android_kernel_samsung_sm86.../qcom/opensource/graphics-kernel/adreno_gen7.c
David Wronek 880d405719 Add 'qcom/opensource/graphics-kernel/' from commit 'b4fdc4c04295ac59109ae19d64747522740c3f14'
git-subtree-dir: qcom/opensource/graphics-kernel
git-subtree-mainline: 992813d9c1
git-subtree-split: b4fdc4c042
Change-Id:
repo: https://git.codelinaro.org/clo/la/platform/vendor/qcom/opensource/graphics-kernel
tag: GRAPHICS.LA.14.0.r1-07700-lanai.0
2024-10-06 16:44:56 +02:00

2254 lines
68 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_device.h>
#include <linux/regulator/consumer.h>
#include <linux/soc/qcom/llcc-qcom.h>
#include <soc/qcom/of_common.h>
#include "adreno.h"
#include "adreno_gen7.h"
#include "adreno_gen7_hwsched.h"
#include "adreno_pm4types.h"
#include "adreno_trace.h"
#include "kgsl_pwrscale.h"
#include "kgsl_trace.h"
#include "kgsl_util.h"
/* IFPC & Preemption static powerup restore list */
static const u32 gen7_pwrup_reglist[] = {
GEN7_UCHE_TRAP_BASE_LO,
GEN7_UCHE_TRAP_BASE_HI,
GEN7_UCHE_WRITE_THRU_BASE_LO,
GEN7_UCHE_WRITE_THRU_BASE_HI,
GEN7_UCHE_GMEM_RANGE_MIN_LO,
GEN7_UCHE_GMEM_RANGE_MIN_HI,
GEN7_UCHE_GMEM_RANGE_MAX_LO,
GEN7_UCHE_GMEM_RANGE_MAX_HI,
GEN7_UCHE_CACHE_WAYS,
GEN7_UCHE_MODE_CNTL,
GEN7_RB_NC_MODE_CNTL,
GEN7_RB_CMP_DBG_ECO_CNTL,
GEN7_GRAS_NC_MODE_CNTL,
GEN7_RB_CONTEXT_SWITCH_GMEM_SAVE_RESTORE,
GEN7_UCHE_GBIF_GX_CONFIG,
GEN7_UCHE_CLIENT_PF,
GEN7_TPL1_DBG_ECO_CNTL1,
};
static const u32 gen7_0_0_pwrup_reglist[] = {
GEN7_UCHE_TRAP_BASE_LO,
GEN7_UCHE_TRAP_BASE_HI,
GEN7_UCHE_WRITE_THRU_BASE_LO,
GEN7_UCHE_WRITE_THRU_BASE_HI,
GEN7_UCHE_GMEM_RANGE_MIN_LO,
GEN7_UCHE_GMEM_RANGE_MIN_HI,
GEN7_UCHE_GMEM_RANGE_MAX_LO,
GEN7_UCHE_GMEM_RANGE_MAX_HI,
GEN7_UCHE_CACHE_WAYS,
GEN7_UCHE_MODE_CNTL,
GEN7_RB_NC_MODE_CNTL,
GEN7_RB_CMP_DBG_ECO_CNTL,
GEN7_SP_NC_MODE_CNTL,
GEN7_GRAS_NC_MODE_CNTL,
GEN7_RB_CONTEXT_SWITCH_GMEM_SAVE_RESTORE,
GEN7_UCHE_GBIF_GX_CONFIG,
GEN7_UCHE_CLIENT_PF,
};
/* IFPC only static powerup restore list */
static const u32 gen7_ifpc_pwrup_reglist[] = {
GEN7_TPL1_NC_MODE_CNTL,
GEN7_SP_NC_MODE_CNTL,
GEN7_CP_DBG_ECO_CNTL,
GEN7_CP_PROTECT_CNTL,
GEN7_CP_LPAC_PROTECT_CNTL,
GEN7_CP_PROTECT_REG,
GEN7_CP_PROTECT_REG+1,
GEN7_CP_PROTECT_REG+2,
GEN7_CP_PROTECT_REG+3,
GEN7_CP_PROTECT_REG+4,
GEN7_CP_PROTECT_REG+5,
GEN7_CP_PROTECT_REG+6,
GEN7_CP_PROTECT_REG+7,
GEN7_CP_PROTECT_REG+8,
GEN7_CP_PROTECT_REG+9,
GEN7_CP_PROTECT_REG+10,
GEN7_CP_PROTECT_REG+11,
GEN7_CP_PROTECT_REG+12,
GEN7_CP_PROTECT_REG+13,
GEN7_CP_PROTECT_REG+14,
GEN7_CP_PROTECT_REG+15,
GEN7_CP_PROTECT_REG+16,
GEN7_CP_PROTECT_REG+17,
GEN7_CP_PROTECT_REG+18,
GEN7_CP_PROTECT_REG+19,
GEN7_CP_PROTECT_REG+20,
GEN7_CP_PROTECT_REG+21,
GEN7_CP_PROTECT_REG+22,
GEN7_CP_PROTECT_REG+23,
GEN7_CP_PROTECT_REG+24,
GEN7_CP_PROTECT_REG+25,
GEN7_CP_PROTECT_REG+26,
GEN7_CP_PROTECT_REG+27,
GEN7_CP_PROTECT_REG+28,
GEN7_CP_PROTECT_REG+29,
GEN7_CP_PROTECT_REG+30,
GEN7_CP_PROTECT_REG+31,
GEN7_CP_PROTECT_REG+32,
GEN7_CP_PROTECT_REG+33,
GEN7_CP_PROTECT_REG+34,
GEN7_CP_PROTECT_REG+35,
GEN7_CP_PROTECT_REG+36,
GEN7_CP_PROTECT_REG+37,
GEN7_CP_PROTECT_REG+38,
GEN7_CP_PROTECT_REG+39,
GEN7_CP_PROTECT_REG+40,
GEN7_CP_PROTECT_REG+41,
GEN7_CP_PROTECT_REG+42,
GEN7_CP_PROTECT_REG+43,
GEN7_CP_PROTECT_REG+44,
GEN7_CP_PROTECT_REG+45,
GEN7_CP_PROTECT_REG+46,
GEN7_CP_PROTECT_REG+47,
GEN7_CP_AHB_CNTL,
};
static const u32 gen7_0_0_ifpc_pwrup_reglist[] = {
GEN7_TPL1_NC_MODE_CNTL,
GEN7_CP_DBG_ECO_CNTL,
GEN7_CP_PROTECT_CNTL,
GEN7_CP_LPAC_PROTECT_CNTL,
GEN7_CP_PROTECT_REG,
GEN7_CP_PROTECT_REG+1,
GEN7_CP_PROTECT_REG+2,
GEN7_CP_PROTECT_REG+3,
GEN7_CP_PROTECT_REG+4,
GEN7_CP_PROTECT_REG+5,
GEN7_CP_PROTECT_REG+6,
GEN7_CP_PROTECT_REG+7,
GEN7_CP_PROTECT_REG+8,
GEN7_CP_PROTECT_REG+9,
GEN7_CP_PROTECT_REG+10,
GEN7_CP_PROTECT_REG+11,
GEN7_CP_PROTECT_REG+12,
GEN7_CP_PROTECT_REG+13,
GEN7_CP_PROTECT_REG+14,
GEN7_CP_PROTECT_REG+15,
GEN7_CP_PROTECT_REG+16,
GEN7_CP_PROTECT_REG+17,
GEN7_CP_PROTECT_REG+18,
GEN7_CP_PROTECT_REG+19,
GEN7_CP_PROTECT_REG+20,
GEN7_CP_PROTECT_REG+21,
GEN7_CP_PROTECT_REG+22,
GEN7_CP_PROTECT_REG+23,
GEN7_CP_PROTECT_REG+24,
GEN7_CP_PROTECT_REG+25,
GEN7_CP_PROTECT_REG+26,
GEN7_CP_PROTECT_REG+27,
GEN7_CP_PROTECT_REG+28,
GEN7_CP_PROTECT_REG+29,
GEN7_CP_PROTECT_REG+30,
GEN7_CP_PROTECT_REG+31,
GEN7_CP_PROTECT_REG+32,
GEN7_CP_PROTECT_REG+33,
GEN7_CP_PROTECT_REG+34,
GEN7_CP_PROTECT_REG+35,
GEN7_CP_PROTECT_REG+36,
GEN7_CP_PROTECT_REG+37,
GEN7_CP_PROTECT_REG+38,
GEN7_CP_PROTECT_REG+39,
GEN7_CP_PROTECT_REG+40,
GEN7_CP_PROTECT_REG+41,
GEN7_CP_PROTECT_REG+42,
GEN7_CP_PROTECT_REG+43,
GEN7_CP_PROTECT_REG+44,
GEN7_CP_PROTECT_REG+45,
GEN7_CP_PROTECT_REG+46,
GEN7_CP_PROTECT_REG+47,
GEN7_CP_AHB_CNTL,
};
/* Gen7_9_x IFPC only static powerup restore list */
static const u32 gen7_9_x_ifpc_pwrup_reglist[] = {
GEN7_TPL1_BICUBIC_WEIGHTS_TABLE_1,
GEN7_TPL1_BICUBIC_WEIGHTS_TABLE_2,
GEN7_TPL1_BICUBIC_WEIGHTS_TABLE_3,
GEN7_TPL1_BICUBIC_WEIGHTS_TABLE_4,
};
static int acd_calibrate_set(void *data, u64 val)
{
struct kgsl_device *device = data;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct gen7_gmu_device *gmu = to_gen7_gmu(adreno_dev);
u32 debug_val = (u32) val;
int ret;
mutex_lock(&device->mutex);
ret = adreno_active_count_get(adreno_dev);
if (ret)
goto err;
ret = gen7_hfi_send_set_value(adreno_dev, HFI_VALUE_DBG, F_PWR_ACD_CALIBRATE, debug_val);
if (!ret)
gmu->acd_debug_val = debug_val;
adreno_active_count_put(adreno_dev);
err:
mutex_unlock(&device->mutex);
return ret;
}
static int acd_calibrate_get(void *data, u64 *val)
{
struct kgsl_device *device = data;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct gen7_gmu_device *gmu = to_gen7_gmu(adreno_dev);
*val = (u64) gmu->acd_debug_val;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(acd_cal_fops, acd_calibrate_get, acd_calibrate_set, "%llu\n");
void gen7_cp_init_cmds(struct adreno_device *adreno_dev, u32 *cmds)
{
u32 i = 0, mask = 0;
/* Disable concurrent binning before sending CP init */
cmds[i++] = cp_type7_packet(CP_THREAD_CONTROL, 1);
cmds[i++] = BIT(27);
/* Use multiple HW contexts */
mask |= BIT(0);
/* Enable error detection */
mask |= BIT(1);
/* Set default reset state */
mask |= BIT(3);
/* Disable save/restore of performance counters across preemption */
mask |= BIT(6);
/* Enable the register init list with the spinlock */
mask |= BIT(8);
/* By default DMS is enabled from CP side, disable it if not supported */
if (!adreno_dev->dms_enabled)
mask |= BIT(11);
cmds[i++] = cp_type7_packet(CP_ME_INIT, 7);
/* Enabled ordinal mask */
cmds[i++] = mask;
cmds[i++] = 0x00000003; /* Set number of HW contexts */
cmds[i++] = 0x20000000; /* Enable error detection */
cmds[i++] = 0x00000002; /* Operation mode mask */
/* Register initialization list with spinlock */
cmds[i++] = lower_32_bits(adreno_dev->pwrup_reglist->gpuaddr);
cmds[i++] = upper_32_bits(adreno_dev->pwrup_reglist->gpuaddr);
/*
* Gen7 targets with concurrent binning are expected to have a dynamic
* power up list with triplets which contains the pipe id in it.
* Bit 31 of POWER_UP_REGISTER_LIST_LENGTH is reused here to let CP
* know if the power up contains the triplets. If
* REGISTER_INIT_LIST_WITH_SPINLOCK is set and bit 31 below is set,
* CP expects a dynamic list with triplets.
*/
cmds[i++] = BIT(31);
}
int gen7_fenced_write(struct adreno_device *adreno_dev, u32 offset,
u32 value, u32 mask)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
unsigned int status, i;
u64 ts1, ts2;
kgsl_regwrite(device, offset, value);
ts1 = gpudev->read_alwayson(adreno_dev);
for (i = 0; i < GMU_CORE_LONG_WAKEUP_RETRY_LIMIT; i++) {
/*
* Make sure the previous register write is posted before
* checking the fence status
*/
mb();
gmu_core_regread(device, GEN7_GMU_AHB_FENCE_STATUS, &status);
/*
* If !writedropped0/1, then the write to fenced register
* was successful
*/
if (!(status & mask))
break;
/* Wait a small amount of time before trying again */
udelay(GMU_CORE_WAKEUP_DELAY_US);
/* Try to write the fenced register again */
kgsl_regwrite(device, offset, value);
}
if (i < GMU_CORE_SHORT_WAKEUP_RETRY_LIMIT)
return 0;
if (i == GMU_CORE_LONG_WAKEUP_RETRY_LIMIT) {
ts2 = gpudev->read_alwayson(adreno_dev);
dev_err(device->dev,
"Timed out waiting %d usecs to write fenced register 0x%x, timestamps: %llx %llx\n",
i * GMU_CORE_WAKEUP_DELAY_US, offset, ts1, ts2);
return -ETIMEDOUT;
}
dev_info(device->dev,
"Waited %d usecs to write fenced register 0x%x\n",
i * GMU_CORE_WAKEUP_DELAY_US, offset);
return 0;
}
int gen7_init(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen7_core *gen7_core = to_gen7_core(adreno_dev);
u64 freq = gen7_core->gmu_hub_clk_freq;
adreno_dev->highest_bank_bit = gen7_core->highest_bank_bit;
adreno_dev->gmu_hub_clk_freq = freq ? freq : 150000000;
adreno_dev->ahb_timeout_val = adreno_get_ahb_timeout_val(adreno_dev,
gen7_core->noc_timeout_us);
adreno_dev->bcl_data = gen7_core->bcl_data;
adreno_dev->cooperative_reset = ADRENO_FEATURE(adreno_dev,
ADRENO_COOP_RESET);
/* If the memory type is DDR 4, override the existing configuration */
if (of_fdt_get_ddrtype() == 0x7)
adreno_dev->highest_bank_bit = 14;
gen7_crashdump_init(adreno_dev);
return adreno_allocate_global(device, &adreno_dev->pwrup_reglist,
PAGE_SIZE, 0, 0, KGSL_MEMDESC_PRIVILEGED,
"powerup_register_list");
}
#define CX_TIMER_INIT_SAMPLES 16
void gen7_cx_timer_init(struct adreno_device *adreno_dev)
{
u64 seed_val, tmr, skew = 0;
int i;
unsigned long flags;
/*
* Only gen7_9_x has the CX timer. Set it up during first boot or
* after suspend resume.
*/
if (!adreno_is_gen7_9_x(adreno_dev) ||
test_bit(ADRENO_DEVICE_CX_TIMER_INITIALIZED, &adreno_dev->priv))
return;
/* Disable irqs to get accurate timings */
local_irq_save(flags);
/* Calculate the overhead of timer reads and register writes */
for (i = 0; i < CX_TIMER_INIT_SAMPLES; i++) {
u64 tmr1, tmr2, tmr3;
/* Measure time for two reads of the CPU timer */
tmr1 = arch_timer_read_counter();
tmr2 = arch_timer_read_counter();
/* Write to the register and time it */
adreno_cx_misc_regwrite(adreno_dev,
GEN7_GPU_CX_MISC_AO_COUNTER_LO,
lower_32_bits(tmr2));
adreno_cx_misc_regwrite(adreno_dev,
GEN7_GPU_CX_MISC_AO_COUNTER_HI,
upper_32_bits(tmr2));
/* Barrier to make sure the write completes before timing it */
mb();
tmr3 = arch_timer_read_counter();
/* Calculate difference between register write and CPU timer */
skew += (tmr3 - tmr2) - (tmr2 - tmr1);
}
local_irq_restore(flags);
/* Get the average over all our readings, to the closest integer */
skew = (skew + CX_TIMER_INIT_SAMPLES / 2) / CX_TIMER_INIT_SAMPLES;
local_irq_save(flags);
tmr = arch_timer_read_counter();
seed_val = tmr + skew;
/* Seed the GPU CX counter with the adjusted timer */
adreno_cx_misc_regwrite(adreno_dev,
GEN7_GPU_CX_MISC_AO_COUNTER_LO, lower_32_bits(seed_val));
adreno_cx_misc_regwrite(adreno_dev,
GEN7_GPU_CX_MISC_AO_COUNTER_HI, upper_32_bits(seed_val));
local_irq_restore(flags);
set_bit(ADRENO_DEVICE_CX_TIMER_INITIALIZED, &adreno_dev->priv);
}
void gen7_get_gpu_feature_info(struct adreno_device *adreno_dev)
{
u32 feature_fuse = 0;
/* Only Gen7_9_x has the HW feature information */
if (!adreno_is_gen7_9_x(adreno_dev))
return;
/* Get HW feature soft fuse value */
adreno_cx_misc_regread(adreno_dev, GEN7_GPU_CX_MISC_SW_FUSE_VALUE,
&feature_fuse);
adreno_dev->fastblend_enabled = feature_fuse & BIT(GEN7_FASTBLEND_SW_FUSE);
adreno_dev->raytracing_enabled = feature_fuse & BIT(GEN7_RAYTRACING_SW_FUSE);
/* If software enables LPAC without HW support, disable it */
if (ADRENO_FEATURE(adreno_dev, ADRENO_LPAC))
adreno_dev->lpac_enabled = feature_fuse & BIT(GEN7_LPAC_SW_FUSE);
adreno_dev->feature_fuse = feature_fuse;
}
#define GEN7_PROTECT_DEFAULT (BIT(0) | BIT(1) | BIT(3))
static void gen7_protect_init(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen7_core *gen7_core = to_gen7_core(adreno_dev);
const struct gen7_protected_regs *regs = gen7_core->protected_regs;
int i;
/*
* Enable access protection to privileged registers, fault on an access
* protect violation and select the last span to protect from the start
* address all the way to the end of the register address space
*/
kgsl_regwrite(device, GEN7_CP_PROTECT_CNTL, GEN7_PROTECT_DEFAULT);
if (adreno_dev->lpac_enabled)
kgsl_regwrite(device, GEN7_CP_LPAC_PROTECT_CNTL, GEN7_PROTECT_DEFAULT);
/* Program each register defined by the core definition */
for (i = 0; regs[i].reg; i++) {
u32 count;
/*
* This is the offset of the end register as counted from the
* start, i.e. # of registers in the range - 1
*/
count = regs[i].end - regs[i].start;
kgsl_regwrite(device, regs[i].reg,
FIELD_PREP(GENMASK(17, 0), regs[i].start) |
FIELD_PREP(GENMASK(30, 18), count) |
FIELD_PREP(BIT(31), regs[i].noaccess));
}
}
#define RBBM_CLOCK_CNTL_ON 0x8aa8aa82
static void gen7_hwcg_set(struct adreno_device *adreno_dev, bool on)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen7_core *gen7_core = to_gen7_core(adreno_dev);
unsigned int value;
int i;
if (!adreno_dev->hwcg_enabled)
on = false;
for (i = 0; i < gen7_core->ao_hwcg_count; i++)
gmu_core_regwrite(device, gen7_core->ao_hwcg[i].offset,
on ? gen7_core->ao_hwcg[i].val : 0);
if (!gen7_core->hwcg) {
kgsl_regwrite(device, GEN7_RBBM_CLOCK_CNTL_GLOBAL, 1);
kgsl_regwrite(device, GEN7_RBBM_CGC_GLOBAL_LOAD_CMD, on ? 1 : 0);
if (on) {
u32 retry = 3;
kgsl_regwrite(device, GEN7_RBBM_CGC_P2S_TRIG_CMD, 1);
/* Poll for the TXDONE:BIT(0) status */
do {
/* Wait for small amount of time for TXDONE status*/
udelay(1);
kgsl_regread(device, GEN7_RBBM_CGC_P2S_STATUS, &value);
} while (!(value & BIT(0)) && --retry);
if (!(value & BIT(0))) {
dev_err(device->dev, "RBBM_CGC_P2S_STATUS:TXDONE Poll failed\n");
kgsl_device_snapshot(device, NULL, NULL, false);
return;
}
kgsl_regwrite(device, GEN7_RBBM_CLOCK_CNTL_GLOBAL, 0);
}
return;
}
kgsl_regread(device, GEN7_RBBM_CLOCK_CNTL, &value);
if (value == RBBM_CLOCK_CNTL_ON && on)
return;
if (value == 0 && !on)
return;
for (i = 0; i < gen7_core->hwcg_count; i++)
kgsl_regwrite(device, gen7_core->hwcg[i].offset,
on ? gen7_core->hwcg[i].val : 0);
/* enable top level HWCG */
kgsl_regwrite(device, GEN7_RBBM_CLOCK_CNTL,
on ? RBBM_CLOCK_CNTL_ON : 0);
}
static void gen7_patch_pwrup_reglist(struct adreno_device *adreno_dev)
{
struct adreno_reglist_list reglist[3];
void *ptr = adreno_dev->pwrup_reglist->hostptr;
struct cpu_gpu_lock *lock = ptr;
u32 items = 0, i, j;
u32 *dest = ptr + sizeof(*lock);
/* Static IFPC-only registers */
if (adreno_is_gen7_0_x_family(adreno_dev)) {
reglist[items].regs = gen7_0_0_ifpc_pwrup_reglist;
reglist[items].count = ARRAY_SIZE(gen7_0_0_ifpc_pwrup_reglist);
} else {
reglist[items].regs = gen7_ifpc_pwrup_reglist;
reglist[items].count = ARRAY_SIZE(gen7_ifpc_pwrup_reglist);
}
lock->ifpc_list_len = reglist[items].count;
items++;
if (adreno_is_gen7_9_x(adreno_dev)) {
reglist[items].regs = gen7_9_x_ifpc_pwrup_reglist;
reglist[items].count = ARRAY_SIZE(gen7_9_x_ifpc_pwrup_reglist);
lock->ifpc_list_len += reglist[items].count;
items++;
}
/* Static IFPC + preemption registers */
if (adreno_is_gen7_0_x_family(adreno_dev)) {
reglist[items].regs = gen7_0_0_pwrup_reglist;
reglist[items].count = ARRAY_SIZE(gen7_0_0_pwrup_reglist);
} else {
reglist[items].regs = gen7_pwrup_reglist;
reglist[items].count = ARRAY_SIZE(gen7_pwrup_reglist);
}
lock->preemption_list_len = reglist[items].count;
items++;
/*
* For each entry in each of the lists, write the offset and the current
* register value into the GPU buffer
*/
for (i = 0; i < items; i++) {
const u32 *r = reglist[i].regs;
for (j = 0; j < reglist[i].count; j++) {
*dest++ = r[j];
kgsl_regread(KGSL_DEVICE(adreno_dev), r[j], dest++);
}
}
/*
* The overall register list is composed of
* 1. Static IFPC-only registers
* 2. Static IFPC + preemption registers
* 3. Dynamic IFPC + preemption registers (ex: perfcounter selects)
*
* The first two lists are static. Size of these lists are stored as
* number of pairs in ifpc_list_len and preemption_list_len
* respectively. With concurrent binning, Some of the perfcounter
* registers being virtualized, CP needs to know the pipe id to program
* the aperture inorder to restore the same. Thus, third list is a
* dynamic list with triplets as
* (<aperture, shifted 12 bits> <address> <data>), and the length is
* stored as number for triplets in dynamic_list_len.
*/
lock->dynamic_list_len = 0;
}
/* _llc_configure_gpu_scid() - Program the sub-cache ID for all GPU blocks */
static void _llc_configure_gpu_scid(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 gpu_scid;
if (IS_ERR_OR_NULL(adreno_dev->gpu_llc_slice) ||
!adreno_dev->gpu_llc_slice_enable)
return;
if (llcc_slice_activate(adreno_dev->gpu_llc_slice))
return;
gpu_scid = llcc_get_slice_id(adreno_dev->gpu_llc_slice);
/* 6 blocks at 5 bits per block */
kgsl_regwrite(device, GEN7_GBIF_SCACHE_CNTL1,
FIELD_PREP(GENMASK(29, 25), gpu_scid) |
FIELD_PREP(GENMASK(24, 20), gpu_scid) |
FIELD_PREP(GENMASK(19, 15), gpu_scid) |
FIELD_PREP(GENMASK(14, 10), gpu_scid) |
FIELD_PREP(GENMASK(9, 5), gpu_scid) |
FIELD_PREP(GENMASK(4, 0), gpu_scid));
kgsl_regwrite(device, GEN7_GBIF_SCACHE_CNTL0,
FIELD_PREP(GENMASK(14, 10), gpu_scid) | BIT(8));
}
static void _llc_gpuhtw_slice_activate(struct adreno_device *adreno_dev)
{
if (IS_ERR_OR_NULL(adreno_dev->gpuhtw_llc_slice) ||
!adreno_dev->gpuhtw_llc_slice_enable)
return;
llcc_slice_activate(adreno_dev->gpuhtw_llc_slice);
}
static void _set_secvid(struct kgsl_device *device)
{
kgsl_regwrite(device, GEN7_RBBM_SECVID_TSB_CNTL, 0x0);
kgsl_regwrite(device, GEN7_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
lower_32_bits(KGSL_IOMMU_SECURE_BASE32));
kgsl_regwrite(device, GEN7_RBBM_SECVID_TSB_TRUSTED_BASE_HI,
upper_32_bits(KGSL_IOMMU_SECURE_BASE32));
kgsl_regwrite(device, GEN7_RBBM_SECVID_TSB_TRUSTED_SIZE,
FIELD_PREP(GENMASK(31, 12),
(KGSL_IOMMU_SECURE_SIZE(&device->mmu) / SZ_4K)));
}
/* Set UCHE_TRAP_BASE to a page below the top of the memory space */
#define GEN7_UCHE_TRAP_BASE 0x1FFFFFFFFF000ULL
static u64 gen7_get_uche_trap_base(void)
{
return GEN7_UCHE_TRAP_BASE;
}
/*
* All Gen7 targets support marking certain transactions as always privileged
* which allows us to mark more memory as privileged without having to
* explicitly set the APRIV bit. Choose the following transactions to be
* privileged by default:
* CDWRITE [6:6] - Crashdumper writes
* CDREAD [5:5] - Crashdumper reads
* RBRPWB [3:3] - RPTR shadow writes
* RBPRIVLEVEL [2:2] - Memory accesses from PM4 packets in the ringbuffer
* RBFETCH [1:1] - Ringbuffer reads
* ICACHE [0:0] - Instruction cache fetches
*/
#define GEN7_APRIV_DEFAULT (BIT(3) | BIT(2) | BIT(1) | BIT(0))
/* Add crashdumper permissions for the BR APRIV */
#define GEN7_BR_APRIV_DEFAULT (GEN7_APRIV_DEFAULT | BIT(6) | BIT(5))
void gen7_enable_ahb_timeout_detection(struct adreno_device *adreno_dev)
{
u32 val;
if (!adreno_dev->ahb_timeout_val)
return;
val = (ADRENO_AHB_CNTL_DEFAULT | FIELD_PREP(GENMASK(4, 0),
adreno_dev->ahb_timeout_val));
adreno_cx_misc_regwrite(adreno_dev, GEN7_GPU_CX_MISC_CX_AHB_AON_CNTL, val);
adreno_cx_misc_regwrite(adreno_dev, GEN7_GPU_CX_MISC_CX_AHB_GMU_CNTL, val);
adreno_cx_misc_regwrite(adreno_dev, GEN7_GPU_CX_MISC_CX_AHB_CP_CNTL, val);
adreno_cx_misc_regwrite(adreno_dev, GEN7_GPU_CX_MISC_CX_AHB_VBIF_SMMU_CNTL, val);
adreno_cx_misc_regwrite(adreno_dev, GEN7_GPU_CX_MISC_CX_AHB_HOST_CNTL, val);
}
int gen7_start(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen7_core *gen7_core = to_gen7_core(adreno_dev);
u32 mal, mode = 0, rgb565_predicator = 0;
/*
* HBB values 13 to 16 can represented LSB of HBB from 0 to 3.
* Any HBB value beyond 16 needs programming MSB of HBB.
* By default highest bank bit is 14, Hence set default HBB LSB
* to "1" and MSB to "0".
*/
u32 hbb_lo = 1, hbb_hi = 0;
struct cpu_gpu_lock *pwrup_lock = adreno_dev->pwrup_reglist->hostptr;
u64 uche_trap_base = gen7_get_uche_trap_base();
/* Set up GBIF registers from the GPU core definition */
kgsl_regmap_multi_write(&device->regmap, gen7_core->gbif,
gen7_core->gbif_count);
kgsl_regwrite(device, GEN7_UCHE_GBIF_GX_CONFIG, 0x10240e0);
/* Make all blocks contribute to the GPU BUSY perf counter */
kgsl_regwrite(device, GEN7_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
/*
* Set UCHE_WRITE_THRU_BASE to the UCHE_TRAP_BASE effectively
* disabling L2 bypass
*/
kgsl_regwrite(device, GEN7_UCHE_TRAP_BASE_LO, lower_32_bits(uche_trap_base));
kgsl_regwrite(device, GEN7_UCHE_TRAP_BASE_HI, upper_32_bits(uche_trap_base));
kgsl_regwrite(device, GEN7_UCHE_WRITE_THRU_BASE_LO, lower_32_bits(uche_trap_base));
kgsl_regwrite(device, GEN7_UCHE_WRITE_THRU_BASE_HI, upper_32_bits(uche_trap_base));
/*
* Some gen7 targets don't use a programmed UCHE GMEM base address,
* so skip programming the register for such targets.
*/
if (adreno_dev->uche_gmem_base) {
kgsl_regwrite(device, GEN7_UCHE_GMEM_RANGE_MIN_LO,
adreno_dev->uche_gmem_base);
kgsl_regwrite(device, GEN7_UCHE_GMEM_RANGE_MIN_HI, 0x0);
kgsl_regwrite(device, GEN7_UCHE_GMEM_RANGE_MAX_LO,
adreno_dev->uche_gmem_base +
adreno_dev->gpucore->gmem_size - 1);
kgsl_regwrite(device, GEN7_UCHE_GMEM_RANGE_MAX_HI, 0x0);
}
kgsl_regwrite(device, GEN7_UCHE_CACHE_WAYS, 0x800000);
/*
* Disable LPAC hard sync event to fix lock up issue when BR/BV event
* fifo is full.
*/
if (adreno_dev->lpac_enabled)
kgsl_regrmw(device, GEN7_UCHE_DBG_CNTL_1, BIT(30), BIT(30));
kgsl_regwrite(device, GEN7_UCHE_CMDQ_CONFIG,
FIELD_PREP(GENMASK(19, 16), 6) |
FIELD_PREP(GENMASK(15, 12), 6) |
FIELD_PREP(GENMASK(11, 8), 9) |
BIT(3) | BIT(2) |
FIELD_PREP(GENMASK(1, 0), 2));
/*
* CP takes care of the restore during IFPC exit. We need to restore at slumber
* boundary as well
*/
if (pwrup_lock->dynamic_list_len > 0)
kgsl_regwrite(device, GEN7_RBBM_PERFCTR_CNTL, 0x1);
/* Turn on the IFPC counter (countable 4 on XOCLK4) */
kgsl_regwrite(device, GEN7_GMU_CX_GMU_POWER_COUNTER_SELECT_1,
FIELD_PREP(GENMASK(7, 0), 0x4));
/* Turn on counter to count total time spent in BCL throttle */
if (adreno_dev->bcl_enabled && adreno_is_gen7_2_x_family(adreno_dev))
kgsl_regrmw(device, GEN7_GMU_CX_GMU_POWER_COUNTER_SELECT_1, GENMASK(15, 8),
FIELD_PREP(GENMASK(15, 8), 0x26));
if (of_property_read_u32(device->pdev->dev.of_node,
"qcom,min-access-length", &mal))
mal = 32;
of_property_read_u32(device->pdev->dev.of_node,
"qcom,ubwc-mode", &mode);
if (!WARN_ON(!adreno_dev->highest_bank_bit)) {
hbb_lo = (adreno_dev->highest_bank_bit - 13) & 3;
hbb_hi = ((adreno_dev->highest_bank_bit - 13) >> 2) & 1;
}
if (mode == KGSL_UBWC_4_0)
rgb565_predicator = 1;
kgsl_regwrite(device, GEN7_RB_NC_MODE_CNTL,
((rgb565_predicator == 1) ? BIT(11) : 0) |
((hbb_hi == 1) ? BIT(10) : 0) |
BIT(4) | /*AMSBC is enabled on UBWC 3.0 and 4.0 */
((mal == 64) ? BIT(3) : 0) |
FIELD_PREP(GENMASK(2, 1), hbb_lo));
kgsl_regwrite(device, GEN7_TPL1_NC_MODE_CNTL,
((hbb_hi == 1) ? BIT(4) : 0) |
((mal == 64) ? BIT(3) : 0) |
FIELD_PREP(GENMASK(2, 1), hbb_lo));
/* Configure TP bicubic registers */
if (adreno_is_gen7_9_x(adreno_dev)) {
kgsl_regwrite(device, GEN7_TPL1_BICUBIC_WEIGHTS_TABLE_1, 0x3fe05ff4);
kgsl_regwrite(device, GEN7_TPL1_BICUBIC_WEIGHTS_TABLE_2, 0x3fa0ebee);
kgsl_regwrite(device, GEN7_TPL1_BICUBIC_WEIGHTS_TABLE_3, 0x3f5193ed);
kgsl_regwrite(device, GEN7_TPL1_BICUBIC_WEIGHTS_TABLE_4, 0x3f0243f0);
}
kgsl_regwrite(device, GEN7_SP_NC_MODE_CNTL,
FIELD_PREP(GENMASK(11, 10), hbb_hi) |
FIELD_PREP(GENMASK(5, 4), 2) |
((mal == 64) ? BIT(3) : 0) |
FIELD_PREP(GENMASK(2, 1), hbb_lo));
kgsl_regwrite(device, GEN7_GRAS_NC_MODE_CNTL,
FIELD_PREP(GENMASK(8, 5),
(adreno_dev->highest_bank_bit - 13)));
kgsl_regwrite(device, GEN7_UCHE_MODE_CNTL,
((mal == 64) ? BIT(23) : 0) |
FIELD_PREP(GENMASK(22, 21), hbb_lo));
kgsl_regwrite(device, GEN7_RBBM_INTERFACE_HANG_INT_CNTL, BIT(30) |
FIELD_PREP(GENMASK(27, 0),
gen7_core->hang_detect_cycles));
kgsl_regwrite(device, GEN7_UCHE_CLIENT_PF, BIT(7) |
FIELD_PREP(GENMASK(3, 0), adreno_dev->uche_client_pf));
/* Enable the GMEM save/restore feature for preemption */
if (adreno_is_preemption_enabled(adreno_dev))
kgsl_regwrite(device, GEN7_RB_CONTEXT_SWITCH_GMEM_SAVE_RESTORE,
0x1);
if (adreno_is_gen7_9_x(adreno_dev)) {
/* Disable ubwc merged UFC request feature */
kgsl_regrmw(device, GEN7_RB_CMP_DBG_ECO_CNTL, BIT(19), BIT(19));
/* Enable TP flaghint and other performance settings */
kgsl_regwrite(device, GEN7_TPL1_DBG_ECO_CNTL1, 0xc0700);
} else {
/* Disable non-ubwc read reqs from passing write reqs */
kgsl_regrmw(device, GEN7_RB_CMP_DBG_ECO_CNTL, BIT(11), BIT(11));
}
/* Enable GMU power counter 0 to count GPU busy */
kgsl_regwrite(device, GEN7_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
kgsl_regrmw(device, GEN7_GMU_CX_GMU_POWER_COUNTER_SELECT_0,
0xFF, 0x20);
kgsl_regwrite(device, GEN7_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0x1);
gen7_protect_init(adreno_dev);
/* Configure LLCC */
_llc_configure_gpu_scid(adreno_dev);
_llc_gpuhtw_slice_activate(adreno_dev);
kgsl_regwrite(device, GEN7_CP_APRIV_CNTL, GEN7_BR_APRIV_DEFAULT);
kgsl_regwrite(device, GEN7_CP_BV_APRIV_CNTL, GEN7_APRIV_DEFAULT);
kgsl_regwrite(device, GEN7_CP_LPAC_APRIV_CNTL, GEN7_APRIV_DEFAULT);
/* Marking AQE Instruction cache fetches as privileged */
if (ADRENO_FEATURE(adreno_dev, ADRENO_AQE))
kgsl_regwrite(device, GEN7_CP_AQE_APRIV_CNTL, BIT(0));
if (adreno_is_gen7_9_x(adreno_dev))
kgsl_regrmw(device, GEN7_GBIF_CX_CONFIG, GENMASK(31, 29),
FIELD_PREP(GENMASK(31, 29), 1));
/*
* CP Icache prefetch brings no benefit on few gen7 variants because of
* the prefetch granularity size.
*/
if (adreno_is_gen7_0_0(adreno_dev) || adreno_is_gen7_0_1(adreno_dev) ||
adreno_is_gen7_4_0(adreno_dev) || adreno_is_gen7_2_0(adreno_dev)
|| adreno_is_gen7_2_1(adreno_dev) || adreno_is_gen7_11_0(adreno_dev)) {
kgsl_regwrite(device, GEN7_CP_CHICKEN_DBG, 0x1);
kgsl_regwrite(device, GEN7_CP_BV_CHICKEN_DBG, 0x1);
kgsl_regwrite(device, GEN7_CP_LPAC_CHICKEN_DBG, 0x1);
}
_set_secvid(device);
/*
* Enable hardware clock gating here to prevent any register access
* issue due to internal clock gating.
*/
gen7_hwcg_set(adreno_dev, true);
/*
* All registers must be written before this point so that we don't
* miss any register programming when we patch the power up register
* list.
*/
if (!adreno_dev->patch_reglist &&
(adreno_dev->pwrup_reglist->gpuaddr != 0)) {
gen7_patch_pwrup_reglist(adreno_dev);
adreno_dev->patch_reglist = true;
}
return 0;
}
/* Offsets into the MX/CX mapped register regions */
#define GEN7_RDPM_MX_OFFSET 0xf00
#define GEN7_RDPM_CX_OFFSET 0xf14
void gen7_rdpm_mx_freq_update(struct gen7_gmu_device *gmu, u32 freq)
{
if (gmu->rdpm_mx_virt) {
writel_relaxed(freq/1000, (gmu->rdpm_mx_virt + GEN7_RDPM_MX_OFFSET));
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
}
}
void gen7_rdpm_cx_freq_update(struct gen7_gmu_device *gmu, u32 freq)
{
if (gmu->rdpm_cx_virt) {
writel_relaxed(freq/1000, (gmu->rdpm_cx_virt + GEN7_RDPM_CX_OFFSET));
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
}
}
int gen7_scm_gpu_init_cx_regs(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 gpu_req = GPU_ALWAYS_EN_REQ;
int ret;
if (ADRENO_FEATURE(adreno_dev, ADRENO_BCL))
gpu_req |= GPU_BCL_EN_REQ;
if (ADRENO_FEATURE(adreno_dev, ADRENO_CLX))
gpu_req |= GPU_CLX_EN_REQ;
if (adreno_is_gen7_9_x(adreno_dev))
gpu_req |= GPU_TSENSE_EN_REQ;
ret = kgsl_scm_gpu_init_regs(&device->pdev->dev, gpu_req);
/*
* For targets that support this scm call to program BCL id , enable BCL.
* For other targets, BCL is enabled after first GMU boot.
*/
if (!ret && ADRENO_FEATURE(adreno_dev, ADRENO_BCL))
adreno_dev->bcl_enabled = true;
/* If programming TZ CLX was successful, then program KMD owned CLX regs */
if (!ret && ADRENO_FEATURE(adreno_dev, ADRENO_CLX))
adreno_dev->clx_enabled = true;
/*
* If scm call returned EOPNOTSUPP, either we are on a kernel version
* lesser than 6.1 where scm call is not supported or we are sending an
* empty request. Ignore the error in such cases.
*/
return (ret == -EOPNOTSUPP) ? 0 : ret;
}
void gen7_spin_idle_debug(struct adreno_device *adreno_dev,
const char *str)
{
struct kgsl_device *device = &adreno_dev->dev;
unsigned int rptr, wptr;
unsigned int status, status3, intstatus;
unsigned int hwfault;
dev_err(device->dev, str);
kgsl_regread(device, GEN7_CP_RB_RPTR, &rptr);
kgsl_regread(device, GEN7_CP_RB_WPTR, &wptr);
kgsl_regread(device, GEN7_RBBM_STATUS, &status);
kgsl_regread(device, GEN7_RBBM_STATUS3, &status3);
kgsl_regread(device, GEN7_RBBM_INT_0_STATUS, &intstatus);
kgsl_regread(device, GEN7_CP_HW_FAULT, &hwfault);
dev_err(device->dev,
"rb=%d pos=%X/%X rbbm_status=%8.8X/%8.8X int_0_status=%8.8X\n",
adreno_dev->cur_rb ? adreno_dev->cur_rb->id : -1, rptr, wptr,
status, status3, intstatus);
dev_err(device->dev, " hwfault=%8.8X\n", hwfault);
kgsl_device_snapshot(device, NULL, NULL, false);
}
/*
* gen7_send_cp_init() - Initialize ringbuffer
* @adreno_dev: Pointer to adreno device
* @rb: Pointer to the ringbuffer of device
*
* Submit commands for ME initialization,
*/
static int gen7_send_cp_init(struct adreno_device *adreno_dev,
struct adreno_ringbuffer *rb)
{
unsigned int *cmds;
int ret;
cmds = adreno_ringbuffer_allocspace(rb, GEN7_CP_INIT_DWORDS);
if (IS_ERR(cmds))
return PTR_ERR(cmds);
gen7_cp_init_cmds(adreno_dev, cmds);
ret = gen7_ringbuffer_submit(rb, NULL);
if (!ret) {
ret = adreno_spin_idle(adreno_dev, 2000);
if (ret) {
gen7_spin_idle_debug(adreno_dev,
"CP initialization failed to idle\n");
rb->wptr = 0;
rb->_wptr = 0;
}
}
return ret;
}
static int gen7_post_start(struct adreno_device *adreno_dev)
{
int ret;
unsigned int *cmds;
struct adreno_ringbuffer *rb = adreno_dev->cur_rb;
struct adreno_preemption *preempt = &adreno_dev->preempt;
u64 kmd_postamble_addr;
if (!adreno_is_preemption_enabled(adreno_dev))
return 0;
kmd_postamble_addr = SCRATCH_POSTAMBLE_ADDR(KGSL_DEVICE(adreno_dev));
gen7_preemption_prepare_postamble(adreno_dev);
cmds = adreno_ringbuffer_allocspace(rb, (preempt->postamble_bootup_len ? 16 : 12));
if (IS_ERR(cmds))
return PTR_ERR(cmds);
*cmds++ = cp_type7_packet(CP_SET_PSEUDO_REGISTER, 6);
*cmds++ = SET_PSEUDO_PRIV_NON_SECURE_SAVE_ADDR;
*cmds++ = lower_32_bits(rb->preemption_desc->gpuaddr);
*cmds++ = upper_32_bits(rb->preemption_desc->gpuaddr);
*cmds++ = SET_PSEUDO_PRIV_SECURE_SAVE_ADDR;
*cmds++ = lower_32_bits(rb->secure_preemption_desc->gpuaddr);
*cmds++ = upper_32_bits(rb->secure_preemption_desc->gpuaddr);
if (preempt->postamble_bootup_len) {
*cmds++ = cp_type7_packet(CP_SET_AMBLE, 3);
*cmds++ = lower_32_bits(kmd_postamble_addr);
*cmds++ = upper_32_bits(kmd_postamble_addr);
*cmds++ = FIELD_PREP(GENMASK(22, 20), CP_KMD_AMBLE_TYPE)
| (FIELD_PREP(GENMASK(19, 0), adreno_dev->preempt.postamble_bootup_len));
}
*cmds++ = cp_type7_packet(CP_CONTEXT_SWITCH_YIELD, 4);
*cmds++ = 0;
*cmds++ = 0;
*cmds++ = 0;
/* generate interrupt on preemption completion */
*cmds++ = 0;
ret = gen7_ringbuffer_submit(rb, NULL);
if (!ret) {
ret = adreno_spin_idle(adreno_dev, 2000);
if (ret)
gen7_spin_idle_debug(adreno_dev,
"hw preemption initialization failed to idle\n");
}
return ret;
}
int gen7_rb_start(struct adreno_device *adreno_dev)
{
const struct adreno_gen7_core *gen7_core = to_gen7_core(adreno_dev);
struct adreno_firmware *fw = ADRENO_FW(adreno_dev, ADRENO_FW_SQE);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_ringbuffer *rb;
u64 addr;
int ret, i;
unsigned int *cmds;
/* Clear all the ringbuffers */
FOR_EACH_RINGBUFFER(adreno_dev, rb, i) {
memset(rb->buffer_desc->hostptr, 0xaa, KGSL_RB_SIZE);
kgsl_sharedmem_writel(device->scratch,
SCRATCH_RB_OFFSET(rb->id, rptr), 0);
kgsl_sharedmem_writel(device->scratch,
SCRATCH_RB_OFFSET(rb->id, bv_rptr), 0);
rb->wptr = 0;
rb->_wptr = 0;
rb->wptr_preempt_end = UINT_MAX;
}
gen7_preemption_start(adreno_dev);
/* Set up the current ringbuffer */
rb = ADRENO_CURRENT_RINGBUFFER(adreno_dev);
addr = SCRATCH_RB_GPU_ADDR(device, rb->id, rptr);
kgsl_regwrite(device, GEN7_CP_RB_RPTR_ADDR_LO, lower_32_bits(addr));
kgsl_regwrite(device, GEN7_CP_RB_RPTR_ADDR_HI, upper_32_bits(addr));
addr = SCRATCH_RB_GPU_ADDR(device, rb->id, bv_rptr);
kgsl_regwrite(device, GEN7_CP_BV_RB_RPTR_ADDR_LO, lower_32_bits(addr));
kgsl_regwrite(device, GEN7_CP_BV_RB_RPTR_ADDR_HI, upper_32_bits(addr));
kgsl_regwrite(device, GEN7_CP_RB_CNTL, GEN7_CP_RB_CNTL_DEFAULT);
kgsl_regwrite(device, GEN7_CP_RB_BASE,
lower_32_bits(rb->buffer_desc->gpuaddr));
kgsl_regwrite(device, GEN7_CP_RB_BASE_HI,
upper_32_bits(rb->buffer_desc->gpuaddr));
/* Program the ucode base for CP */
kgsl_regwrite(device, GEN7_CP_SQE_INSTR_BASE_LO,
lower_32_bits(fw->memdesc->gpuaddr));
kgsl_regwrite(device, GEN7_CP_SQE_INSTR_BASE_HI,
upper_32_bits(fw->memdesc->gpuaddr));
/* Clear the SQE_HALT to start the CP engine */
kgsl_regwrite(device, GEN7_CP_SQE_CNTL, 1);
ret = gen7_send_cp_init(adreno_dev, rb);
if (ret)
return ret;
ret = adreno_zap_shader_load(adreno_dev, gen7_core->zap_name);
if (ret)
return ret;
/*
* Take the GPU out of secure mode. Try the zap shader if it is loaded,
* otherwise just try to write directly to the secure control register
*/
if (!adreno_dev->zap_loaded)
kgsl_regwrite(device, GEN7_RBBM_SECVID_TRUST_CNTL, 0);
else {
cmds = adreno_ringbuffer_allocspace(rb, 2);
if (IS_ERR(cmds))
return PTR_ERR(cmds);
*cmds++ = cp_type7_packet(CP_SET_SECURE_MODE, 1);
*cmds++ = 0;
ret = gen7_ringbuffer_submit(rb, NULL);
if (!ret) {
ret = adreno_spin_idle(adreno_dev, 2000);
if (ret) {
gen7_spin_idle_debug(adreno_dev,
"Switch to unsecure failed to idle\n");
return ret;
}
}
}
return gen7_post_start(adreno_dev);
}
/*
* gen7_gpu_keepalive() - GMU reg write to request GPU stays on
* @adreno_dev: Pointer to the adreno device that has the GMU
* @state: State to set: true is ON, false is OFF
*/
static void gen7_gpu_keepalive(struct adreno_device *adreno_dev,
bool state)
{
gmu_core_regwrite(KGSL_DEVICE(adreno_dev),
GEN7_GMU_GMU_PWR_COL_KEEPALIVE, state);
}
bool gen7_hw_isidle(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
unsigned int reg;
gmu_core_regread(device, GEN7_GPU_GMU_AO_GPU_CX_BUSY_STATUS, &reg);
/* Bit 23 is GPUBUSYIGNAHB */
return (reg & BIT(23)) ? false : true;
}
int gen7_microcode_read(struct adreno_device *adreno_dev)
{
struct adreno_firmware *sqe_fw = ADRENO_FW(adreno_dev, ADRENO_FW_SQE);
const struct adreno_gen7_core *gen7_core = to_gen7_core(adreno_dev);
return adreno_get_firmware(adreno_dev, gen7_core->sqefw_name, sqe_fw);
}
/* CP Interrupt bits */
#define CP_INT_OPCODEERROR 0
#define CP_INT_UCODEERROR 1
#define CP_INT_CPHWFAULT 2
#define CP_INT_REGISTERPROTECTION 4
#define CP_INT_VSDPARITYERROR 6
#define CP_INT_ILLEGALINSTRUCTION 7
#define CP_INT_OPCODEERRORLPAC 8
#define CP_INT_UCODEERRORLPAC 9
#define CP_INT_CPHWFAULTLPAC 10
#define CP_INT_REGISTERPROTECTIONLPAC 11
#define CP_INT_ILLEGALINSTRUCTIONLPAC 12
#define CP_INT_OPCODEERRORBV 13
#define CP_INT_UCODEERRORBV 14
#define CP_INT_CPHWFAULTBV 15
#define CP_INT_REGISTERPROTECTIONBV 16
#define CP_INT_ILLEGALINSTRUCTIONBV 17
static void gen7_cp_hw_err_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
unsigned int status1, status2;
struct device *dev = device->dev;
unsigned int opcode;
kgsl_regread(device, GEN7_CP_INTERRUPT_STATUS, &status1);
if (status1 & BIT(CP_INT_OPCODEERROR)) {
kgsl_regwrite(device, GEN7_CP_SQE_STAT_ADDR, 1);
kgsl_regread(device, GEN7_CP_SQE_STAT_DATA, &opcode);
dev_crit_ratelimited(dev,
"CP opcode error interrupt | opcode=0x%8.8x\n", opcode);
}
if (status1 & BIT(CP_INT_UCODEERROR))
dev_crit_ratelimited(dev, "CP ucode error interrupt\n");
if (status1 & BIT(CP_INT_CPHWFAULT)) {
kgsl_regread(device, GEN7_CP_HW_FAULT, &status2);
dev_crit_ratelimited(dev,
"CP | Ringbuffer HW fault | status=%x\n", status2);
}
if (status1 & BIT(CP_INT_REGISTERPROTECTION)) {
kgsl_regread(device, GEN7_CP_PROTECT_STATUS, &status2);
dev_crit_ratelimited(dev,
"CP | Protected mode error | %s | addr=%x | status=%x\n",
status2 & BIT(20) ? "READ" : "WRITE",
status2 & 0x3ffff, status2);
}
if (status1 & BIT(CP_INT_VSDPARITYERROR))
dev_crit_ratelimited(dev, "CP VSD decoder parity error\n");
if (status1 & BIT(CP_INT_ILLEGALINSTRUCTION))
dev_crit_ratelimited(dev, "CP Illegal instruction error\n");
if (status1 & BIT(CP_INT_OPCODEERRORLPAC))
dev_crit_ratelimited(dev, "CP Opcode error LPAC\n");
if (status1 & BIT(CP_INT_UCODEERRORLPAC))
dev_crit_ratelimited(dev, "CP ucode error LPAC\n");
if (status1 & BIT(CP_INT_CPHWFAULTLPAC))
dev_crit_ratelimited(dev, "CP hw fault LPAC\n");
if (status1 & BIT(CP_INT_REGISTERPROTECTIONLPAC))
dev_crit_ratelimited(dev, "CP register protection LPAC\n");
if (status1 & BIT(CP_INT_ILLEGALINSTRUCTIONLPAC))
dev_crit_ratelimited(dev, "CP illegal instruction LPAC\n");
if (status1 & BIT(CP_INT_OPCODEERRORBV)) {
kgsl_regwrite(device, GEN7_CP_BV_SQE_STAT_ADDR, 1);
kgsl_regread(device, GEN7_CP_BV_SQE_STAT_DATA, &opcode);
dev_crit_ratelimited(dev, "CP opcode error BV | opcode=0x%8.8x\n", opcode);
}
if (status1 & BIT(CP_INT_UCODEERRORBV))
dev_crit_ratelimited(dev, "CP ucode error BV\n");
if (status1 & BIT(CP_INT_CPHWFAULTBV)) {
kgsl_regread(device, GEN7_CP_BV_HW_FAULT, &status2);
dev_crit_ratelimited(dev,
"CP BV | Ringbuffer HW fault | status=%x\n", status2);
}
if (status1 & BIT(CP_INT_REGISTERPROTECTIONBV)) {
kgsl_regread(device, GEN7_CP_BV_PROTECT_STATUS, &status2);
dev_crit_ratelimited(dev,
"CP BV | Protected mode error | %s | addr=%x | status=%x\n",
status2 & BIT(20) ? "READ" : "WRITE",
status2 & 0x3ffff, status2);
}
if (status1 & BIT(CP_INT_ILLEGALINSTRUCTIONBV))
dev_crit_ratelimited(dev, "CP illegal instruction BV\n");
}
static void gen7_err_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct device *dev = device->dev;
switch (bit) {
case GEN7_INT_AHBERROR:
{
u32 err_details_0, err_details_1;
kgsl_regread(device, GEN7_CP_RL_ERROR_DETAILS_0, &err_details_0);
kgsl_regread(device, GEN7_CP_RL_ERROR_DETAILS_1, &err_details_1);
dev_crit_ratelimited(dev,
"CP: AHB bus error, CP_RL_ERROR_DETAILS_0:0x%x CP_RL_ERROR_DETAILS_1:0x%x\n",
err_details_0, err_details_1);
break;
}
case GEN7_INT_ATBASYNCFIFOOVERFLOW:
dev_crit_ratelimited(dev, "RBBM: ATB ASYNC overflow\n");
break;
case GEN7_INT_ATBBUSOVERFLOW:
dev_crit_ratelimited(dev, "RBBM: ATB bus overflow\n");
break;
case GEN7_INT_OUTOFBOUNDACCESS:
dev_crit_ratelimited(dev, "UCHE: Out of bounds access\n");
break;
case GEN7_INT_UCHETRAPINTERRUPT:
dev_crit_ratelimited(dev, "UCHE: Trap interrupt\n");
break;
case GEN7_INT_TSBWRITEERROR:
{
u32 lo, hi;
kgsl_regread(device, GEN7_RBBM_SECVID_TSB_STATUS_LO, &lo);
kgsl_regread(device, GEN7_RBBM_SECVID_TSB_STATUS_HI, &hi);
dev_crit_ratelimited(dev, "TSB: Write error interrupt: Address: 0x%lx MID: %lu\n",
FIELD_GET(GENMASK(16, 0), hi) << 32 | lo,
FIELD_GET(GENMASK(31, 23), hi));
break;
}
default:
dev_crit_ratelimited(dev, "Unknown interrupt %d\n", bit);
}
}
static const char *const uche_client[] = {
"BR_VFD", "BR_SP", "BR_VSC", "BR_VPC",
"BR_HLSQ", "BR_PC", "BR_LRZ", "BR_TP",
"BV_VFD", "BV_SP", "BV_VSC", "BV_VPC",
"BV_HLSQ", "BV_PC", "BV_LRZ", "BV_TP"
};
static const char *const uche_lpac_client[] = {
"-", "SP_LPAC", "-", "-", "HLSQ_LPAC", "-", "-", "TP_LPAC"
};
#define SCOOBYDOO 0x5c00bd00
static const char *gen7_fault_block_uche(struct kgsl_device *device,
char *str, int size, bool lpac)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
unsigned int uche_client_id = adreno_dev->uche_client_pf;
const char *uche_client_str, *fault_block;
/*
* Smmu driver takes a vote on CX gdsc before calling the kgsl
* pagefault handler. If there is contention for device mutex in this
* path and the dispatcher fault handler is holding this lock, trying
* to turn off CX gdsc will fail during the reset. So to avoid blocking
* here, try to lock device mutex and return if it fails.
*/
if (!mutex_trylock(&device->mutex))
goto regread_fail;
if (!kgsl_state_is_awake(device)) {
mutex_unlock(&device->mutex);
goto regread_fail;
}
kgsl_regread(device, GEN7_UCHE_CLIENT_PF, &uche_client_id);
mutex_unlock(&device->mutex);
/* Ignore the value if the gpu is in IFPC */
if (uche_client_id == SCOOBYDOO) {
uche_client_id = adreno_dev->uche_client_pf;
goto regread_fail;
}
/* UCHE client id mask is bits [6:0] */
uche_client_id &= GENMASK(6, 0);
regread_fail:
if (lpac) {
fault_block = "UCHE_LPAC";
if (uche_client_id >= ARRAY_SIZE(uche_lpac_client))
goto fail;
uche_client_str = uche_lpac_client[uche_client_id];
} else {
fault_block = "UCHE";
if (uche_client_id >= ARRAY_SIZE(uche_client))
goto fail;
uche_client_str = uche_client[uche_client_id];
}
snprintf(str, size, "%s: %s", fault_block, uche_client_str);
return str;
fail:
snprintf(str, size, "%s: Unknown (client_id: %u)",
fault_block, uche_client_id);
return str;
}
static const char *gen7_iommu_fault_block(struct kgsl_device *device,
unsigned int fsynr1)
{
unsigned int mid = fsynr1 & 0xff;
static char str[36];
switch (mid) {
case 0x0:
return "CP";
case 0x1:
return "UCHE: Unknown";
case 0x2:
return "UCHE_LPAC: Unknown";
case 0x3:
return gen7_fault_block_uche(device, str, sizeof(str), false);
case 0x4:
return "CCU";
case 0x5:
return "Flag cache";
case 0x6:
return "PREFETCH";
case 0x7:
return "GMU";
case 0x8:
return gen7_fault_block_uche(device, str, sizeof(str), true);
}
snprintf(str, sizeof(str), "Unknown (mid: %u)", mid);
return str;
}
static void gen7_cp_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (adreno_is_preemption_enabled(adreno_dev))
gen7_preemption_trigger(adreno_dev, true);
adreno_dispatcher_schedule(device);
}
/*
* gen7_gpc_err_int_callback() - Isr for GPC error interrupts
* @adreno_dev: Pointer to device
* @bit: Interrupt bit
*/
static void gen7_gpc_err_int_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
/*
* GPC error is typically the result of mistake SW programming.
* Force GPU fault for this interrupt so that we can debug it
* with help of register dump.
*/
dev_crit(device->dev, "RBBM: GPC error\n");
adreno_irqctrl(adreno_dev, 0);
/* Trigger a fault in the dispatcher - this will effect a restart */
adreno_dispatcher_fault(adreno_dev, ADRENO_SOFT_FAULT);
}
/*
* gen7_swfuse_violation_callback() - ISR for software fuse violation interrupt
* @adreno_dev: Pointer to device
* @bit: Interrupt bit
*/
static void gen7_swfuse_violation_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 status;
/*
* SWFUSEVIOLATION error is typically the result of enabling software
* feature which is not supported by the hardware. Following are the
* Feature violation will be reported
* 1) FASTBLEND (BIT:0): NO Fault, RB will send the workload to legacy
* blender HW pipeline.
* 2) LPAC (BIT:1): Fault
* 3) RAYTRACING (BIT:2): Fault
*/
kgsl_regread(device, GEN7_RBBM_SW_FUSE_INT_STATUS, &status);
/*
* RBBM_INT_CLEAR_CMD will not clear SWFUSEVIOLATION interrupt. Hence
* do explicit swfuse irq clear.
*/
kgsl_regwrite(device, GEN7_RBBM_SW_FUSE_INT_MASK, 0);
dev_crit_ratelimited(device->dev,
"RBBM: SW Feature Fuse violation status=0x%8.8x\n", status);
/* Trigger a fault in the dispatcher for LPAC and RAYTRACING violation */
if (status & GENMASK(GEN7_RAYTRACING_SW_FUSE, GEN7_LPAC_SW_FUSE)) {
adreno_irqctrl(adreno_dev, 0);
adreno_dispatcher_fault(adreno_dev, ADRENO_HARD_FAULT);
}
}
static const struct adreno_irq_funcs gen7_irq_funcs[32] = {
ADRENO_IRQ_CALLBACK(NULL), /* 0 - RBBM_GPU_IDLE */
ADRENO_IRQ_CALLBACK(gen7_err_callback), /* 1 - RBBM_AHB_ERROR */
ADRENO_IRQ_CALLBACK(NULL), /* 2 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 3 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 4 - CPIPCINT0 */
ADRENO_IRQ_CALLBACK(NULL), /* 5 - CPIPCINT1 */
ADRENO_IRQ_CALLBACK(gen7_err_callback), /* 6 - ATBASYNCOVERFLOW */
ADRENO_IRQ_CALLBACK(gen7_gpc_err_int_callback), /* 7 - GPC_ERR */
ADRENO_IRQ_CALLBACK(gen7_preemption_callback),/* 8 - CP_SW */
ADRENO_IRQ_CALLBACK(gen7_cp_hw_err_callback), /* 9 - CP_HW_ERROR */
ADRENO_IRQ_CALLBACK(NULL), /* 10 - CP_CCU_FLUSH_DEPTH_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 11 - CP_CCU_FLUSH_COLOR_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 12 - CP_CCU_RESOLVE_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 13 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 14 - UNUSED */
ADRENO_IRQ_CALLBACK(adreno_cp_callback), /* 15 - CP_RB_INT */
ADRENO_IRQ_CALLBACK(NULL), /* 16 - CP_RB_INT_LPAC*/
ADRENO_IRQ_CALLBACK(NULL), /* 17 - CP_RB_DONE_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 18 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 19 - UNUSED */
ADRENO_IRQ_CALLBACK(gen7_cp_callback), /* 20 - CP_CACHE_FLUSH_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 21 - CP_CACHE_TS_LPAC */
ADRENO_IRQ_CALLBACK(gen7_err_callback), /* 22 - RBBM_ATB_BUS_OVERFLOW */
ADRENO_IRQ_CALLBACK(adreno_hang_int_callback), /* 23 - MISHANGDETECT */
ADRENO_IRQ_CALLBACK(gen7_err_callback), /* 24 - UCHE_OOB_ACCESS */
ADRENO_IRQ_CALLBACK(gen7_err_callback), /* 25 - UCHE_TRAP_INTR */
ADRENO_IRQ_CALLBACK(NULL), /* 26 - DEBBUS_INTR_0 */
ADRENO_IRQ_CALLBACK(NULL), /* 27 - DEBBUS_INTR_1 */
ADRENO_IRQ_CALLBACK(gen7_err_callback), /* 28 - TSBWRITEERROR */
ADRENO_IRQ_CALLBACK(gen7_swfuse_violation_callback), /* 29 - SWFUSEVIOLATION */
ADRENO_IRQ_CALLBACK(NULL), /* 30 - ISDB_CPU_IRQ */
ADRENO_IRQ_CALLBACK(NULL), /* 31 - ISDB_UNDER_DEBUG */
};
/*
* If the AHB fence is not in ALLOW mode when we receive an RBBM
* interrupt, something went wrong. This means that we cannot proceed
* since the IRQ status and clear registers are not accessible.
* This is usually harmless because the GMU will abort power collapse
* and change the fence back to ALLOW. Poll so that this can happen.
*/
static int gen7_irq_poll_fence(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
u32 status, fence, fence_retries = 0;
u64 a, b, c;
a = gpudev->read_alwayson(adreno_dev);
kgsl_regread(device, GEN7_GMU_AO_AHB_FENCE_CTRL, &fence);
while (fence != 0) {
b = gpudev->read_alwayson(adreno_dev);
/* Wait for small time before trying again */
udelay(1);
kgsl_regread(device, GEN7_GMU_AO_AHB_FENCE_CTRL, &fence);
if (fence_retries == 100 && fence != 0) {
c = gpudev->read_alwayson(adreno_dev);
kgsl_regread(device, GEN7_GMU_RBBM_INT_UNMASKED_STATUS,
&status);
dev_crit_ratelimited(device->dev,
"status=0x%x Unmasked status=0x%x Mask=0x%x timestamps: %llx %llx %llx\n",
status & adreno_dev->irq_mask, status,
adreno_dev->irq_mask, a, b, c);
return -ETIMEDOUT;
}
fence_retries++;
}
return 0;
}
static irqreturn_t gen7_irq_handler(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
irqreturn_t ret = IRQ_NONE;
u32 status;
/*
* GPU can power down once the INT_0_STATUS is read below.
* But there still might be some register reads required so
* force the GMU/GPU into KEEPALIVE mode until done with the ISR.
*/
gen7_gpu_keepalive(adreno_dev, true);
if (gen7_irq_poll_fence(adreno_dev)) {
adreno_dispatcher_fault(adreno_dev, ADRENO_GMU_FAULT);
goto done;
}
kgsl_regread(device, GEN7_RBBM_INT_0_STATUS, &status);
kgsl_regwrite(device, GEN7_RBBM_INT_CLEAR_CMD, status);
ret = adreno_irq_callbacks(adreno_dev, gen7_irq_funcs, status);
trace_kgsl_gen7_irq_status(adreno_dev, status);
done:
/* If hard fault, then let snapshot turn off the keepalive */
if (!(adreno_gpu_fault(adreno_dev) & ADRENO_HARD_FAULT))
gen7_gpu_keepalive(adreno_dev, false);
return ret;
}
int gen7_probe_common(struct platform_device *pdev,
struct adreno_device *adreno_dev, u32 chipid,
const struct adreno_gpu_core *gpucore)
{
const struct adreno_gpudev *gpudev = gpucore->gpudev;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gen7_core *gen7_core = container_of(gpucore,
struct adreno_gen7_core, base);
int ret;
adreno_dev->gpucore = gpucore;
adreno_dev->chipid = chipid;
adreno_dev->cx_misc_base = GEN7_CX_MISC_BASE;
adreno_reg_offset_init(gpudev->reg_offsets);
adreno_dev->hwcg_enabled = true;
adreno_dev->uche_client_pf = 1;
kgsl_pwrscale_fast_bus_hint(gen7_core->fast_bus_hint);
device->pwrctrl.rt_bus_hint = gen7_core->rt_bus_hint;
device->pwrctrl.cx_cfg_gdsc_offset = adreno_is_gen7_11_0(adreno_dev) ?
GEN7_11_0_GPU_CC_CX_CFG_GDSCR : GEN7_GPU_CC_CX_CFG_GDSCR;
ret = adreno_device_probe(pdev, adreno_dev);
if (ret)
return ret;
if (adreno_preemption_feature_set(adreno_dev)) {
const struct adreno_gen7_core *gen7_core = to_gen7_core(adreno_dev);
adreno_dev->preempt.preempt_level = gen7_core->preempt_level;
adreno_dev->preempt.skipsaverestore = true;
adreno_dev->preempt.usesgmem = true;
set_bit(ADRENO_DEVICE_PREEMPTION, &adreno_dev->priv);
}
/* debugfs node for ACD calibration */
debugfs_create_file("acd_calibrate", 0644, device->d_debugfs, device, &acd_cal_fops);
gen7_coresight_init(adreno_dev);
/* Dump additional AQE 16KB data on top of default 96KB(48(BR)+48(BV)) */
device->snapshot_ctxt_record_size = ADRENO_FEATURE(adreno_dev, ADRENO_AQE) ?
112 * SZ_1K : 96 * SZ_1K;
return 0;
}
/* Register offset defines for Gen7, in order of enum adreno_regs */
static unsigned int gen7_register_offsets[ADRENO_REG_REGISTER_MAX] = {
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_BASE, GEN7_CP_RB_BASE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_BASE_HI, GEN7_CP_RB_BASE_HI),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_RPTR, GEN7_CP_RB_RPTR),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_WPTR, GEN7_CP_RB_WPTR),
ADRENO_REG_DEFINE(ADRENO_REG_CP_ME_CNTL, GEN7_CP_SQE_CNTL),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB1_BASE, GEN7_CP_IB1_BASE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB1_BASE_HI, GEN7_CP_IB1_BASE_HI),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB1_BUFSZ, GEN7_CP_IB1_REM_SIZE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB2_BASE, GEN7_CP_IB2_BASE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB2_BASE_HI, GEN7_CP_IB2_BASE_HI),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB2_BUFSZ, GEN7_CP_IB2_REM_SIZE),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_STATUS, GEN7_RBBM_STATUS),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_STATUS3, GEN7_RBBM_STATUS3),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_INT_0_MASK, GEN7_RBBM_INT_0_MASK),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_SW_RESET_CMD, GEN7_RBBM_SW_RESET_CMD),
ADRENO_REG_DEFINE(ADRENO_REG_GMU_AO_HOST_INTERRUPT_MASK,
GEN7_GMU_AO_HOST_INTERRUPT_MASK),
ADRENO_REG_DEFINE(ADRENO_REG_GMU_GMU2HOST_INTR_MASK,
GEN7_GMU_GMU2HOST_INTR_MASK),
};
static u32 _get_pipeid(u32 groupid)
{
if (groupid == KGSL_PERFCOUNTER_GROUP_BV_TSE || groupid == KGSL_PERFCOUNTER_GROUP_BV_RAS
|| groupid == KGSL_PERFCOUNTER_GROUP_BV_LRZ
|| groupid == KGSL_PERFCOUNTER_GROUP_BV_HLSQ)
return PIPE_BV;
else if (groupid == KGSL_PERFCOUNTER_GROUP_HLSQ || groupid == KGSL_PERFCOUNTER_GROUP_TSE
|| groupid == KGSL_PERFCOUNTER_GROUP_RAS
|| groupid == KGSL_PERFCOUNTER_GROUP_LRZ)
return PIPE_BR;
else
return PIPE_NONE;
}
int gen7_perfcounter_remove(struct adreno_device *adreno_dev,
struct adreno_perfcount_register *reg, u32 groupid)
{
const struct adreno_perfcounters *counters = ADRENO_PERFCOUNTERS(adreno_dev);
const struct adreno_perfcount_group *group;
void *ptr = adreno_dev->pwrup_reglist->hostptr;
struct cpu_gpu_lock *lock = ptr;
u32 *data = ptr + sizeof(*lock);
int offset = (lock->ifpc_list_len + lock->preemption_list_len) * 2;
int i, second_last_offset, last_offset;
bool remove_counter = false;
u32 pipe = FIELD_PREP(GENMASK(13, 12), _get_pipeid(groupid));
if (!lock->dynamic_list_len)
return -EINVAL;
group = &(counters->groups[groupid]);
if (!(group->flags & ADRENO_PERFCOUNTER_GROUP_RESTORE)) {
if (lock->dynamic_list_len != 1)
return 0;
if (kgsl_hwlock(lock)) {
kgsl_hwunlock(lock);
return -EBUSY;
}
goto disable_perfcounter;
}
second_last_offset = offset + (lock->dynamic_list_len - 2) * 3;
last_offset = second_last_offset + 3;
/* Look for the perfcounter to remove in the list */
for (i = 0; i < lock->dynamic_list_len - 1; i++) {
if ((data[offset + 1] == reg->select) && (data[offset] == pipe)) {
remove_counter = true;
break;
}
offset += 3;
}
if (!remove_counter)
return -ENOENT;
if (kgsl_hwlock(lock)) {
kgsl_hwunlock(lock);
return -EBUSY;
}
/*
* If the entry is found, remove it from the list by overwriting with second last
* entry. Skip this if data at offset is already second last entry
*/
if (offset != second_last_offset)
memcpy(&data[offset], &data[second_last_offset], 3 * sizeof(u32));
/*
* Overwrite the second last entry with last entry as last entry always has to be
* GEN7_RBBM_PERFCTR_CNTL.
*/
memcpy(&data[second_last_offset], &data[last_offset], 3 * sizeof(u32));
/* Clear the last entry */
memset(&data[last_offset], 0, 3 * sizeof(u32));
lock->dynamic_list_len--;
disable_perfcounter:
/*
* If dynamic list length is 1 and no_restore_count is 0, then we can remove the
* only entry in the list, which is the GEN7_RBBM_PERFCTRL_CNTL.
*/
if (lock->dynamic_list_len == 1 && !adreno_dev->no_restore_count) {
memset(&data[offset], 0, 3 * sizeof(u32));
lock->dynamic_list_len = 0;
}
kgsl_hwunlock(lock);
return 0;
}
int gen7_perfcounter_update(struct adreno_device *adreno_dev,
struct adreno_perfcount_register *reg, bool update_reg, u32 pipe, unsigned long flags)
{
void *ptr = adreno_dev->pwrup_reglist->hostptr;
struct cpu_gpu_lock *lock = ptr;
u32 *data = ptr + sizeof(*lock);
int i, offset = (lock->ifpc_list_len + lock->preemption_list_len) * 2;
bool select_reg_present = false;
if (flags & ADRENO_PERFCOUNTER_GROUP_RESTORE) {
for (i = 0; i < lock->dynamic_list_len; i++) {
if ((data[offset + 1] == reg->select) && (data[offset] == pipe)) {
select_reg_present = true;
break;
}
if (data[offset + 1] == GEN7_RBBM_PERFCTR_CNTL)
break;
offset += 3;
}
} else if (lock->dynamic_list_len) {
goto update;
}
if (kgsl_hwlock(lock)) {
kgsl_hwunlock(lock);
return -EBUSY;
}
/*
* If the perfcounter select register is already present in reglist
* update it, otherwise append the <aperture, select register, value>
* triplet to the end of the list.
*/
if (select_reg_present) {
data[offset + 2] = reg->countable;
kgsl_hwunlock(lock);
goto update;
}
/* Initialize the lock->dynamic_list_len to account for GEN7_RBBM_PERFCTR_CNTL */
if (!lock->dynamic_list_len)
lock->dynamic_list_len = 1;
/*
* For all targets GEN7_RBBM_PERFCTR_CNTL needs to be the last entry,
* so overwrite the existing GEN7_RBBM_PERFCTR_CNTL and add it back to
* the end.
*/
if (flags & ADRENO_PERFCOUNTER_GROUP_RESTORE) {
data[offset++] = pipe;
data[offset++] = reg->select;
data[offset++] = reg->countable;
lock->dynamic_list_len++;
}
data[offset++] = FIELD_PREP(GENMASK(13, 12), PIPE_NONE);
data[offset++] = GEN7_RBBM_PERFCTR_CNTL;
data[offset++] = 1;
kgsl_hwunlock(lock);
update:
if (update_reg)
kgsl_regwrite(KGSL_DEVICE(adreno_dev), reg->select,
reg->countable);
return 0;
}
static u64 gen7_9_0_read_alwayson(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 lo = 0, hi = 0, tmp = 0;
/* Always use the GMU AO counter when doing a AHB read */
gmu_core_regread(device, GEN7_GMU_CX_AO_COUNTER_HI, &hi);
gmu_core_regread(device, GEN7_GMU_CX_AO_COUNTER_LO, &lo);
/* Check for overflow */
gmu_core_regread(device, GEN7_GMU_CX_AO_COUNTER_HI, &tmp);
if (hi != tmp) {
gmu_core_regread(device, GEN7_GMU_CX_AO_COUNTER_LO,
&lo);
hi = tmp;
}
return (((u64) hi) << 32) | lo;
}
static u64 gen7_read_alwayson(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 lo = 0, hi = 0, tmp = 0;
/* Always use the GMU AO counter when doing a AHB read */
gmu_core_regread(device, GEN7_GMU_ALWAYS_ON_COUNTER_H, &hi);
gmu_core_regread(device, GEN7_GMU_ALWAYS_ON_COUNTER_L, &lo);
/* Check for overflow */
gmu_core_regread(device, GEN7_GMU_ALWAYS_ON_COUNTER_H, &tmp);
if (hi != tmp) {
gmu_core_regread(device, GEN7_GMU_ALWAYS_ON_COUNTER_L,
&lo);
hi = tmp;
}
return (((u64) hi) << 32) | lo;
}
static int gen7_9_0_lpac_store(struct adreno_device *adreno_dev, bool enable)
{
if (!ADRENO_FEATURE(adreno_dev, ADRENO_LPAC))
return -EINVAL;
if (!(adreno_dev->feature_fuse & BIT(GEN7_LPAC_SW_FUSE)) ||
(adreno_dev->lpac_enabled == enable))
return 0;
/* Power down the GPU before changing the lpac setting */
return adreno_power_cycle_bool(adreno_dev, &adreno_dev->lpac_enabled,
enable);
}
static int gen7_lpac_store(struct adreno_device *adreno_dev, bool enable)
{
if (!ADRENO_FEATURE(adreno_dev, ADRENO_LPAC))
return -EINVAL;
if (adreno_dev->lpac_enabled == enable)
return 0;
/* Power down the GPU before changing the lpac setting */
return adreno_power_cycle_bool(adreno_dev, &adreno_dev->lpac_enabled,
enable);
}
static void gen7_remove(struct adreno_device *adreno_dev)
{
struct gen7_gmu_device *gmu = to_gen7_gmu(adreno_dev);
/* Make sure timer is initialized, otherwise WARN_ON is generated */
if (adreno_preemption_feature_set(adreno_dev) &&
(test_bit(GMU_PRIV_FIRST_BOOT_DONE, &gmu->flags)))
del_timer(&adreno_dev->preempt.timer);
}
static void gen7_read_bus_stats(struct kgsl_device *device,
struct kgsl_power_stats *stats,
struct adreno_busy_data *busy)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
u64 ram_cycles, starved_ram;
ram_cycles = counter_delta(device, adreno_dev->ram_cycles_lo,
&busy->bif_ram_cycles);
starved_ram = counter_delta(device, adreno_dev->starved_ram_lo,
&busy->bif_starved_ram);
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch1_read,
&busy->bif_ram_cycles_read_ch1);
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch0_write,
&busy->bif_ram_cycles_write_ch0);
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch1_write,
&busy->bif_ram_cycles_write_ch1);
starved_ram += counter_delta(device,
adreno_dev->starved_ram_lo_ch1,
&busy->bif_starved_ram_ch1);
stats->ram_time = ram_cycles;
stats->ram_wait = starved_ram;
}
static void gen7_power_stats(struct adreno_device *adreno_dev,
struct kgsl_power_stats *stats)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_busy_data *busy = &adreno_dev->busy_data;
u64 gpu_busy;
/* Set the GPU busy counter for frequency scaling */
gpu_busy = counter_delta(device, GEN7_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
&busy->gpu_busy);
stats->busy_time = gpu_busy * 10;
do_div(stats->busy_time, 192);
if (ADRENO_FEATURE(adreno_dev, ADRENO_IFPC)) {
u32 ifpc = counter_delta(device,
GEN7_GMU_CX_GMU_POWER_COUNTER_XOCLK_4_L,
&busy->num_ifpc);
adreno_dev->ifpc_count += ifpc;
if (ifpc > 0)
trace_adreno_ifpc_count(adreno_dev->ifpc_count);
}
if (device->pwrctrl.bus_control)
gen7_read_bus_stats(device, stats, busy);
if (adreno_dev->bcl_enabled) {
u32 a, b, c;
a = counter_delta(device, GEN7_GMU_CX_GMU_POWER_COUNTER_XOCLK_1_L,
&busy->throttle_cycles[0]);
b = counter_delta(device, GEN7_GMU_CX_GMU_POWER_COUNTER_XOCLK_2_L,
&busy->throttle_cycles[1]);
c = counter_delta(device, GEN7_GMU_CX_GMU_POWER_COUNTER_XOCLK_3_L,
&busy->throttle_cycles[2]);
if (a || b || c)
trace_kgsl_bcl_clock_throttling(a, b, c);
if (adreno_is_gen7_2_x_family(adreno_dev)) {
u32 bcl_throttle = counter_delta(device,
GEN7_GMU_CX_GMU_POWER_COUNTER_XOCLK_5_L, &busy->bcl_throttle);
/*
* This counts number of cycles throttled in XO cycles. Convert it to
* micro seconds by dividing by XO freq which is 19.2MHz.
*/
adreno_dev->bcl_throttle_time_us += ((bcl_throttle * 10) / 192);
}
}
}
static int gen7_setproperty(struct kgsl_device_private *dev_priv,
u32 type, void __user *value, u32 sizebytes)
{
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
u32 enable;
if (type != KGSL_PROP_PWRCTRL)
return -ENODEV;
if (sizebytes != sizeof(enable))
return -EINVAL;
if (copy_from_user(&enable, value, sizeof(enable)))
return -EFAULT;
mutex_lock(&device->mutex);
if (enable) {
clear_bit(GMU_DISABLE_SLUMBER, &device->gmu_core.flags);
kgsl_pwrscale_enable(device);
} else {
set_bit(GMU_DISABLE_SLUMBER, &device->gmu_core.flags);
if (!adreno_active_count_get(adreno_dev))
adreno_active_count_put(adreno_dev);
kgsl_pwrscale_disable(device, true);
}
mutex_unlock(&device->mutex);
return 0;
}
static void gen7_set_isdb_breakpoint_registers(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct clk *clk;
int ret;
if (!device->set_isdb_breakpoint || device->ftbl->is_hwcg_on(device)
|| device->qdss_gfx_virt == NULL || !device->force_panic)
return;
clk = clk_get(&device->pdev->dev, "apb_pclk");
if (IS_ERR(clk)) {
dev_err(device->dev, "Unable to get QDSS clock\n");
goto err;
}
ret = clk_prepare_enable(clk);
if (ret) {
dev_err(device->dev, "QDSS Clock enable error: %d\n", ret);
clk_put(clk);
goto err;
}
/* Issue break command for eight SPs */
isdb_write(device->qdss_gfx_virt, 0x0000);
isdb_write(device->qdss_gfx_virt, 0x1000);
isdb_write(device->qdss_gfx_virt, 0x2000);
isdb_write(device->qdss_gfx_virt, 0x3000);
isdb_write(device->qdss_gfx_virt, 0x4000);
isdb_write(device->qdss_gfx_virt, 0x5000);
isdb_write(device->qdss_gfx_virt, 0x6000);
isdb_write(device->qdss_gfx_virt, 0x7000);
/* gen7_2_x has additional SPs */
if (adreno_is_gen7_2_x_family(adreno_dev)) {
isdb_write(device->qdss_gfx_virt, 0x8000);
isdb_write(device->qdss_gfx_virt, 0x9000);
isdb_write(device->qdss_gfx_virt, 0xa000);
isdb_write(device->qdss_gfx_virt, 0xb000);
}
clk_disable_unprepare(clk);
clk_put(clk);
return;
err:
/* Do not force kernel panic if isdb writes did not go through */
device->force_panic = false;
}
static void gen7_swfuse_irqctrl(struct adreno_device *adreno_dev, bool state)
{
if (adreno_is_gen7_9_x(adreno_dev))
kgsl_regwrite(KGSL_DEVICE(adreno_dev), GEN7_RBBM_SW_FUSE_INT_MASK,
state ? GEN7_SW_FUSE_INT_MASK : 0);
}
static void gen7_lpac_fault_header(struct adreno_device *adreno_dev,
struct kgsl_drawobj *drawobj_lpac)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_context *drawctxt_lpac;
u32 status = 0, lpac_rptr = 0, lpac_wptr = 0, lpac_ib1sz = 0, lpac_ib2sz = 0;
u64 lpac_ib1base = 0, lpac_ib2base = 0;
bool gx_on = adreno_gx_is_on(adreno_dev);
drawctxt_lpac = ADRENO_CONTEXT(drawobj_lpac->context);
drawobj_lpac->context->last_faulted_cmd_ts = drawobj_lpac->timestamp;
drawobj_lpac->context->total_fault_count++;
pr_context(device, drawobj_lpac->context,
"LPAC ctx %d ctx_type %s ts %d dispatch_queue=%d\n",
drawobj_lpac->context->id, kgsl_context_type(drawctxt_lpac->type),
drawobj_lpac->timestamp, drawobj_lpac->context->gmu_dispatch_queue);
pr_context(device, drawobj_lpac->context, "lpac cmdline: %s\n",
drawctxt_lpac->base.proc_priv->cmdline);
if (!gx_on)
goto done;
kgsl_regread(device, GEN7_RBBM_STATUS, &status);
kgsl_regread(device, GEN7_CP_LPAC_RB_RPTR, &lpac_rptr);
kgsl_regread(device, GEN7_CP_LPAC_RB_WPTR, &lpac_wptr);
kgsl_regread64(device, GEN7_CP_LPAC_IB1_BASE_HI,
GEN7_CP_LPAC_IB1_BASE, &lpac_ib1base);
kgsl_regread(device, GEN7_CP_LPAC_IB1_REM_SIZE, &lpac_ib1sz);
kgsl_regread64(device, GEN7_CP_LPAC_IB2_BASE_HI,
GEN7_CP_LPAC_IB2_BASE, &lpac_ib2base);
kgsl_regread(device, GEN7_CP_LPAC_IB2_REM_SIZE, &lpac_ib2sz);
pr_context(device, drawobj_lpac->context,
"LPAC: status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
status, lpac_rptr, lpac_wptr, lpac_ib1base,
lpac_ib1sz, lpac_ib2base, lpac_ib2sz);
done:
trace_adreno_gpu_fault(drawobj_lpac->context->id, drawobj_lpac->timestamp, status,
lpac_rptr, lpac_wptr, lpac_ib1base, lpac_ib1sz, lpac_ib2base, lpac_ib2sz,
adreno_get_level(drawobj_lpac->context));
}
const struct gen7_gpudev adreno_gen7_9_0_hwsched_gpudev = {
.base = {
.reg_offsets = gen7_register_offsets,
.probe = gen7_hwsched_probe,
.snapshot = gen7_hwsched_snapshot,
.irq_handler = gen7_irq_handler,
.iommu_fault_block = gen7_iommu_fault_block,
.preemption_context_init = gen7_preemption_context_init,
.context_detach = gen7_hwsched_context_detach,
.read_alwayson = gen7_9_0_read_alwayson,
.reset = gen7_hwsched_reset_replay,
.power_ops = &gen7_hwsched_power_ops,
.power_stats = gen7_power_stats,
.setproperty = gen7_setproperty,
.hw_isidle = gen7_hw_isidle,
.add_to_va_minidump = gen7_hwsched_add_to_minidump,
.gx_is_on = gen7_gmu_gx_is_on,
.send_recurring_cmdobj = gen7_hwsched_send_recurring_cmdobj,
.perfcounter_remove = gen7_perfcounter_remove,
.set_isdb_breakpoint_registers = gen7_set_isdb_breakpoint_registers,
.context_destroy = gen7_hwsched_context_destroy,
.lpac_store = gen7_9_0_lpac_store,
.get_uche_trap_base = gen7_get_uche_trap_base,
.lpac_fault_header = gen7_lpac_fault_header,
},
.hfi_probe = gen7_hwsched_hfi_probe,
.hfi_remove = gen7_hwsched_hfi_remove,
.handle_watchdog = gen7_hwsched_handle_watchdog,
};
const struct gen7_gpudev adreno_gen7_hwsched_gpudev = {
.base = {
.reg_offsets = gen7_register_offsets,
.probe = gen7_hwsched_probe,
.snapshot = gen7_hwsched_snapshot,
.irq_handler = gen7_irq_handler,
.iommu_fault_block = gen7_iommu_fault_block,
.preemption_context_init = gen7_preemption_context_init,
.context_detach = gen7_hwsched_context_detach,
.read_alwayson = gen7_read_alwayson,
.reset = gen7_hwsched_reset_replay,
.power_ops = &gen7_hwsched_power_ops,
.power_stats = gen7_power_stats,
.setproperty = gen7_setproperty,
.hw_isidle = gen7_hw_isidle,
.add_to_va_minidump = gen7_hwsched_add_to_minidump,
.gx_is_on = gen7_gmu_gx_is_on,
.send_recurring_cmdobj = gen7_hwsched_send_recurring_cmdobj,
.perfcounter_remove = gen7_perfcounter_remove,
.set_isdb_breakpoint_registers = gen7_set_isdb_breakpoint_registers,
.context_destroy = gen7_hwsched_context_destroy,
.lpac_store = gen7_lpac_store,
.get_uche_trap_base = gen7_get_uche_trap_base,
.lpac_fault_header = gen7_lpac_fault_header,
},
.hfi_probe = gen7_hwsched_hfi_probe,
.hfi_remove = gen7_hwsched_hfi_remove,
.handle_watchdog = gen7_hwsched_handle_watchdog,
};
const struct gen7_gpudev adreno_gen7_gmu_gpudev = {
.base = {
.reg_offsets = gen7_register_offsets,
.probe = gen7_gmu_device_probe,
.snapshot = gen7_gmu_snapshot,
.irq_handler = gen7_irq_handler,
.rb_start = gen7_rb_start,
.gpu_keepalive = gen7_gpu_keepalive,
.hw_isidle = gen7_hw_isidle,
.iommu_fault_block = gen7_iommu_fault_block,
.reset = gen7_gmu_reset,
.preemption_schedule = gen7_preemption_schedule,
.preemption_context_init = gen7_preemption_context_init,
.read_alwayson = gen7_read_alwayson,
.power_ops = &gen7_gmu_power_ops,
.remove = gen7_remove,
.ringbuffer_submitcmd = gen7_ringbuffer_submitcmd,
.power_stats = gen7_power_stats,
.setproperty = gen7_setproperty,
.add_to_va_minidump = gen7_gmu_add_to_minidump,
.gx_is_on = gen7_gmu_gx_is_on,
.perfcounter_remove = gen7_perfcounter_remove,
.set_isdb_breakpoint_registers = gen7_set_isdb_breakpoint_registers,
.swfuse_irqctrl = gen7_swfuse_irqctrl,
.get_uche_trap_base = gen7_get_uche_trap_base,
},
.hfi_probe = gen7_gmu_hfi_probe,
.handle_watchdog = gen7_gmu_handle_watchdog,
};