_RL_ERROR_DETAILS_1:0x%x\n",
err_details_0, err_details_1);
break;
}
case GEN8_INT_ATBASYNCFIFOOVERFLOW:
dev_crit_ratelimited(device->dev, "RBBM: ATB ASYNC overflow\n");
break;
case GEN8_INT_ATBBUSOVERFLOW:
dev_crit_ratelimited(device->dev, "RBBM: ATB bus overflow\n");
break;
case GEN8_INT_OUTOFBOUNDACCESS:
dev_crit_ratelimited(device->dev, "UCHE: Out of bounds access\n");
break;
case GEN8_INT_UCHETRAPINTERRUPT:
dev_crit_ratelimited(device->dev, "UCHE: Trap interrupt\n");
break;
case GEN8_INT_TSBWRITEERROR:
{
u32 lo, hi;
kgsl_regread(device, GEN8_RBBM_SECVID_TSB_STATUS_LO, &lo);
kgsl_regread(device, GEN8_RBBM_SECVID_TSB_STATUS_HI, &hi);
dev_crit_ratelimited(device->dev, "TSB: Write error interrupt: Address: 0x%lx MID: %lu\n",
FIELD_GET(GENMASK(16, 0), hi) << 32 | lo,
FIELD_GET(GENMASK(31, 23), hi));
break;
}
default:
dev_crit_ratelimited(device->dev, "Unknown interrupt %d\n", bit);
}
}
static const char *const uche_client[] = {
"BR_VFD", "BR_SP", "BR_VSC", "BR_VPC",
"BR_HLSQ", "BR_PC", "BR_LRZ", "BR_TP",
"BV_VFD", "BV_SP", "BV_VSC", "BV_VPC",
"BV_HLSQ", "BV_PC", "BV_LRZ", "BV_TP",
"STCHE",
};
static const char *const uche_lpac_client[] = {
"-", "SP_LPAC", "-", "-", "HLSQ_LPAC", "-", "-", "TP_LPAC"
};
#define SCOOBYDOO 0x5c00bd00
static const char *gen8_fault_block_uche(struct kgsl_device *device,
char *str, int size, bool lpac)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
u32 uche_client_id = adreno_dev->uche_client_pf;
const char *uche_client_str, *fault_block;
/*
* Smmu driver takes a vote on CX gdsc before calling the kgsl
* pagefault handler. If there is contention for device mutex in this
* path and the dispatcher fault handler is holding this lock, trying
* to turn off CX gdsc will fail during the reset. So to avoid blocking
* here, try to lock device mutex and return if it fails.
*/
if (!mutex_trylock(&device->mutex))
goto regread_fail;
if (!kgsl_state_is_awake(device)) {
mutex_unlock(&device->mutex);
goto regread_fail;
}
kgsl_regread(device, GEN8_UCHE_CLIENT_PF, &uche_client_id);
mutex_unlock(&device->mutex);
/* Ignore the value if the gpu is in IFPC */
if (uche_client_id == SCOOBYDOO) {
uche_client_id = adreno_dev->uche_client_pf;
goto regread_fail;
}
/* UCHE client id mask is bits [6:0] */
uche_client_id &= GENMASK(6, 0);
regread_fail:
if (lpac) {
fault_block = "UCHE_LPAC";
if (uche_client_id >= ARRAY_SIZE(uche_lpac_client))
goto fail;
uche_client_str = uche_lpac_client[uche_client_id];
} else {
fault_block = "UCHE";
if (uche_client_id >= ARRAY_SIZE(uche_client))
goto fail;
uche_client_str = uche_client[uche_client_id];
}
snprintf(str, size, "%s: %s", fault_block, uche_client_str);
return str;
fail:
snprintf(str, size, "%s: Unknown (client_id: %u)",
fault_block, uche_client_id);
return str;
}
static const char *gen8_iommu_fault_block(struct kgsl_device *device,
u32 fsynr1)
{
u32 mid = fsynr1 & 0xff;
static char str[36];
switch (mid) {
case 0x0:
return "CP";
case 0x1:
return "UCHE: Unknown";
case 0x2:
return "UCHE_LPAC: Unknown";
case 0x3:
return gen8_fault_block_uche(device, str, sizeof(str), false);
case 0x4:
return "CCU";
case 0x5:
return "Flag cache";
case 0x6:
return "PREFETCH";
case 0x7:
return "GMU";
case 0x8:
return gen8_fault_block_uche(device, str, sizeof(str), true);
case 0x9:
return "UCHE_HPAC";
}
snprintf(str, sizeof(str), "Unknown (mid: %u)", mid);
return str;
}
static void gen8_cp_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (adreno_is_preemption_enabled(adreno_dev))
gen8_preemption_trigger(adreno_dev, true);
adreno_dispatcher_schedule(device);
}
/*
* gen8_gpc_err_int_callback() - Isr for GPC error interrupts
* @adreno_dev: Pointer to device
* @bit: Interrupt bit
*/
static void gen8_gpc_err_int_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
/*
* GPC error is typically the result of mistake SW programming.
* Force GPU fault for this interrupt so that we can debug it
* with help of register dump.
*/
dev_crit(device->dev, "RBBM: GPC error\n");
adreno_irqctrl(adreno_dev, 0);
/* Trigger a fault in the dispatcher - this will effect a restart */
adreno_dispatcher_fault(adreno_dev, ADRENO_SOFT_FAULT);
}
/*
* gen8_swfuse_violation_callback() - ISR for software fuse violation interrupt
* @adreno_dev: Pointer to device
* @bit: Interrupt bit
*/
static void gen8_swfuse_violation_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 status;
/*
* SWFUSEVIOLATION error is typically the result of enabling software
* feature which is not supported by the hardware. Following are the
* Feature violation will be reported
* 1) FASTBLEND (BIT:0): NO Fault, RB will send the workload to legacy
* blender HW pipeline.
* 2) LPAC (BIT:1): Fault
* 3) RAYTRACING (BIT:2): Fault
*/
kgsl_regread(device, GEN8_RBBM_SW_FUSE_INT_STATUS, &status);
/*
* RBBM_INT_CLEAR_CMD will not clear SWFUSEVIOLATION interrupt. Hence
* do explicit swfuse irq clear.
*/
kgsl_regwrite(device, GEN8_RBBM_SW_FUSE_INT_MASK, 0);
dev_crit_ratelimited(device->dev,
"RBBM: SW Feature Fuse violation status=0x%8.8x\n", status);
/* Trigger a fault in the dispatcher for LPAC and RAYTRACING violation */
if (status & GENMASK(GEN8_RAYTRACING_SW_FUSE, GEN8_LPAC_SW_FUSE)) {
adreno_irqctrl(adreno_dev, 0);
adreno_dispatcher_fault(adreno_dev, ADRENO_HARD_FAULT);
}
}
static const struct adreno_irq_funcs gen8_irq_funcs[32] = {
ADRENO_IRQ_CALLBACK(NULL), /* 0 - RBBM_GPU_IDLE */
ADRENO_IRQ_CALLBACK(gen8_err_callback), /* 1 - RBBM_AHB_ERROR */
ADRENO_IRQ_CALLBACK(NULL), /* 2 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 3 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 4 - CPIPCINT0 */
ADRENO_IRQ_CALLBACK(NULL), /* 5 - CPIPCINT1 */
ADRENO_IRQ_CALLBACK(gen8_err_callback), /* 6 - ATBASYNCOVERFLOW */
ADRENO_IRQ_CALLBACK(gen8_gpc_err_int_callback), /* 7 - GPC_ERR */
ADRENO_IRQ_CALLBACK(gen8_preemption_callback),/* 8 - CP_SW */
ADRENO_IRQ_CALLBACK(gen8_cp_hw_err_callback), /* 9 - CP_HW_ERROR */
ADRENO_IRQ_CALLBACK(NULL), /* 10 - CP_CCU_FLUSH_DEPTH_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 11 - CP_CCU_FLUSH_COLOR_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 12 - CP_CCU_RESOLVE_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 13 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 14 - UNUSED */
ADRENO_IRQ_CALLBACK(adreno_cp_callback), /* 15 - CP_RB_INT */
ADRENO_IRQ_CALLBACK(NULL), /* 16 - CP_RB_INT_LPAC*/
ADRENO_IRQ_CALLBACK(NULL), /* 17 - CP_RB_DONE_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 18 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 19 - UNUSED */
ADRENO_IRQ_CALLBACK(gen8_cp_callback), /* 20 - CP_CACHE_FLUSH_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 21 - CP_CACHE_TS_LPAC */
ADRENO_IRQ_CALLBACK(gen8_err_callback), /* 22 - RBBM_ATB_BUS_OVERFLOW */
ADRENO_IRQ_CALLBACK(adreno_hang_int_callback), /* 23 - MISHANGDETECT */
ADRENO_IRQ_CALLBACK(gen8_err_callback), /* 24 - UCHE_OOB_ACCESS */
ADRENO_IRQ_CALLBACK(gen8_err_callback), /* 25 - UCHE_TRAP_INTR */
ADRENO_IRQ_CALLBACK(NULL), /* 26 - DEBBUS_INTR_0 */
ADRENO_IRQ_CALLBACK(NULL), /* 27 - DEBBUS_INTR_1 */
ADRENO_IRQ_CALLBACK(gen8_err_callback), /* 28 - TSBWRITEERROR */
ADRENO_IRQ_CALLBACK(gen8_swfuse_violation_callback), /* 29 - SWFUSEVIOLATION */
ADRENO_IRQ_CALLBACK(NULL), /* 30 - ISDB_CPU_IRQ */
ADRENO_IRQ_CALLBACK(NULL), /* 31 - ISDB_UNDER_DEBUG */
};
/*
* If the AHB fence is not in ALLOW mode when we receive an RBBM
* interrupt, something went wrong. This means that we cannot proceed
* since the IRQ status and clear registers are not accessible.
* This is usually harmless because the GMU will abort power collapse
* and change the fence back to ALLOW. Poll so that this can happen.
*/
static int gen8_irq_poll_fence(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
u32 status, fence, fence_retries = 0;
u64 a, b, c;
a = gpudev->read_alwayson(adreno_dev);
kgsl_regread(device, GEN8_GMUAO_AHB_FENCE_CTRL, &fence);
while (fence != 0) {
b = gpudev->read_alwayson(adreno_dev);
/* Wait for small time before trying again */
udelay(1);
kgsl_regread(device, GEN8_GMUAO_AHB_FENCE_CTRL, &fence);
if (fence_retries == 100 && fence != 0) {
c = gpudev->read_alwayson(adreno_dev);
kgsl_regread(device, GEN8_GMUAO_RBBM_INT_UNMASKED_STATUS_SHADOW,
&status);
dev_crit_ratelimited(device->dev,
"status=0x%x Unmasked status=0x%x Mask=0x%x timestamps: %llx %llx %llx\n",
status & adreno_dev->irq_mask, status,
adreno_dev->irq_mask, a, b, c);
return -ETIMEDOUT;
}
fence_retries++;
}
return 0;
}
static irqreturn_t gen8_irq_handler(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
irqreturn_t ret = IRQ_NONE;
u32 status;
/*
* GPU can power down once the INT_0_STATUS is read below.
* But there still might be some register reads required so
* force the GMU/GPU into KEEPALIVE mode until done with the ISR.
*/
gen8_gpu_keepalive(adreno_dev, true);
if (gen8_irq_poll_fence(adreno_dev)) {
adreno_dispatcher_fault(adreno_dev, ADRENO_GMU_FAULT);
goto done;
}
kgsl_regread(device, GEN8_RBBM_INT_0_STATUS, &status);
kgsl_regwrite(device, GEN8_RBBM_INT_CLEAR_CMD, status);
ret = adreno_irq_callbacks(adreno_dev, gen8_irq_funcs, status);
trace_kgsl_gen8_irq_status(adreno_dev, status);
done:
/* If hard fault, then let snapshot turn off the keepalive */
if (!(adreno_gpu_fault(adreno_dev) & ADRENO_HARD_FAULT))
gen8_gpu_keepalive(adreno_dev, false);
return ret;
}
static irqreturn_t gen8_cx_host_irq_handler(int irq, void *data)
{
struct kgsl_device *device = data;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
u32 status;
adreno_cx_misc_regread(adreno_dev, GEN8_GPU_CX_MISC_INT_0_STATUS, &status);
adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_INT_CLEAR_CMD, status);
if (status & BIT(GEN8_CX_MISC_GPU_CC_IRQ))
KGSL_PWRCTRL_LOG_FREQLIM(device);
if (status & ~GEN8_CX_MISC_INT_MASK)
dev_err_ratelimited(device->dev, "Unhandled CX MISC interrupts 0x%lx\n",
status & ~GEN8_CX_MISC_INT_MASK);
return IRQ_HANDLED;
}
int gen8_probe_common(struct platform_device *pdev,
struct adreno_device *adreno_dev, u32 chipid,
const struct adreno_gpu_core *gpucore)
{
const struct adreno_gpudev *gpudev = gpucore->gpudev;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen8_core *gen8_core = container_of(gpucore,
struct adreno_gen8_core, base);
int ret;
adreno_dev->gpucore = gpucore;
adreno_dev->chipid = chipid;
adreno_reg_offset_init(gpudev->reg_offsets);
adreno_dev->hwcg_enabled = true;
adreno_dev->uche_client_pf = 1;
kgsl_pwrscale_fast_bus_hint(gen8_core->fast_bus_hint);
device->pwrctrl.cx_cfg_gdsc_offset = GEN8_GPU_CC_CX_CFG_GDSCR;
device->pwrctrl.rt_bus_hint = gen8_core->rt_bus_hint;
device->cx_host_irq_num = kgsl_request_irq_optional(pdev,
"cx_host_irq", gen8_cx_host_irq_handler, device);
ret = adreno_device_probe(pdev, adreno_dev);
if (ret)
return ret;
if (adreno_preemption_feature_set(adreno_dev)) {
adreno_dev->preempt.preempt_level = gen8_core->preempt_level;
adreno_dev->preempt.skipsaverestore = true;
adreno_dev->preempt.usesgmem = true;
set_bit(ADRENO_DEVICE_PREEMPTION, &adreno_dev->priv);
}
/* debugfs node for ACD calibration */
debugfs_create_file("acd_calibrate", 0644, device->d_debugfs, device, &acd_cal_fops);
/* Dump additional AQE 16KB data on top of default 128KB(64(BR)+64(BV)) */
device->snapshot_ctxt_record_size = ADRENO_FEATURE(adreno_dev, ADRENO_AQE) ?
(GEN8_SNAPSHOT_CTXRECORD_SIZE_IN_BYTES + SZ_16K) :
GEN8_SNAPSHOT_CTXRECORD_SIZE_IN_BYTES;
return 0;
}
/* Register offset defines for Gen8, in order of enum adreno_regs */
static u32 gen8_register_offsets[ADRENO_REG_REGISTER_MAX] = {
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_BASE, GEN8_CP_RB_BASE_LO_GC),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_BASE_HI, GEN8_CP_RB_BASE_HI_GC),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_RPTR, GEN8_CP_RB_RPTR_BR),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_WPTR, GEN8_CP_RB_WPTR_GC),
ADRENO_REG_DEFINE(ADRENO_REG_CP_ME_CNTL, GEN8_CP_SQE_CNTL),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB1_BASE, GEN8_CP_IB1_BASE_LO_PIPE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB1_BASE_HI, GEN8_CP_IB1_BASE_HI_PIPE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB1_BUFSZ, GEN8_CP_IB1_REM_SIZE_PIPE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB2_BASE, GEN8_CP_IB2_BASE_LO_PIPE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB2_BASE_HI, GEN8_CP_IB2_BASE_HI_PIPE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB2_BUFSZ, GEN8_CP_IB2_REM_SIZE_PIPE),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_STATUS, GEN8_RBBM_STATUS),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_INT_0_MASK, GEN8_RBBM_INT_0_MASK),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_SW_RESET_CMD, GEN8_RBBM_SW_RESET_CMD),
ADRENO_REG_DEFINE(ADRENO_REG_GMU_AO_HOST_INTERRUPT_MASK,
GEN8_GMUAO_AO_HOST_INTERRUPT_MASK),
ADRENO_REG_DEFINE(ADRENO_REG_GMU_GMU2HOST_INTR_MASK,
GEN8_GMUCX_GMU2HOST_INTR_MASK),
};
static u32 _get_pipeid(u32 groupid)
{
switch (groupid) {
case KGSL_PERFCOUNTER_GROUP_BV_PC:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_BV_VFD:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_BV_VPC:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_BV_TSE:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_BV_RAS:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_BV_LRZ:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_BV_HLSQ:
return PIPE_BV;
case KGSL_PERFCOUNTER_GROUP_PC:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_VFD:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_HLSQ:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_VPC:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_CCU:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_CMP:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_TSE:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_RAS:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_LRZ:
fallthrough;
case KGSL_PERFCOUNTER_GROUP_RB:
return PIPE_BR;
default:
return PIPE_NONE;
}
}
int gen8_perfcounter_remove(struct adreno_device *adreno_dev,
struct adreno_perfcount_register *reg, u32 groupid)
{
const struct adreno_perfcounters *counters = ADRENO_PERFCOUNTERS(adreno_dev);
struct gen8_device *gen8_dev = container_of(adreno_dev, struct gen8_device, adreno_dev);
const struct adreno_perfcount_group *group;
void *ptr = adreno_dev->pwrup_reglist->hostptr;
struct cpu_gpu_lock *lock = ptr;
u32 offset = ((lock->ifpc_list_len + lock->preemption_list_len) * 2) +
(gen8_dev->ext_pwrup_list_len * 3);
int i, last_offset, num_removed, start_offset = -1;
u32 *data = ptr + sizeof(*lock), pipe = FIELD_PREP(GENMASK(13, 12), _get_pipeid(groupid));
u16 perfcntr_list_len = lock->dynamic_list_len - gen8_dev->ext_pwrup_list_len;
if (!perfcntr_list_len)
return -EINVAL;
group = &(counters->groups[groupid]);
if (!(group->flags & ADRENO_PERFCOUNTER_GROUP_RESTORE)) {
if (perfcntr_list_len != 2)
return 0;
if (kgsl_hwlock(lock)) {
kgsl_hwunlock(lock);
return -EBUSY;
}
goto disable_perfcounter;
}
last_offset = offset + (perfcntr_list_len * 3);
/* Look for the perfcounter to remove in the list */
for (i = 0; i < perfcntr_list_len - 2; i++) {
if ((data[offset + 1] == reg->select) && (data[offset] == pipe)) {
start_offset = offset;
break;
}
offset += 3;
}
if (start_offset == -1)
return -ENOENT;
for (i = 0; i < PERFCOUNTER_REG_DEPENDENCY_LEN && reg->reg_dependency[i]; i++)
offset += 3;
if (kgsl_hwlock(lock)) {
kgsl_hwunlock(lock);
return -EBUSY;
}
/* Let offset point to the first entry that is going to be retained */
offset += 3;
memcpy(&data[start_offset], &data[offset], (last_offset - offset) * sizeof(u32));
memset(&data[start_offset + (last_offset - offset)], 0,
(offset - start_offset) * sizeof(u32));
num_removed = offset - start_offset;
do_div(num_removed, 3);
lock->dynamic_list_len -= num_removed;
disable_perfcounter:
/*
* If dynamic list length is 2 and no_restore_count is 0, then we can remove
* the perfcounter controls from the list.
*/
if (perfcntr_list_len == 2 && !adreno_dev->no_restore_count) {
memset(&data[offset], 0, 6 * sizeof(u32));
lock->dynamic_list_len = gen8_dev->ext_pwrup_list_len;
}
kgsl_hwunlock(lock);
return 0;
}
int gen8_perfcounter_update(struct adreno_device *adreno_dev,
struct adreno_perfcount_register *reg, bool update_reg, u32 pipe, unsigned long flags)
{
struct gen8_device *gen8_dev = container_of(adreno_dev, struct gen8_device, adreno_dev);
void *ptr = adreno_dev->pwrup_reglist->hostptr;
struct cpu_gpu_lock *lock = ptr;
u32 offset = ((lock->ifpc_list_len + lock->preemption_list_len) * 2) +
(gen8_dev->ext_pwrup_list_len * 3);
u32 *data = ptr + sizeof(*lock);
int i, start_offset = -1;
u16 perfcntr_list_len = lock->dynamic_list_len - gen8_dev->ext_pwrup_list_len;
if (flags & ADRENO_PERFCOUNTER_GROUP_RESTORE) {
for (i = 0; i < perfcntr_list_len - 2; i++) {
if ((data[offset + 1] == reg->select) && (data[offset] == pipe)) {
start_offset = offset;
break;
}
offset += 3;
}
} else if (perfcntr_list_len) {
goto update;
}
if (kgsl_hwlock(lock)) {
kgsl_hwunlock(lock);
return -EBUSY;
}
/*
* If the perfcounter select register is already present in reglist
* update it, otherwise append the <aperture, select register, value>
* triplet to the end of the list.
*/
if (start_offset != -1) {
data[offset + 2] = reg->countable;
for (i = 0; i < PERFCOUNTER_REG_DEPENDENCY_LEN && reg->reg_dependency[i]; i++) {
offset += 3;
data[offset + 2] = reg->countable;
}
kgsl_hwunlock(lock);
goto update;
}
/* Initialize the lock->dynamic_list_len to account for perfcounter controls */
if (!perfcntr_list_len)
lock->dynamic_list_len = gen8_dev->ext_pwrup_list_len + 2;
/*
* For all targets GEN8_SLICE_RBBM_PERFCTR_CNTL needs to be the last entry,
* so overwrite the existing GEN8_SLICE_RBBM_PERFCNTL_CNTL and add it back to
* the end.
*/
if (flags & ADRENO_PERFCOUNTER_GROUP_RESTORE) {
data[offset++] = pipe;
data[offset++] = reg->select;
data[offset++] = reg->countable;
lock->dynamic_list_len++;
for (i = 0; i < PERFCOUNTER_REG_DEPENDENCY_LEN && reg->reg_dependency[i]; i++) {
data[offset++] = pipe;
data[offset++] = reg->reg_dependency[i];
data[offset++] = reg->countable;
lock->dynamic_list_len++;
}
}
data[offset++] = FIELD_PREP(GENMASK(15, 12), PIPE_NONE);
data[offset++] = GEN8_RBBM_PERFCTR_CNTL;
data[offset++] = 1;
data[offset++] = FIELD_PREP(GENMASK(15, 12), PIPE_NONE);
data[offset++] = GEN8_RBBM_SLICE_PERFCTR_CNTL;
data[offset++] = 1;
kgsl_hwunlock(lock);
update:
if (update_reg) {
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
kgsl_regwrite(device, reg->select, reg->countable);
for (i = 0; i < PERFCOUNTER_REG_DEPENDENCY_LEN && reg->reg_dependency[i]; i++)
kgsl_regwrite(device, reg->reg_dependency[i], reg->countable);
}
return 0;
}
static u64 gen8_read_alwayson(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 lo = 0, hi = 0, tmp = 0;
/* Always use the GMU AO counter when doing a AHB read */
gmu_core_regread(device, GEN8_GMUCX_AO_COUNTER_HI, &hi);
gmu_core_regread(device, GEN8_GMUCX_AO_COUNTER_LO, &lo);
/* Check for overflow */
gmu_core_regread(device, GEN8_GMUCX_AO_COUNTER_HI, &tmp);
if (hi != tmp) {
gmu_core_regread(device, GEN8_GMUCX_AO_COUNTER_LO,
&lo);
hi = tmp;
}
return (((u64) hi) << 32) | lo;
}
static int gen8_lpac_store(struct adreno_device *adreno_dev, bool enable)
{
if (!ADRENO_FEATURE(adreno_dev, ADRENO_LPAC))
return -EINVAL;
if (!(adreno_dev->feature_fuse & BIT(GEN8_LPAC_SW_FUSE)) ||
(adreno_dev->lpac_enabled == enable))
return 0;
/* Power down the GPU before changing the lpac setting */
return adreno_power_cycle_bool(adreno_dev, &adreno_dev->lpac_enabled, enable);
}
static void gen8_remove(struct adreno_device *adreno_dev)
{
if (adreno_preemption_feature_set(adreno_dev))
del_timer(&adreno_dev->preempt.timer);
}
static void gen8_read_bus_stats(struct kgsl_device *device,
struct kgsl_power_stats *stats,
struct adreno_busy_data *busy)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
u64 ram_cycles, starved_ram;
ram_cycles = counter_delta(device, adreno_dev->ram_cycles_lo,
&busy->bif_ram_cycles);
starved_ram = counter_delta(device, adreno_dev->starved_ram_lo,
&busy->bif_starved_ram);
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch1_read,
&busy->bif_ram_cycles_read_ch1);
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch0_write,
&busy->bif_ram_cycles_write_ch0);
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch1_write,
&busy->bif_ram_cycles_write_ch1);
starved_ram += counter_delta(device,
adreno_dev->starved_ram_lo_ch1,
&busy->bif_starved_ram_ch1);
stats->ram_time = ram_cycles;
stats->ram_wait = starved_ram;
}
static void gen8_power_stats(struct adreno_device *adreno_dev,
struct kgsl_power_stats *stats)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_busy_data *busy = &adreno_dev->busy_data;
u64 gpu_busy;
/* Set the GPU busy counter for frequency scaling */
gpu_busy = counter_delta(device, GEN8_GMUCX_POWER_COUNTER_XOCLK_L_0,
&busy->gpu_busy);
stats->busy_time = gpu_busy * 10;
do_div(stats->busy_time, 192);
if (ADRENO_FEATURE(adreno_dev, ADRENO_IFPC)) {
u32 ifpc = counter_delta(device,
GEN8_GMUCX_POWER_COUNTER_XOCLK_L_4,
&busy->num_ifpc);
adreno_dev->ifpc_count += ifpc;
if (ifpc > 0)
trace_adreno_ifpc_count(adreno_dev->ifpc_count);
}
if (device->pwrctrl.bus_control)
gen8_read_bus_stats(device, stats, busy);
if (adreno_dev->bcl_enabled) {
u32 a, b, c, bcl_throttle;
a = counter_delta(device, GEN8_GMUCX_POWER_COUNTER_XOCLK_L_1,
&busy->throttle_cycles[0]);
b = counter_delta(device, GEN8_GMUCX_POWER_COUNTER_XOCLK_L_2,
&busy->throttle_cycles[1]);
c = counter_delta(device, GEN8_GMUCX_POWER_COUNTER_XOCLK_L_3,
&busy->throttle_cycles[2]);
if (a || b || c)
trace_kgsl_bcl_clock_throttling(a, b, c);
bcl_throttle = counter_delta(device,
GEN8_GMUCX_POWER_COUNTER_XOCLK_L_5, &busy->bcl_throttle);
/*
* This counts number of cycles throttled in XO cycles. Convert it to
* micro seconds by dividing by XO freq which is 19.2MHz.
*/
adreno_dev->bcl_throttle_time_us += ((bcl_throttle * 10) / 192);
}
}
static int gen8_setproperty(struct kgsl_device_private *dev_priv,
u32 type, void __user *value, u32 sizebytes)
{
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
u32 enable;
if (type != KGSL_PROP_PWRCTRL)
return -ENODEV;
if (sizebytes != sizeof(enable))
return -EINVAL;
if (copy_from_user(&enable, value, sizeof(enable)))
return -EFAULT;
mutex_lock(&device->mutex);
if (enable) {
clear_bit(GMU_DISABLE_SLUMBER, &device->gmu_core.flags);
kgsl_pwrscale_enable(device);
} else {
set_bit(GMU_DISABLE_SLUMBER, &device->gmu_core.flags);
if (!adreno_active_count_get(adreno_dev))
adreno_active_count_put(adreno_dev);
kgsl_pwrscale_disable(device, true);
}
mutex_unlock(&device->mutex);
return 0;
}
static void gen8_set_isdb_breakpoint_registers(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct clk *clk;
int ret;
if (!device->set_isdb_breakpoint || device->ftbl->is_hwcg_on(device)
|| device->qdss_gfx_virt == NULL || !device->force_panic)
return;
clk = clk_get(&device->pdev->dev, "apb_pclk");
if (IS_ERR(clk)) {
dev_err(device->dev, "Unable to get QDSS clock\n");
goto err;
}
ret = clk_prepare_enable(clk);
if (ret) {
dev_err(device->dev, "QDSS Clock enable error: %d\n", ret);
clk_put(clk);
goto err;
}
/* Issue break command for SPs */
isdb_write(device->qdss_gfx_virt, 0x0000);
isdb_write(device->qdss_gfx_virt, 0x1000);
isdb_write(device->qdss_gfx_virt, 0x2000);
isdb_write(device->qdss_gfx_virt, 0x3000);
isdb_write(device->qdss_gfx_virt, 0x4000);
isdb_write(device->qdss_gfx_virt, 0x5000);
isdb_write(device->qdss_gfx_virt, 0x6000);
isdb_write(device->qdss_gfx_virt, 0x7000);
isdb_write(device->qdss_gfx_virt, 0x8000);
isdb_write(device->qdss_gfx_virt, 0x9000);
isdb_write(device->qdss_gfx_virt, 0xa000);
isdb_write(device->qdss_gfx_virt, 0xb000);
clk_disable_unprepare(clk);
clk_put(clk);
return;
err:
/* Do not force kernel panic if isdb writes did not go through */
device->force_panic = false;
}
static void gen8_swfuse_irqctrl(struct adreno_device *adreno_dev, bool state)
{
kgsl_regwrite(KGSL_DEVICE(adreno_dev), GEN8_RBBM_SW_FUSE_INT_MASK,
state ? GEN8_SW_FUSE_INT_MASK : 0);
}
static void gen8_lpac_fault_header(struct adreno_device *adreno_dev,
struct kgsl_drawobj *drawobj)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_context *drawctxt;
u32 status = 0, rptr = 0, wptr = 0, ib1sz = 0, ib2sz = 0, ib3sz = 0;
u64 ib1base = 0, ib2base = 0, ib3base = 0;
bool gx_on = adreno_gx_is_on(adreno_dev);
drawctxt = ADRENO_CONTEXT(drawobj->context);
drawobj->context->last_faulted_cmd_ts = drawobj->timestamp;
drawobj->context->total_fault_count++;
pr_context(device, drawobj->context,
"LPAC ctx %u ctx_type %s ts %u policy %lX dispatch_queue=%d\n",
drawobj->context->id, kgsl_context_type(drawctxt->type),
drawobj->timestamp, CMDOBJ(drawobj)->fault_recovery,
drawobj->context->gmu_dispatch_queue);
pr_context(device, drawobj->context, "lpac cmdline: %s\n",
drawctxt->base.proc_priv->cmdline);
if (!gen8_gmu_rpmh_pwr_state_is_active(device) || !gx_on)
goto done;
kgsl_regread(device, GEN8_RBBM_LPAC_STATUS, &status);
kgsl_regread(device, GEN8_CP_RB_RPTR_LPAC, &rptr);
kgsl_regread(device, GEN8_CP_RB_WPTR_LPAC, &wptr);
gen8_regread64_aperture(device, GEN8_CP_IB1_BASE_LO_PIPE,
GEN8_CP_IB1_BASE_HI_PIPE, &ib1base, PIPE_LPAC, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB1_REM_SIZE_PIPE, &ib1sz, PIPE_LPAC, 0, 0);
gen8_regread64_aperture(device, GEN8_CP_IB2_BASE_LO_PIPE,
GEN8_CP_IB2_BASE_HI_PIPE, &ib2base, PIPE_LPAC, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB2_REM_SIZE_PIPE, &ib2sz, PIPE_LPAC, 0, 0);
gen8_regread64_aperture(device, GEN8_CP_IB3_BASE_LO_PIPE,
GEN8_CP_IB3_BASE_HI_PIPE, &ib3base, PIPE_LPAC, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB3_REM_SIZE_PIPE, &ib3sz, PIPE_LPAC, 0, 0);
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
pr_context(device, drawobj->context,
"LPAC: status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x ib3 %16.16llX/%4.4x\n",
status, rptr, wptr, ib1base, ib1sz, ib2base, ib2sz, ib3base, ib3sz);
done:
trace_adreno_gpu_fault(drawobj->context->id, drawobj->timestamp, status,
rptr, wptr, ib1base, ib1sz, ib2base, ib2sz,
adreno_get_level(drawobj->context));
}
static void gen8_fault_header(struct adreno_device *adreno_dev,
struct kgsl_drawobj *drawobj)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_context *drawctxt;
u32 status = 0, rptr = 0, wptr = 0, ib1sz = 0, ib2sz = 0, ib3sz, rptr_bv = 0;
u32 ib1sz_bv = 0, ib2sz_bv = 0, ib3sz_bv, gfx_status, gfx_br_status, gfx_bv_status;
u64 ib1base = 0, ib2base = 0, ib3base, ib1base_bv = 0, ib2base_bv, ib3base_bv;
u32 ctxt_id = 0, ts = 0;
int rb_id = -1;
bool gx_on = adreno_gx_is_on(adreno_dev);
if (drawobj) {
drawctxt = ADRENO_CONTEXT(drawobj->context);
drawobj->context->last_faulted_cmd_ts = drawobj->timestamp;
drawobj->context->total_fault_count++;
ctxt_id = drawobj->context->id;
ts = drawobj->timestamp;
rb_id = adreno_get_level(drawobj->context);
pr_context(device, drawobj->context, "ctx %u ctx_type %s ts %u policy %lX\n",
drawobj->context->id, kgsl_context_type(drawctxt->type),
drawobj->timestamp, CMDOBJ(drawobj)->fault_recovery);
pr_context(device, drawobj->context, "cmdline: %s\n",
drawctxt->base.proc_priv->cmdline);
}
if (!gen8_gmu_rpmh_pwr_state_is_active(device) || !gx_on)
goto done;
kgsl_regread(device, GEN8_RBBM_STATUS, &status);
kgsl_regread(device, GEN8_RBBM_GFX_STATUS, &gfx_status);
kgsl_regread(device, GEN8_RBBM_GFX_BV_STATUS, &gfx_bv_status);
kgsl_regread(device, GEN8_RBBM_GFX_BR_STATUS, &gfx_br_status);
kgsl_regread(device, GEN8_CP_RB_RPTR_BR, &rptr);
kgsl_regread(device, GEN8_CP_RB_WPTR_GC, &wptr);
kgsl_regread(device, GEN8_CP_RB_RPTR_BV, &rptr_bv);
gen8_regread64_aperture(device, GEN8_CP_IB1_BASE_LO_PIPE,
GEN8_CP_IB1_BASE_HI_PIPE, &ib1base, PIPE_BR, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB1_REM_SIZE_PIPE, &ib1sz, PIPE_BR, 0, 0);
gen8_regread64_aperture(device, GEN8_CP_IB2_BASE_LO_PIPE,
GEN8_CP_IB2_BASE_HI_PIPE, &ib2base, PIPE_BR, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB2_REM_SIZE_PIPE, &ib2sz, PIPE_BR, 0, 0);
gen8_regread64_aperture(device, GEN8_CP_IB3_BASE_LO_PIPE,
GEN8_CP_IB3_BASE_HI_PIPE, &ib3base, PIPE_BR, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB3_REM_SIZE_PIPE, &ib3sz, PIPE_BR, 0, 0);
gen8_regread64_aperture(device, GEN8_CP_IB1_BASE_LO_PIPE,
GEN8_CP_IB1_BASE_HI_PIPE, &ib1base_bv, PIPE_BV, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB1_REM_SIZE_PIPE, &ib1sz_bv, PIPE_BV, 0, 0);
gen8_regread64_aperture(device, GEN8_CP_IB2_BASE_LO_PIPE,
GEN8_CP_IB2_BASE_HI_PIPE, &ib2base_bv, PIPE_BV, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB2_REM_SIZE_PIPE, &ib2sz_bv, PIPE_BV, 0, 0);
gen8_regread64_aperture(device, GEN8_CP_IB3_BASE_LO_PIPE,
GEN8_CP_IB3_BASE_HI_PIPE, &ib3base_bv, PIPE_BV, 0, 0);
gen8_regread_aperture(device, GEN8_CP_IB3_REM_SIZE_PIPE, &ib3sz_bv, PIPE_BV, 0, 0);
gen8_host_aperture_set(adreno_dev, 0, 0, 0);
dev_err(device->dev,
"status %8.8X gfx_status %8.8X gfx_br_status %8.8X gfx_bv_status %8.8X\n",
status, gfx_status, gfx_br_status, gfx_bv_status);
dev_err(device->dev,
"BR: rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x ib3 %16.16llX/%4.4x\n",
rptr, wptr, ib1base, ib1sz, ib2base, ib2sz, ib3base, ib3sz);
dev_err(device->dev,
"BV: rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x ib3 %16.16llX/%4.4x\n",
rptr_bv, wptr, ib1base_bv, ib1sz_bv, ib2base_bv, ib2sz_bv, ib3base_bv, ib3sz_bv);
done:
trace_adreno_gpu_fault(ctxt_id, ts, status,
rptr, wptr, ib1base, ib1sz, ib2base, ib2sz, rb_id);
}
const struct gen8_gpudev adreno_gen8_hwsched_gpudev = {
.base = {
.reg_offsets = gen8_register_offsets,
.probe = gen8_hwsched_probe,
.snapshot = gen8_hwsched_snapshot,
.irq_handler = gen8_irq_handler,
.iommu_fault_block = gen8_iommu_fault_block,
.preemption_context_init = gen8_preemption_context_init,
.context_detach = gen8_hwsched_context_detach,
.read_alwayson = gen8_read_alwayson,
.reset = gen8_hwsched_reset_replay,
.power_ops = &gen8_hwsched_power_ops,
.power_stats = gen8_power_stats,
.setproperty = gen8_setproperty,
.hw_isidle = gen8_hw_isidle,
.add_to_va_minidump = gen8_hwsched_add_to_minidump,
.gx_is_on = gen8_gmu_gx_is_on,
.send_recurring_cmdobj = gen8_hwsched_send_recurring_cmdobj,
.perfcounter_remove = gen8_perfcounter_remove,
.set_isdb_breakpoint_registers = gen8_set_isdb_breakpoint_registers,
.context_destroy = gen8_hwsched_context_destroy,
.lpac_store = gen8_lpac_store,
.get_uche_trap_base = gen8_get_uche_trap_base,
.fault_header = gen8_fault_header,
.lpac_fault_header = gen8_lpac_fault_header,
},
.hfi_probe = gen8_hwsched_hfi_probe,
.hfi_remove = gen8_hwsched_hfi_remove,
.handle_watchdog = gen8_hwsched_handle_watchdog,
};
const struct gen8_gpudev adreno_gen8_gmu_gpudev = {
.base = {
.reg_offsets = gen8_register_offsets,
.probe = gen8_gmu_device_probe,
.snapshot = gen8_gmu_snapshot,
.irq_handler = gen8_irq_handler,
.rb_start = gen8_rb_start,
.gpu_keepalive = gen8_gpu_keepalive,
.hw_isidle = gen8_hw_isidle,
.iommu_fault_block = gen8_iommu_fault_block,
.reset = gen8_gmu_reset,
.preemption_schedule = gen8_preemption_schedule,
.preemption_context_init = gen8_preemption_context_init,
.read_alwayson = gen8_read_alwayson,
.power_ops = &gen8_gmu_power_ops,
.remove = gen8_remove,
.ringbuffer_submitcmd = gen8_ringbuffer_submitcmd,
.power_stats = gen8_power_stats,
.setproperty = gen8_setproperty,
.add_to_va_minidump = gen8_gmu_add_to_minidump,
.gx_is_on = gen8_gmu_gx_is_on,
.perfcounter_remove = gen8_perfcounter_remove,
.set_isdb_breakpoint_registers = gen8_set_isdb_breakpoint_registers,
.swfuse_irqctrl = gen8_swfuse_irqctrl,
.get_uche_trap_base = gen8_get_uche_trap_base,
.fault_header = gen8_fault_header,
},
.hfi_probe = gen8_gmu_hfi_probe,
.handle_watchdog = gen8_gmu_handle_watchdog,
};