android_kernel_samsung_sm86.../qcom/opensource/graphics-kernel/adreno_a6xx_rgmu.c
David Wronek 880d405719 Add 'qcom/opensource/graphics-kernel/' from commit 'b4fdc4c04295ac59109ae19d64747522740c3f14'
git-subtree-dir: qcom/opensource/graphics-kernel
git-subtree-mainline: 992813d9c1
git-subtree-split: b4fdc4c042
Change-Id:
repo: https://git.codelinaro.org/clo/la/platform/vendor/qcom/opensource/graphics-kernel
tag: GRAPHICS.LA.14.0.r1-07700-lanai.0
2024-10-06 16:44:56 +02:00

1426 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/clk-provider.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/regulator/consumer.h>
#include "adreno.h"
#include "adreno_a6xx.h"
#include "adreno_a6xx_rgmu.h"
#include "adreno_snapshot.h"
#include "kgsl_bus.h"
#include "kgsl_trace.h"
#include "kgsl_util.h"
#define RGMU_CLK_FREQ 200000000
/* RGMU timeouts */
#define RGMU_IDLE_TIMEOUT 100 /* ms */
#define RGMU_START_TIMEOUT 100 /* ms */
#define GPU_START_TIMEOUT 100 /* ms */
#define GLM_SLEEP_TIMEOUT 10 /* ms */
static const unsigned int a6xx_rgmu_registers[] = {
/* GMU CX */
0x1F80F, 0x1F83D, 0x1F840, 0x1F8D8, 0x1F990, 0x1F99E, 0x1F9C0, 0x1F9CC,
/* GMU AO */
0x23B03, 0x23B16, 0x23B80, 0x23B82,
/* GPU CC */
0x24000, 0x24012, 0x24040, 0x24052, 0x24400, 0x24404, 0x24407, 0x2440B,
0x24415, 0x2441C, 0x2441E, 0x2442D, 0x2443C, 0x2443D, 0x2443F, 0x24440,
0x24442, 0x24449, 0x24458, 0x2445A, 0x24540, 0x2455E, 0x24800, 0x24802,
0x24C00, 0x24C02, 0x25400, 0x25402, 0x25800, 0x25802, 0x25C00, 0x25C02,
0x26000, 0x26002,
};
static struct a6xx_rgmu_device *to_a6xx_rgmu(struct adreno_device *adreno_dev)
{
struct a6xx_device *a6xx_dev = container_of(adreno_dev,
struct a6xx_device, adreno_dev);
return &a6xx_dev->rgmu;
}
static void a6xx_rgmu_active_count_put(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (WARN_ON(!mutex_is_locked(&device->mutex)))
return;
if (WARN(atomic_read(&device->active_cnt) == 0,
"Unbalanced get/put calls to KGSL active count\n"))
return;
if (atomic_dec_and_test(&device->active_cnt)) {
kgsl_pwrscale_update_stats(device);
kgsl_pwrscale_update(device);
kgsl_start_idle_timer(device);
}
trace_kgsl_active_count(device,
(unsigned long) __builtin_return_address(0));
wake_up(&device->active_cnt_wq);
}
static irqreturn_t a6xx_rgmu_irq_handler(int irq, void *data)
{
struct kgsl_device *device = data;
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(ADRENO_DEVICE(device));
unsigned int status = 0;
gmu_core_regread(device, A6XX_GMU_AO_HOST_INTERRUPT_STATUS, &status);
if (status & RGMU_AO_IRQ_FENCE_ERR) {
unsigned int fence_status;
gmu_core_regread(device, A6XX_GMU_AHB_FENCE_STATUS,
&fence_status);
gmu_core_regwrite(device, A6XX_GMU_AO_HOST_INTERRUPT_CLR,
status);
dev_err_ratelimited(&rgmu->pdev->dev,
"FENCE error interrupt received %x\n", fence_status);
}
if (status & ~RGMU_AO_IRQ_MASK)
dev_err_ratelimited(&rgmu->pdev->dev,
"Unhandled RGMU interrupts 0x%lx\n",
status & ~RGMU_AO_IRQ_MASK);
return IRQ_HANDLED;
}
static irqreturn_t a6xx_oob_irq_handler(int irq, void *data)
{
struct kgsl_device *device = data;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
unsigned int status = 0;
gmu_core_regread(device, A6XX_GMU_GMU2HOST_INTR_INFO, &status);
if (status & RGMU_OOB_IRQ_ERR_MSG) {
gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_CLR, status);
dev_err_ratelimited(&rgmu->pdev->dev,
"RGMU oob irq error\n");
adreno_dispatcher_fault(adreno_dev, ADRENO_GMU_FAULT);
}
if (status & ~RGMU_OOB_IRQ_MASK)
dev_err_ratelimited(&rgmu->pdev->dev,
"Unhandled OOB interrupts 0x%lx\n",
status & ~RGMU_OOB_IRQ_MASK);
return IRQ_HANDLED;
}
static const char *oob_to_str(enum oob_request req)
{
if (req == oob_gpu)
return "oob_gpu";
else if (req == oob_perfcntr)
return "oob_perfcntr";
return "unknown";
}
/*
* a6xx_rgmu_oob_set() - Set OOB interrupt to RGMU
* @adreno_dev: Pointer to adreno device
* @req: Which of the OOB bits to request
*/
static int a6xx_rgmu_oob_set(struct kgsl_device *device,
enum oob_request req)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(ADRENO_DEVICE(device));
int ret, set, check;
if (req == oob_perfcntr && rgmu->num_oob_perfcntr++)
return 0;
set = BIT(req + 16);
check = BIT(req + 16);
gmu_core_regwrite(device, A6XX_GMU_HOST2GMU_INTR_SET, set);
ret = gmu_core_timed_poll_check(device,
A6XX_GMU_GMU2HOST_INTR_INFO,
check,
GPU_START_TIMEOUT,
check);
if (ret) {
unsigned int status;
if (req == oob_perfcntr)
rgmu->num_oob_perfcntr--;
gmu_core_regread(device, A6XX_RGMU_CX_PCC_DEBUG, &status);
dev_err(&rgmu->pdev->dev,
"Timed out while setting OOB req:%s status:0x%x\n",
oob_to_str(req), status);
gmu_core_fault_snapshot(device);
return ret;
}
gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_CLR, check);
trace_kgsl_gmu_oob_set(set);
return 0;
}
/*
* a6xx_rgmu_oob_clear() - Clear a previously set OOB request.
* @adreno_dev: Pointer to the adreno device that has the RGMU
* @req: Which of the OOB bits to clear
*/
static void a6xx_rgmu_oob_clear(struct kgsl_device *device,
enum oob_request req)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(ADRENO_DEVICE(device));
if (req == oob_perfcntr && --rgmu->num_oob_perfcntr)
return;
gmu_core_regwrite(device, A6XX_GMU_HOST2GMU_INTR_SET, BIT(req + 24));
trace_kgsl_gmu_oob_clear(BIT(req + 24));
}
static void a6xx_rgmu_bcl_config(struct kgsl_device *device, bool on)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(ADRENO_DEVICE(device));
if (on) {
/* Enable BCL CRC HW i/f */
gmu_core_regwrite(device,
A6XX_GMU_AO_RGMU_GLM_HW_CRC_DISABLE, 0);
} else {
/* Disable CRC HW i/f */
gmu_core_regwrite(device,
A6XX_GMU_AO_RGMU_GLM_HW_CRC_DISABLE, 1);
/* Wait for HW CRC disable ACK */
if (gmu_core_timed_poll_check(device,
A6XX_GMU_AO_RGMU_GLM_SLEEP_STATUS,
BIT(1), GLM_SLEEP_TIMEOUT, BIT(1)))
dev_err_ratelimited(&rgmu->pdev->dev,
"Timed out waiting for HW CRC disable acknowledgment\n");
/* Pull down the valid RGMU_GLM_SLEEP_CTRL[7] to 0 */
gmu_core_regrmw(device, A6XX_GMU_AO_RGMU_GLM_SLEEP_CTRL,
BIT(7), 0);
}
}
static void a6xx_rgmu_irq_enable(struct adreno_device *adreno_dev)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
/* Clear pending IRQs and Unmask needed IRQs */
gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_CLR, 0xffffffff);
gmu_core_regwrite(device, A6XX_GMU_AO_HOST_INTERRUPT_CLR, 0xffffffff);
gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_MASK,
~((unsigned int)RGMU_OOB_IRQ_MASK));
gmu_core_regwrite(device, A6XX_GMU_AO_HOST_INTERRUPT_MASK,
(unsigned int)~RGMU_AO_IRQ_MASK);
/* Enable all IRQs on host */
enable_irq(rgmu->oob_interrupt_num);
enable_irq(rgmu->rgmu_interrupt_num);
}
static void a6xx_rgmu_irq_disable(struct adreno_device *adreno_dev)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
/* Disable all IRQs on host */
disable_irq(rgmu->rgmu_interrupt_num);
disable_irq(rgmu->oob_interrupt_num);
/* Mask all IRQs and clear pending IRQs */
gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_MASK, 0xffffffff);
gmu_core_regwrite(device, A6XX_GMU_AO_HOST_INTERRUPT_MASK, 0xffffffff);
gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_CLR, 0xffffffff);
gmu_core_regwrite(device, A6XX_GMU_AO_HOST_INTERRUPT_CLR, 0xffffffff);
}
static int a6xx_rgmu_ifpc_store(struct kgsl_device *device,
unsigned int val)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
unsigned int requested_idle_level;
if (!ADRENO_FEATURE(adreno_dev, ADRENO_IFPC))
return -EINVAL;
if (val)
requested_idle_level = GPU_HW_IFPC;
else
requested_idle_level = GPU_HW_ACTIVE;
if (requested_idle_level == rgmu->idle_level)
return 0;
/* Power cycle the GPU for changes to take effect */
return adreno_power_cycle_u32(adreno_dev, &rgmu->idle_level,
requested_idle_level);
}
static unsigned int a6xx_rgmu_ifpc_isenabled(struct kgsl_device *device)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(ADRENO_DEVICE(device));
return rgmu->idle_level == GPU_HW_IFPC;
}
static void a6xx_rgmu_prepare_stop(struct kgsl_device *device)
{
/* Turn off GX_MEM retention */
kgsl_regwrite(device, A6XX_RBBM_BLOCK_GX_RETENTION_CNTL, 0);
}
#define GX_GDSC_POWER_OFF BIT(6)
bool a6xx_rgmu_gx_is_on(struct adreno_device *adreno_dev)
{
unsigned int val;
gmu_core_regread(KGSL_DEVICE(adreno_dev),
A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, &val);
return !(val & GX_GDSC_POWER_OFF);
}
static int a6xx_rgmu_wait_for_lowest_idle(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
unsigned int reg[10] = {0};
unsigned long t;
uint64_t ts1, ts2, ts3;
if (rgmu->idle_level != GPU_HW_IFPC)
return 0;
ts1 = a6xx_read_alwayson(adreno_dev);
/* FIXME: readl_poll_timeout? */
t = jiffies + msecs_to_jiffies(RGMU_IDLE_TIMEOUT);
do {
gmu_core_regread(device,
A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, &reg[0]);
if (reg[0] & GX_GDSC_POWER_OFF)
return 0;
/* Wait 10us to reduce unnecessary AHB bus traffic */
usleep_range(10, 100);
} while (!time_after(jiffies, t));
ts2 = a6xx_read_alwayson(adreno_dev);
/* Do one last read incase it succeeds */
gmu_core_regread(device,
A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, &reg[0]);
if (reg[0] & GX_GDSC_POWER_OFF)
return 0;
ts3 = a6xx_read_alwayson(adreno_dev);
/* Collect abort data to help with debugging */
gmu_core_regread(device, A6XX_RGMU_CX_PCC_DEBUG, &reg[1]);
gmu_core_regread(device, A6XX_RGMU_CX_PCC_STATUS, &reg[2]);
gmu_core_regread(device, A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, &reg[3]);
kgsl_regread(device, A6XX_CP_STATUS_1, &reg[4]);
gmu_core_regread(device, A6XX_GMU_RBBM_INT_UNMASKED_STATUS, &reg[5]);
gmu_core_regread(device, A6XX_GMU_GMU_PWR_COL_KEEPALIVE, &reg[6]);
kgsl_regread(device, A6XX_CP_CP2GMU_STATUS, &reg[7]);
kgsl_regread(device, A6XX_CP_CONTEXT_SWITCH_CNTL, &reg[8]);
gmu_core_regread(device, A6XX_GMU_AO_SPARE_CNTL, &reg[9]);
dev_err(&rgmu->pdev->dev,
"----------------------[ RGMU error ]----------------------\n");
dev_err(&rgmu->pdev->dev, "Timeout waiting for lowest idle level\n");
dev_err(&rgmu->pdev->dev,
"Timestamps: %llx %llx %llx\n", ts1, ts2, ts3);
dev_err(&rgmu->pdev->dev,
"SPTPRAC_PWR_CLK_STATUS=%x PCC_DEBUG=%x PCC_STATUS=%x\n",
reg[0], reg[1], reg[2]);
dev_err(&rgmu->pdev->dev,
"CX_BUSY_STATUS=%x CP_STATUS_1=%x\n", reg[3], reg[4]);
dev_err(&rgmu->pdev->dev,
"RBBM_INT_UNMASKED_STATUS=%x PWR_COL_KEEPALIVE=%x\n",
reg[5], reg[6]);
dev_err(&rgmu->pdev->dev,
"CP2GMU_STATUS=%x CONTEXT_SWITCH_CNTL=%x AO_SPARE_CNTL=%x\n",
reg[7], reg[8], reg[9]);
WARN_ON(1);
gmu_core_fault_snapshot(device);
return -ETIMEDOUT;
}
/*
* The lowest 16 bits of this value are the number of XO clock cycles
* for main hysteresis. This is the first hysteresis. Here we set it
* to 0x1680 cycles, or 300 us. The highest 16 bits of this value are
* the number of XO clock cycles for short hysteresis. This happens
* after main hysteresis. Here we set it to 0xA cycles, or 0.5 us.
*/
#define A6X_RGMU_LONG_IFPC_HYST FIELD_PREP(GENMASK(15, 0), 0x1680)
#define A6X_RGMU_SHORT_IFPC_HYST FIELD_PREP(GENMASK(31, 16), 0xA)
/* Minimum IFPC timer (200usec) allowed to override default value */
#define A6X_RGMU_LONG_IFPC_HYST_FLOOR FIELD_PREP(GENMASK(15, 0), 0x0F00)
/* HOSTTOGMU and TIMER0/1 interrupt mask: 0x20060 */
#define RGMU_INTR_EN_MASK (BIT(5) | BIT(6) | BIT(17))
/* RGMU FENCE RANGE MASK */
#define RGMU_FENCE_RANGE_MASK ((0x1 << 31) | ((0xA << 2) << 18) | (0x8A0))
static int a6xx_rgmu_fw_start(struct adreno_device *adreno_dev,
unsigned int boot_state)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
unsigned int status;
int i;
switch (boot_state) {
case GMU_COLD_BOOT:
case GMU_WARM_BOOT:
/* Turn on TCM retention */
gmu_core_regwrite(device, A6XX_GMU_GENERAL_7, 1);
/* Load RGMU FW image via AHB bus */
for (i = 0; i < rgmu->fw_size; i++)
gmu_core_regwrite(device, A6XX_GMU_CM3_ITCM_START + i,
rgmu->fw_hostptr[i]);
break;
}
/* IFPC Feature Enable */
if (rgmu->idle_level == GPU_HW_IFPC) {
gmu_core_regwrite(device, A6XX_GMU_PWR_COL_INTER_FRAME_HYST,
A6X_RGMU_SHORT_IFPC_HYST | adreno_dev->ifpc_hyst);
gmu_core_regwrite(device, A6XX_GMU_PWR_COL_INTER_FRAME_CTRL,
BIT(0));
}
/* For RGMU CX interrupt */
gmu_core_regwrite(device, A6XX_RGMU_CX_INTR_GEN_EN, RGMU_INTR_EN_MASK);
/* Enable GMU AO to host interrupt */
gmu_core_regwrite(device, A6XX_GMU_AO_INTERRUPT_EN, RGMU_AO_IRQ_MASK);
/* For OOB */
gmu_core_regwrite(device, A6XX_GMU_HOST2GMU_INTR_EN_2, 0x00FF0000);
gmu_core_regwrite(device, A6XX_GMU_HOST2GMU_INTR_EN_3, 0xFF000000);
/* Fence Address range configuration */
gmu_core_regwrite(device, A6XX_GMU_AHB_FENCE_RANGE_0,
RGMU_FENCE_RANGE_MASK);
/* During IFPC RGMU will put fence in drop mode so we would
* need to put fence allow mode during slumber out sequence.
*/
gmu_core_regwrite(device, A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
/* BCL ON Sequence */
a6xx_rgmu_bcl_config(device, true);
/* Write 0 first to make sure that rgmu is reset */
gmu_core_regwrite(device, A6XX_RGMU_CX_PCC_CTRL, 0);
/* Make sure putting in reset doesn't happen after writing 1 */
wmb();
/* Bring rgmu out of reset */
gmu_core_regwrite(device, A6XX_RGMU_CX_PCC_CTRL, 1);
if (gmu_core_timed_poll_check(device, A6XX_RGMU_CX_PCC_INIT_RESULT,
BIT(0), RGMU_START_TIMEOUT, BIT(0))) {
gmu_core_regread(device, A6XX_RGMU_CX_PCC_DEBUG, &status);
dev_err(&rgmu->pdev->dev,
"rgmu boot Failed. status:%08x\n", status);
gmu_core_fault_snapshot(device);
return -ETIMEDOUT;
}
/* Read the RGMU firmware version from registers */
gmu_core_regread(device, A6XX_GMU_GENERAL_0, &rgmu->ver);
return 0;
}
static void a6xx_rgmu_notify_slumber(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
/* Disable the power counter so that the RGMU is not busy */
gmu_core_regwrite(device, A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0);
/* BCL OFF Sequence */
a6xx_rgmu_bcl_config(device, false);
}
static void a6xx_rgmu_disable_clks(struct adreno_device *adreno_dev)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
int ret;
/* Check GX GDSC is status */
if (a6xx_rgmu_gx_is_on(adreno_dev)) {
if (IS_ERR_OR_NULL(pwr->gx_gdsc))
return;
/*
* Switch gx gdsc control from RGMU to CPU. Force non-zero
* reference count in clk driver so next disable call will
* turn off the GDSC.
*/
ret = regulator_enable(pwr->gx_gdsc);
if (ret)
dev_err(&rgmu->pdev->dev,
"Fail to enable gx gdsc:%d\n", ret);
ret = regulator_disable(pwr->gx_gdsc);
if (ret)
dev_err(&rgmu->pdev->dev,
"Fail to disable gx gdsc:%d\n", ret);
if (a6xx_rgmu_gx_is_on(adreno_dev))
dev_err(&rgmu->pdev->dev, "gx is stuck on\n");
}
clk_bulk_disable_unprepare(rgmu->num_clks, rgmu->clks);
}
void a6xx_rgmu_snapshot(struct adreno_device *adreno_dev,
struct kgsl_snapshot *snapshot)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
adreno_snapshot_registers(device, snapshot, a6xx_rgmu_registers,
ARRAY_SIZE(a6xx_rgmu_registers) / 2);
a6xx_snapshot(adreno_dev, snapshot);
gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_CLR, 0xffffffff);
gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_MASK,
RGMU_OOB_IRQ_MASK);
if (device->gmu_fault)
rgmu->fault_count++;
}
static void a6xx_rgmu_suspend(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
a6xx_rgmu_irq_disable(adreno_dev);
a6xx_rgmu_disable_clks(adreno_dev);
kgsl_pwrctrl_disable_cx_gdsc(device);
kgsl_pwrctrl_set_state(KGSL_DEVICE(adreno_dev), KGSL_STATE_NONE);
}
static int a6xx_rgmu_enable_clks(struct adreno_device *adreno_dev)
{
int ret;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
ret = clk_set_rate(rgmu->rgmu_clk, RGMU_CLK_FREQ);
if (ret) {
dev_err(&rgmu->pdev->dev, "Couldn't set the RGMU clock\n");
return ret;
}
ret = clk_set_rate(rgmu->gpu_clk,
pwr->pwrlevels[pwr->default_pwrlevel].gpu_freq);
if (ret) {
dev_err(&rgmu->pdev->dev, "Couldn't set the GPU clock\n");
return ret;
}
ret = clk_bulk_prepare_enable(rgmu->num_clks, rgmu->clks);
if (ret) {
dev_err(&rgmu->pdev->dev, "Failed to enable RGMU clocks\n");
return ret;
}
device->state = KGSL_STATE_AWARE;
return 0;
}
/*
* a6xx_rgmu_load_firmware() - Load the ucode into the RGMU TCM
* @adreno_dev: Pointer to adreno device
*/
static int a6xx_rgmu_load_firmware(struct adreno_device *adreno_dev)
{
const struct firmware *fw = NULL;
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
const struct adreno_a6xx_core *a6xx_core = to_a6xx_core(adreno_dev);
int ret;
/* RGMU fw already saved and verified so do nothing new */
if (rgmu->fw_hostptr)
return 0;
ret = request_firmware(&fw, a6xx_core->gmufw_name, &rgmu->pdev->dev);
if (ret < 0) {
dev_err(&rgmu->pdev->dev, "request_firmware (%s) failed: %d\n",
a6xx_core->gmufw_name, ret);
return ret;
}
rgmu->fw_hostptr = devm_kmemdup(&rgmu->pdev->dev, fw->data,
fw->size, GFP_KERNEL);
if (rgmu->fw_hostptr)
rgmu->fw_size = (fw->size / sizeof(u32));
release_firmware(fw);
return rgmu->fw_hostptr ? 0 : -ENOMEM;
}
/* Halt RGMU execution */
static void a6xx_rgmu_halt_execution(struct kgsl_device *device, bool force)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(ADRENO_DEVICE(device));
unsigned int index, status, fence;
if (!device->gmu_fault)
return;
/* Mask so there's no interrupt caused by NMI */
gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_MASK, 0xFFFFFFFF);
/* Make sure the interrupt is masked */
wmb();
gmu_core_regread(device, A6XX_RGMU_CX_PCC_DEBUG, &index);
gmu_core_regread(device, A6XX_RGMU_CX_PCC_STATUS, &status);
gmu_core_regread(device, A6XX_GMU_AO_AHB_FENCE_CTRL, &fence);
dev_err(&rgmu->pdev->dev,
"RGMU Fault PCC_DEBUG:0x%x PCC_STATUS:0x%x FENCE_CTRL:0x%x\n",
index, status, fence);
/*
* Write 0 to halt RGMU execution. We halt it in GMU/GPU fault and
* re start PCC execution in recovery path.
*/
gmu_core_regwrite(device, A6XX_RGMU_CX_PCC_CTRL, 0);
/*
* Ensure that fence is in allow mode after halting RGMU.
* After halting RGMU we dump snapshot.
*/
gmu_core_regwrite(device, A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
}
static void halt_gbif_arb(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
/* Halt all AXI requests */
kgsl_regwrite(device, A6XX_GBIF_HALT, A6XX_GBIF_ARB_HALT_MASK);
adreno_wait_for_halt_ack(device, A6XX_GBIF_HALT_ACK,
A6XX_GBIF_ARB_HALT_MASK);
/* De-assert the halts */
kgsl_regwrite(device, A6XX_GBIF_HALT, 0x0);
}
/* Caller shall ensure GPU is ready for SLUMBER */
static void a6xx_rgmu_power_off(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
kgsl_pwrctrl_axi(device, false);
if (device->gmu_fault)
return a6xx_rgmu_suspend(adreno_dev);
/* Wait for the lowest idle level we requested */
ret = a6xx_rgmu_wait_for_lowest_idle(adreno_dev);
if (ret)
return a6xx_rgmu_suspend(adreno_dev);
a6xx_rgmu_notify_slumber(adreno_dev);
/* Halt CX traffic and de-assert halt */
halt_gbif_arb(adreno_dev);
a6xx_rgmu_irq_disable(adreno_dev);
a6xx_rgmu_disable_clks(adreno_dev);
kgsl_pwrctrl_disable_cx_gdsc(device);
kgsl_pwrctrl_clear_l3_vote(device);
kgsl_pwrctrl_set_state(device, KGSL_STATE_NONE);
}
static int a6xx_rgmu_clock_set(struct adreno_device *adreno_dev,
u32 pwrlevel)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
int ret;
unsigned long rate;
if (pwrlevel == INVALID_DCVS_IDX)
return -EINVAL;
rate = device->pwrctrl.pwrlevels[pwrlevel].gpu_freq;
ret = clk_set_rate(rgmu->gpu_clk, rate);
if (ret)
dev_err(&rgmu->pdev->dev, "Couldn't set the GPU clock\n");
return ret;
}
static int a6xx_gpu_boot(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
adreno_set_active_ctxs_null(adreno_dev);
ret = kgsl_mmu_start(device);
if (ret)
goto err;
ret = a6xx_rgmu_oob_set(device, oob_gpu);
if (ret)
goto err_oob_clear;
/* Clear the busy_data stats - we're starting over from scratch */
memset(&adreno_dev->busy_data, 0, sizeof(adreno_dev->busy_data));
/* Restore performance counter registers with saved values */
adreno_perfcounter_restore(adreno_dev);
a6xx_start(adreno_dev);
/* Re-initialize the coresight registers if applicable */
adreno_coresight_start(adreno_dev);
adreno_perfcounter_start(adreno_dev);
/* Clear FSR here in case it is set from a previous pagefault */
kgsl_mmu_clear_fsr(&device->mmu);
a6xx_enable_gpu_irq(adreno_dev);
ret = a6xx_rb_start(adreno_dev);
if (ret) {
a6xx_disable_gpu_irq(adreno_dev);
goto err_oob_clear;
}
/*
* At this point it is safe to assume that we recovered. Setting
* this field allows us to take a new snapshot for the next failure
* if we are prioritizing the first unrecoverable snapshot.
*/
if (device->snapshot)
device->snapshot->recovered = true;
/* Start the dispatcher */
adreno_dispatcher_start(device);
device->reset_counter++;
a6xx_rgmu_oob_clear(device, oob_gpu);
return 0;
err_oob_clear:
a6xx_rgmu_oob_clear(device, oob_gpu);
err:
a6xx_rgmu_power_off(adreno_dev);
return ret;
}
static int a6xx_rgmu_boot(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
kgsl_pwrctrl_request_state(device, KGSL_STATE_AWARE);
ret = kgsl_pwrctrl_enable_cx_gdsc(device);
if (ret)
return ret;
ret = a6xx_rgmu_enable_clks(adreno_dev);
if (ret) {
kgsl_pwrctrl_disable_cx_gdsc(device);
return ret;
}
a6xx_rgmu_irq_enable(adreno_dev);
/* Clear any GPU faults that might have been left over */
adreno_clear_gpu_fault(adreno_dev);
ret = a6xx_rgmu_fw_start(adreno_dev, GMU_COLD_BOOT);
if (ret)
goto err;
/* Request default DCVS level */
ret = kgsl_pwrctrl_set_default_gpu_pwrlevel(device);
if (ret)
goto err;
ret = kgsl_pwrctrl_axi(device, true);
if (ret)
goto err;
device->gmu_fault = false;
kgsl_pwrctrl_set_state(device, KGSL_STATE_AWARE);
return 0;
err:
a6xx_rgmu_power_off(adreno_dev);
return ret;
}
static int a6xx_power_off(struct adreno_device *adreno_dev);
static void rgmu_idle_check(struct work_struct *work)
{
struct kgsl_device *device = container_of(work,
struct kgsl_device, idle_check_ws);
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
int ret;
mutex_lock(&device->mutex);
if (test_bit(GMU_DISABLE_SLUMBER, &device->gmu_core.flags))
goto done;
if (atomic_read(&device->active_cnt) || time_is_after_jiffies(device->idle_jiffies)) {
kgsl_pwrscale_update(device);
kgsl_start_idle_timer(device);
goto done;
}
spin_lock(&device->submit_lock);
if (device->submit_now) {
spin_unlock(&device->submit_lock);
kgsl_pwrscale_update(device);
kgsl_start_idle_timer(device);
goto done;
}
device->skip_inline_submit = true;
spin_unlock(&device->submit_lock);
ret = a6xx_power_off(adreno_dev);
if (ret == -EBUSY) {
kgsl_pwrscale_update(device);
kgsl_start_idle_timer(device);
}
done:
mutex_unlock(&device->mutex);
}
static void rgmu_idle_timer(struct timer_list *t)
{
struct kgsl_device *device = container_of(t, struct kgsl_device,
idle_timer);
kgsl_schedule_work(&device->idle_check_ws);
}
static int a6xx_boot(struct adreno_device *adreno_dev)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
if (test_bit(RGMU_PRIV_GPU_STARTED, &rgmu->flags))
return 0;
kgsl_pwrctrl_request_state(device, KGSL_STATE_ACTIVE);
ret = a6xx_rgmu_boot(adreno_dev);
if (ret)
return ret;
ret = a6xx_gpu_boot(adreno_dev);
if (ret)
return ret;
kgsl_start_idle_timer(device);
kgsl_pwrscale_wake(device);
set_bit(RGMU_PRIV_GPU_STARTED, &rgmu->flags);
device->pwrctrl.last_stat_updated = ktime_get();
kgsl_pwrctrl_set_state(device, KGSL_STATE_ACTIVE);
return 0;
}
static void a6xx_rgmu_touch_wakeup(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
int ret;
/*
* Do not wake up a suspended device or until the first boot sequence
* has been completed.
*/
if (test_bit(RGMU_PRIV_PM_SUSPEND, &rgmu->flags) ||
!test_bit(RGMU_PRIV_FIRST_BOOT_DONE, &rgmu->flags))
return;
if (test_bit(RGMU_PRIV_GPU_STARTED, &rgmu->flags))
goto done;
kgsl_pwrctrl_request_state(device, KGSL_STATE_ACTIVE);
ret = a6xx_rgmu_boot(adreno_dev);
if (ret)
return;
ret = a6xx_gpu_boot(adreno_dev);
if (ret)
return;
kgsl_pwrscale_wake(device);
set_bit(RGMU_PRIV_GPU_STARTED, &rgmu->flags);
device->pwrctrl.last_stat_updated = ktime_get();
kgsl_pwrctrl_set_state(device, KGSL_STATE_ACTIVE);
done:
/*
* When waking up from a touch event we want to stay active long enough
* for the user to send a draw command. The default idle timer timeout
* is shorter than we want so go ahead and push the idle timer out
* further for this special case
*/
mod_timer(&device->idle_timer, jiffies +
msecs_to_jiffies(adreno_wake_timeout));
}
static int a6xx_first_boot(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
int ret;
if (test_bit(RGMU_PRIV_FIRST_BOOT_DONE, &rgmu->flags))
return a6xx_boot(adreno_dev);
ret = a6xx_ringbuffer_init(adreno_dev);
if (ret)
return ret;
ret = a6xx_microcode_read(adreno_dev);
if (ret)
return ret;
ret = a6xx_init(adreno_dev);
if (ret)
return ret;
ret = a6xx_rgmu_load_firmware(adreno_dev);
if (ret)
return ret;
kgsl_pwrctrl_request_state(device, KGSL_STATE_ACTIVE);
ret = a6xx_rgmu_boot(adreno_dev);
if (ret)
return ret;
ret = a6xx_gpu_boot(adreno_dev);
if (ret)
return ret;
adreno_get_bus_counters(adreno_dev);
adreno_create_profile_buffer(adreno_dev);
set_bit(RGMU_PRIV_FIRST_BOOT_DONE, &rgmu->flags);
set_bit(RGMU_PRIV_GPU_STARTED, &rgmu->flags);
/*
* There is a possible deadlock scenario during kgsl firmware reading
* (request_firmware) and devfreq update calls. During first boot, kgsl
* device mutex is held and then request_firmware is called for reading
* firmware. request_firmware internally takes dev_pm_qos_mtx lock.
* Whereas in case of devfreq update calls triggered by thermal/bcl or
* devfreq sysfs, it first takes the same dev_pm_qos_mtx lock and then
* tries to take kgsl device mutex as part of get_dev_status/target
* calls. This results in deadlock when both thread are unable to acquire
* the mutex held by other thread. Enable devfreq updates now as we are
* done reading all firmware files.
*/
device->pwrscale.devfreq_enabled = true;
device->pwrctrl.last_stat_updated = ktime_get();
kgsl_pwrctrl_set_state(device, KGSL_STATE_ACTIVE);
return 0;
}
static int a6xx_rgmu_first_open(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
ret = a6xx_first_boot(adreno_dev);
if (ret)
return ret;
/*
* A client that does a first_open but never closes the device
* may prevent us from going back to SLUMBER. So trigger the idle
* check by incrementing the active count and immediately releasing it.
*/
atomic_inc(&device->active_cnt);
a6xx_rgmu_active_count_put(adreno_dev);
return 0;
}
static int a6xx_power_off(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
int ret;
adreno_suspend_context(device);
/*
* adreno_suspend_context() unlocks the device mutex, which
* could allow a concurrent thread to attempt SLUMBER sequence.
* Hence, check the flags before proceeding with SLUMBER.
*/
if (!test_bit(RGMU_PRIV_GPU_STARTED, &rgmu->flags))
return 0;
kgsl_pwrctrl_request_state(device, KGSL_STATE_SLUMBER);
ret = a6xx_rgmu_oob_set(device, oob_gpu);
if (ret) {
a6xx_rgmu_oob_clear(device, oob_gpu);
goto no_gx_power;
}
if (a6xx_irq_pending(adreno_dev)) {
a6xx_gmu_oob_clear(device, oob_gpu);
return -EBUSY;
}
kgsl_pwrscale_update_stats(device);
/* Save active coresight registers if applicable */
adreno_coresight_stop(adreno_dev);
/* Save physical performance counter values before GPU power down*/
adreno_perfcounter_save(adreno_dev);
adreno_irqctrl(adreno_dev, 0);
a6xx_rgmu_prepare_stop(device);
a6xx_rgmu_oob_clear(device, oob_gpu);
no_gx_power:
/* Halt all gx traffic */
kgsl_regwrite(device, A6XX_GBIF_HALT, A6XX_GBIF_CLIENT_HALT_MASK);
adreno_wait_for_halt_ack(device, A6XX_GBIF_HALT_ACK,
A6XX_GBIF_CLIENT_HALT_MASK);
kgsl_pwrctrl_irq(device, false);
a6xx_rgmu_power_off(adreno_dev);
adreno_set_active_ctxs_null(adreno_dev);
adreno_dispatcher_stop(adreno_dev);
adreno_ringbuffer_stop(adreno_dev);
adreno_llcc_slice_deactivate(adreno_dev);
clear_bit(RGMU_PRIV_GPU_STARTED, &rgmu->flags);
del_timer_sync(&device->idle_timer);
kgsl_pwrscale_sleep(device);
kgsl_pwrctrl_set_state(device, KGSL_STATE_SLUMBER);
return ret;
}
int a6xx_rgmu_reset(struct adreno_device *adreno_dev)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
a6xx_disable_gpu_irq(adreno_dev);
/* Hard reset the rgmu and gpu */
a6xx_rgmu_suspend(adreno_dev);
a6xx_reset_preempt_records(adreno_dev);
adreno_llcc_slice_deactivate(adreno_dev);
clear_bit(RGMU_PRIV_GPU_STARTED, &rgmu->flags);
/* Attempt rebooting the rgmu and gpu */
return a6xx_boot(adreno_dev);
}
static int a6xx_rgmu_active_count_get(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
int ret = 0;
if (WARN_ON(!mutex_is_locked(&device->mutex)))
return -EINVAL;
if (test_bit(RGMU_PRIV_PM_SUSPEND, &rgmu->flags))
return -EINVAL;
if (atomic_read(&device->active_cnt) == 0)
ret = a6xx_boot(adreno_dev);
if (ret == 0) {
atomic_inc(&device->active_cnt);
trace_kgsl_active_count(device,
(unsigned long) __builtin_return_address(0));
}
return ret;
}
static int a6xx_rgmu_pm_suspend(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
int ret;
if (test_bit(RGMU_PRIV_PM_SUSPEND, &rgmu->flags))
return 0;
kgsl_pwrctrl_request_state(device, KGSL_STATE_SUSPEND);
/* Halt any new submissions */
reinit_completion(&device->halt_gate);
/* wait for active count so device can be put in slumber */
ret = kgsl_active_count_wait(device, 0, HZ);
if (ret) {
dev_err(device->dev,
"Timed out waiting for the active count\n");
goto err;
}
ret = adreno_idle(device);
if (ret)
goto err;
a6xx_power_off(adreno_dev);
set_bit(RGMU_PRIV_PM_SUSPEND, &rgmu->flags);
adreno_get_gpu_halt(adreno_dev);
kgsl_pwrctrl_set_state(device, KGSL_STATE_SUSPEND);
return 0;
err:
adreno_dispatcher_start(device);
return ret;
}
static void a6xx_rgmu_pm_resume(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
if (WARN(!test_bit(GMU_PRIV_PM_SUSPEND, &rgmu->flags),
"resume invoked without a suspend\n"))
return;
adreno_put_gpu_halt(adreno_dev);
clear_bit(RGMU_PRIV_PM_SUSPEND, &rgmu->flags);
adreno_dispatcher_start(device);
}
static const struct gmu_dev_ops a6xx_rgmudev = {
.oob_set = a6xx_rgmu_oob_set,
.oob_clear = a6xx_rgmu_oob_clear,
.ifpc_store = a6xx_rgmu_ifpc_store,
.ifpc_isenabled = a6xx_rgmu_ifpc_isenabled,
.send_nmi = a6xx_rgmu_halt_execution,
};
static int a6xx_rgmu_irq_probe(struct kgsl_device *device)
{
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(ADRENO_DEVICE(device));
int ret;
ret = kgsl_request_irq(rgmu->pdev, "kgsl_oob",
a6xx_oob_irq_handler, device);
if (ret < 0)
return ret;
rgmu->oob_interrupt_num = ret;
ret = kgsl_request_irq(rgmu->pdev,
"kgsl_rgmu", a6xx_rgmu_irq_handler, device);
if (ret < 0)
return ret;
rgmu->rgmu_interrupt_num = ret;
return 0;
}
static int a6xx_rgmu_clocks_probe(struct a6xx_rgmu_device *rgmu,
struct device_node *node)
{
int ret, i;
ret = devm_clk_bulk_get_all(&rgmu->pdev->dev, &rgmu->clks);
if (ret < 0)
return ret;
/*
* Voting for apb_pclk will enable power and clocks required for
* QDSS path to function. However, if QCOM_KGSL_QDSS_STM is not enabled,
* QDSS is essentially unusable. Hence, if QDSS cannot be used,
* don't vote for this clock.
*/
if (!IS_ENABLED(CONFIG_QCOM_KGSL_QDSS_STM)) {
for (i = 0; i < ret; i++) {
if (!strcmp(rgmu->clks[i].id, "apb_pclk")) {
rgmu->clks[i].clk = NULL;
break;
}
}
}
rgmu->num_clks = ret;
rgmu->gpu_clk = kgsl_of_clk_by_name(rgmu->clks, ret, "core");
if (!rgmu->gpu_clk) {
dev_err(&rgmu->pdev->dev, "The GPU clock isn't defined\n");
return -ENODEV;
}
rgmu->rgmu_clk = kgsl_of_clk_by_name(rgmu->clks, ret, "gmu");
if (!rgmu->rgmu_clk) {
dev_err(&rgmu->pdev->dev, "The RGMU clock isn't defined\n");
return -ENODEV;
}
return 0;
}
const struct adreno_power_ops a6xx_rgmu_power_ops = {
.first_open = a6xx_rgmu_first_open,
.last_close = a6xx_power_off,
.active_count_get = a6xx_rgmu_active_count_get,
.active_count_put = a6xx_rgmu_active_count_put,
.pm_suspend = a6xx_rgmu_pm_suspend,
.pm_resume = a6xx_rgmu_pm_resume,
.touch_wakeup = a6xx_rgmu_touch_wakeup,
.gpu_clock_set = a6xx_rgmu_clock_set,
};
int a6xx_rgmu_device_probe(struct platform_device *pdev,
u32 chipid, const struct adreno_gpu_core *gpucore)
{
struct adreno_device *adreno_dev;
struct kgsl_device *device;
struct a6xx_device *a6xx_dev;
int ret;
a6xx_dev = devm_kzalloc(&pdev->dev, sizeof(*a6xx_dev),
GFP_KERNEL);
if (!a6xx_dev)
return -ENOMEM;
adreno_dev = &a6xx_dev->adreno_dev;
adreno_dev->irq_mask = A6XX_INT_MASK;
ret = a6xx_probe_common(pdev, adreno_dev, chipid, gpucore);
if (ret)
return ret;
ret = adreno_dispatcher_init(adreno_dev);
if (ret)
return ret;
device = KGSL_DEVICE(adreno_dev);
INIT_WORK(&device->idle_check_ws, rgmu_idle_check);
timer_setup(&device->idle_timer, rgmu_idle_timer, 0);
return 0;
}
int a6xx_rgmu_add_to_minidump(struct adreno_device *adreno_dev)
{
struct a6xx_device *a6xx_dev = container_of(adreno_dev,
struct a6xx_device, adreno_dev);
return kgsl_add_va_to_minidump(adreno_dev->dev.dev, KGSL_A6XX_DEVICE,
(void *)(a6xx_dev), sizeof(struct a6xx_device));
}
/* Do not access any RGMU registers in RGMU probe function */
static int a6xx_rgmu_probe(struct kgsl_device *device,
struct platform_device *pdev)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct a6xx_rgmu_device *rgmu = to_a6xx_rgmu(adreno_dev);
int ret;
rgmu->pdev = pdev;
/* Set up RGMU regulators */
ret = kgsl_pwrctrl_probe_regulators(device, pdev);
if (ret)
return ret;
/* Set up RGMU clocks */
ret = a6xx_rgmu_clocks_probe(rgmu, pdev->dev.of_node);
if (ret)
return ret;
ret = kgsl_regmap_add_region(&device->regmap, pdev,
"kgsl_rgmu", NULL, NULL);
if (ret) {
dev_err(&pdev->dev, "Unable to map the RGMU registers\n");
return ret;
}
/* Initialize OOB and RGMU interrupts */
ret = a6xx_rgmu_irq_probe(device);
if (ret)
return ret;
/* Set up RGMU idle states */
if (ADRENO_FEATURE(ADRENO_DEVICE(device), ADRENO_IFPC)) {
rgmu->idle_level = GPU_HW_IFPC;
adreno_dev->ifpc_hyst = A6X_RGMU_LONG_IFPC_HYST;
adreno_dev->ifpc_hyst_floor = A6X_RGMU_LONG_IFPC_HYST_FLOOR;
} else {
rgmu->idle_level = GPU_HW_ACTIVE;
}
set_bit(GMU_ENABLED, &device->gmu_core.flags);
device->gmu_core.dev_ops = &a6xx_rgmudev;
return 0;
}
static void a6xx_rgmu_remove(struct kgsl_device *device)
{
memset(&device->gmu_core, 0, sizeof(device->gmu_core));
}
static int a6xx_rgmu_bind(struct device *dev, struct device *master, void *data)
{
struct kgsl_device *device = dev_get_drvdata(master);
return a6xx_rgmu_probe(device, to_platform_device(dev));
}
static void a6xx_rgmu_unbind(struct device *dev, struct device *master,
void *data)
{
struct kgsl_device *device = dev_get_drvdata(master);
a6xx_rgmu_remove(device);
}
static const struct component_ops a6xx_rgmu_component_ops = {
.bind = a6xx_rgmu_bind,
.unbind = a6xx_rgmu_unbind,
};
static int a6xx_rgmu_probe_dev(struct platform_device *pdev)
{
return component_add(&pdev->dev, &a6xx_rgmu_component_ops);
}
static int a6xx_rgmu_remove_dev(struct platform_device *pdev)
{
component_del(&pdev->dev, &a6xx_rgmu_component_ops);
return 0;
}
static const struct of_device_id a6xx_rgmu_match_table[] = {
{ .compatible = "qcom,gpu-rgmu" },
{ },
};
struct platform_driver a6xx_rgmu_driver = {
.probe = a6xx_rgmu_probe_dev,
.remove = a6xx_rgmu_remove_dev,
.driver = {
.name = "kgsl-rgmu",
.of_match_table = a6xx_rgmu_match_table,
},
};