android_kernel_samsung_sm86.../qcom/opensource/graphics-kernel/adreno_a6xx.c
David Wronek 880d405719 Add 'qcom/opensource/graphics-kernel/' from commit 'b4fdc4c04295ac59109ae19d64747522740c3f14'
git-subtree-dir: qcom/opensource/graphics-kernel
git-subtree-mainline: 992813d9c1
git-subtree-split: b4fdc4c042
Change-Id:
repo: https://git.codelinaro.org/clo/la/platform/vendor/qcom/opensource/graphics-kernel
tag: GRAPHICS.LA.14.0.r1-07700-lanai.0
2024-10-06 16:44:56 +02:00

2487 lines
72 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2017-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/clk/qcom.h>
#include <linux/clk-provider.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_device.h>
#include <linux/regulator/consumer.h>
#include <linux/soc/qcom/llcc-qcom.h>
#include <soc/qcom/of_common.h>
#include "adreno.h"
#include "adreno_a6xx.h"
#include "adreno_a6xx_hwsched.h"
#include "adreno_pm4types.h"
#include "adreno_trace.h"
#include "kgsl_trace.h"
#include "kgsl_util.h"
/* IFPC & Preemption static powerup restore list */
static u32 a6xx_pwrup_reglist[] = {
A6XX_VSC_ADDR_MODE_CNTL,
A6XX_GRAS_ADDR_MODE_CNTL,
A6XX_RB_ADDR_MODE_CNTL,
A6XX_PC_ADDR_MODE_CNTL,
A6XX_HLSQ_ADDR_MODE_CNTL,
A6XX_VFD_ADDR_MODE_CNTL,
A6XX_VPC_ADDR_MODE_CNTL,
A6XX_UCHE_ADDR_MODE_CNTL,
A6XX_SP_ADDR_MODE_CNTL,
A6XX_TPL1_ADDR_MODE_CNTL,
A6XX_UCHE_WRITE_RANGE_MAX_LO,
A6XX_UCHE_WRITE_RANGE_MAX_HI,
A6XX_UCHE_TRAP_BASE_LO,
A6XX_UCHE_TRAP_BASE_HI,
A6XX_UCHE_WRITE_THRU_BASE_LO,
A6XX_UCHE_WRITE_THRU_BASE_HI,
A6XX_UCHE_GMEM_RANGE_MIN_LO,
A6XX_UCHE_GMEM_RANGE_MIN_HI,
A6XX_UCHE_GMEM_RANGE_MAX_LO,
A6XX_UCHE_GMEM_RANGE_MAX_HI,
A6XX_UCHE_FILTER_CNTL,
A6XX_UCHE_CACHE_WAYS,
A6XX_UCHE_MODE_CNTL,
A6XX_RB_NC_MODE_CNTL,
A6XX_TPL1_NC_MODE_CNTL,
A6XX_SP_NC_MODE_CNTL,
A6XX_PC_DBG_ECO_CNTL,
A6XX_RB_CONTEXT_SWITCH_GMEM_SAVE_RESTORE,
A6XX_UCHE_GBIF_GX_CONFIG,
A6XX_UCHE_CLIENT_PF,
};
/* IFPC only static powerup restore list */
static u32 a6xx_ifpc_pwrup_reglist[] = {
A6XX_CP_CHICKEN_DBG,
A6XX_CP_DBG_ECO_CNTL,
A6XX_CP_PROTECT_CNTL,
A6XX_CP_PROTECT_REG,
A6XX_CP_PROTECT_REG+1,
A6XX_CP_PROTECT_REG+2,
A6XX_CP_PROTECT_REG+3,
A6XX_CP_PROTECT_REG+4,
A6XX_CP_PROTECT_REG+5,
A6XX_CP_PROTECT_REG+6,
A6XX_CP_PROTECT_REG+7,
A6XX_CP_PROTECT_REG+8,
A6XX_CP_PROTECT_REG+9,
A6XX_CP_PROTECT_REG+10,
A6XX_CP_PROTECT_REG+11,
A6XX_CP_PROTECT_REG+12,
A6XX_CP_PROTECT_REG+13,
A6XX_CP_PROTECT_REG+14,
A6XX_CP_PROTECT_REG+15,
A6XX_CP_PROTECT_REG+16,
A6XX_CP_PROTECT_REG+17,
A6XX_CP_PROTECT_REG+18,
A6XX_CP_PROTECT_REG+19,
A6XX_CP_PROTECT_REG+20,
A6XX_CP_PROTECT_REG+21,
A6XX_CP_PROTECT_REG+22,
A6XX_CP_PROTECT_REG+23,
A6XX_CP_PROTECT_REG+24,
A6XX_CP_PROTECT_REG+25,
A6XX_CP_PROTECT_REG+26,
A6XX_CP_PROTECT_REG+27,
A6XX_CP_PROTECT_REG+28,
A6XX_CP_PROTECT_REG+29,
A6XX_CP_PROTECT_REG+30,
A6XX_CP_PROTECT_REG+31,
A6XX_CP_AHB_CNTL,
};
/* Applicable to a620, a621, a635, a650 and a660 */
static u32 a650_ifpc_pwrup_reglist[] = {
A6XX_CP_PROTECT_REG+32,
A6XX_CP_PROTECT_REG+33,
A6XX_CP_PROTECT_REG+34,
A6XX_CP_PROTECT_REG+35,
A6XX_CP_PROTECT_REG+36,
A6XX_CP_PROTECT_REG+37,
A6XX_CP_PROTECT_REG+38,
A6XX_CP_PROTECT_REG+39,
A6XX_CP_PROTECT_REG+40,
A6XX_CP_PROTECT_REG+41,
A6XX_CP_PROTECT_REG+42,
A6XX_CP_PROTECT_REG+43,
A6XX_CP_PROTECT_REG+44,
A6XX_CP_PROTECT_REG+45,
A6XX_CP_PROTECT_REG+46,
A6XX_CP_PROTECT_REG+47,
};
/* Applicable to a620, a621, a635, a650 and a660 */
static u32 a650_pwrup_reglist[] = {
A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0,
A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
A6XX_UCHE_CMDQ_CONFIG,
};
static u32 a615_pwrup_reglist[] = {
A6XX_UCHE_GBIF_GX_CONFIG,
};
int a6xx_fenced_write(struct adreno_device *adreno_dev, u32 offset,
u32 value, u32 mask)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
unsigned int status, i;
u64 ts1, ts2;
kgsl_regwrite(device, offset, value);
if (!gmu_core_isenabled(device))
return 0;
ts1 = a6xx_read_alwayson(adreno_dev);
for (i = 0; i < GMU_CORE_LONG_WAKEUP_RETRY_LIMIT; i++) {
/*
* Make sure the previous register write is posted before
* checking the fence status
*/
mb();
kgsl_regread(device, A6XX_GMU_AHB_FENCE_STATUS, &status);
/*
* If !writedropped0/1, then the write to fenced register
* was successful
*/
if (!(status & mask))
break;
/* Wait a small amount of time before trying again */
udelay(GMU_CORE_WAKEUP_DELAY_US);
/* Try to write the fenced register again */
kgsl_regwrite(device, offset, value);
}
if (i < GMU_CORE_SHORT_WAKEUP_RETRY_LIMIT)
return 0;
if (i == GMU_CORE_LONG_WAKEUP_RETRY_LIMIT) {
ts2 = a6xx_read_alwayson(adreno_dev);
dev_err(adreno_dev->dev.dev,
"Timed out waiting %d usecs to write fenced register 0x%x, timestamps: %llx %llx\n",
i * GMU_CORE_WAKEUP_DELAY_US, offset, ts1, ts2);
return -ETIMEDOUT;
}
dev_err(adreno_dev->dev.dev,
"Waited %d usecs to write fenced register 0x%x\n",
i * GMU_CORE_WAKEUP_DELAY_US, offset);
return 0;
}
int a6xx_init(struct adreno_device *adreno_dev)
{
const struct adreno_a6xx_core *a6xx_core = to_a6xx_core(adreno_dev);
u64 freq = a6xx_core->gmu_hub_clk_freq;
adreno_dev->highest_bank_bit = a6xx_core->highest_bank_bit;
adreno_dev->gmu_hub_clk_freq = freq ? freq : 150000000;
adreno_dev->cooperative_reset = ADRENO_FEATURE(adreno_dev,
ADRENO_COOP_RESET);
/* If the memory type is DDR 4, override the existing configuration */
if (of_fdt_get_ddrtype() == 0x7) {
if (adreno_is_a660_shima(adreno_dev) ||
adreno_is_a635(adreno_dev) ||
adreno_is_a662(adreno_dev))
adreno_dev->highest_bank_bit = 14;
else if ((adreno_is_a650(adreno_dev) ||
adreno_is_a660(adreno_dev)))
adreno_dev->highest_bank_bit = 15;
}
a6xx_crashdump_init(adreno_dev);
return adreno_allocate_global(KGSL_DEVICE(adreno_dev),
&adreno_dev->pwrup_reglist,
PAGE_SIZE, 0, 0, KGSL_MEMDESC_PRIVILEGED,
"powerup_register_list");
}
static int a6xx_nogmu_init(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
ret = a6xx_ringbuffer_init(adreno_dev);
if (ret)
return ret;
ret = a6xx_microcode_read(adreno_dev);
if (ret)
return ret;
/* Try to map the GMU wrapper region if applicable */
ret = kgsl_regmap_add_region(&device->regmap, device->pdev,
"gmu_wrapper", NULL, NULL);
if (ret && ret != -ENODEV)
dev_err(device->dev, "Couldn't map the GMU wrapper registers\n");
adreno_create_profile_buffer(adreno_dev);
return a6xx_init(adreno_dev);
}
static void a6xx_protect_init(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_a6xx_core *a6xx_core = to_a6xx_core(adreno_dev);
const struct adreno_protected_regs *regs = a6xx_core->protected_regs;
int i;
/*
* Enable access protection to privileged registers, fault on an access
* protect violation and select the last span to protect from the start
* address all the way to the end of the register address space
*/
kgsl_regwrite(device, A6XX_CP_PROTECT_CNTL,
(1 << 0) | (1 << 1) | (1 << 3));
/* Program each register defined by the core definition */
for (i = 0; regs[i].reg; i++) {
u32 count;
/*
* This is the offset of the end register as counted from the
* start, i.e. # of registers in the range - 1
*/
count = regs[i].end - regs[i].start;
kgsl_regwrite(device, regs[i].reg,
(regs[i].start & 0x3ffff) | ((count & 0x1fff) << 18) |
(regs[i].noaccess << 31));
}
}
static inline unsigned int
__get_rbbm_clock_cntl_on(struct adreno_device *adreno_dev)
{
if (adreno_is_a630(adreno_dev))
return 0x8AA8AA02;
else if (adreno_is_a612(adreno_dev) || adreno_is_a610_family(adreno_dev))
return 0xAAA8AA82;
else if (adreno_is_a702(adreno_dev))
return 0xAAAAAA82;
else
return 0x8AA8AA82;
}
static inline unsigned int
__get_gmu_ao_cgc_mode_cntl(struct adreno_device *adreno_dev)
{
if (adreno_is_a612(adreno_dev))
return 0x00000022;
else if (adreno_is_a615_family(adreno_dev))
return 0x00000222;
/* a662 should be checked before a660 */
else if (adreno_is_a662(adreno_dev) || adreno_is_a621(adreno_dev))
return 0x00020200;
else if (adreno_is_a660(adreno_dev))
return 0x00020000;
else
return 0x00020202;
}
static inline unsigned int
__get_gmu_ao_cgc_delay_cntl(struct adreno_device *adreno_dev)
{
if (adreno_is_a612(adreno_dev))
return 0x00000011;
else if (adreno_is_a615_family(adreno_dev))
return 0x00000111;
else
return 0x00010111;
}
static inline unsigned int
__get_gmu_ao_cgc_hyst_cntl(struct adreno_device *adreno_dev)
{
if (adreno_is_a612(adreno_dev))
return 0x00000055;
else if (adreno_is_a615_family(adreno_dev))
return 0x00000555;
else
return 0x00005555;
}
static unsigned int __get_gmu_wfi_config(struct adreno_device *adreno_dev)
{
unsigned int rev = ADRENO_GPUREV(adreno_dev);
if ((rev == ADRENO_REV_A620) || adreno_is_a640(adreno_dev) ||
adreno_is_a650(adreno_dev))
return 0x00000002;
return 0x00000000;
}
static void set_holi_sptprac_clock(struct kgsl_device *device, bool enable)
{
u32 val = 0;
kgsl_regread(device, A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, &val);
val &= ~1;
kgsl_regwrite(device, A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL,
val | (enable ? 1 : 0));
}
static void a6xx_hwcg_set(struct adreno_device *adreno_dev, bool on)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_a6xx_core *a6xx_core = to_a6xx_core(adreno_dev);
unsigned int value;
int i;
if (!adreno_dev->hwcg_enabled)
on = false;
if (gmu_core_isenabled(device)) {
gmu_core_regwrite(device, A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL,
on ? __get_gmu_ao_cgc_mode_cntl(adreno_dev) : 0);
gmu_core_regwrite(device, A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL,
on ? __get_gmu_ao_cgc_delay_cntl(adreno_dev) : 0);
gmu_core_regwrite(device, A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL,
on ? __get_gmu_ao_cgc_hyst_cntl(adreno_dev) : 0);
gmu_core_regwrite(device, A6XX_GMU_CX_GMU_WFI_CONFIG,
on ? __get_gmu_wfi_config(adreno_dev) : 0);
}
kgsl_regread(device, A6XX_RBBM_CLOCK_CNTL, &value);
if (value == __get_rbbm_clock_cntl_on(adreno_dev) && on)
return;
if (value == 0 && !on)
return;
/*
* Disable SP clock before programming HWCG registers.
* A612 and A610 GPU is not having the GX power domain.
* Hence skip GMU_GX registers for A12 and A610.
*/
if (gmu_core_isenabled(device) && !adreno_is_a612(adreno_dev) &&
!adreno_is_a610_family(adreno_dev) && !adreno_is_a702(adreno_dev))
gmu_core_regrmw(device,
A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
else if (adreno_is_a619_holi(adreno_dev))
set_holi_sptprac_clock(device, false);
for (i = 0; i < a6xx_core->hwcg_count; i++)
kgsl_regwrite(device, a6xx_core->hwcg[i].offset,
on ? a6xx_core->hwcg[i].val : 0);
/* GBIF L2 CGC control is not part of the UCHE */
kgsl_regrmw(device, A6XX_UCHE_GBIF_GX_CONFIG, 0x70000,
FIELD_PREP(GENMASK(18, 16), on ? 2 : 0));
/*
* Enable SP clock after programming HWCG registers.
* A612 and A610 GPU is not having the GX power domain.
* Hence skip GMU_GX registers for A612.
*/
if (gmu_core_isenabled(device) && !adreno_is_a612(adreno_dev) &&
!adreno_is_a610_family(adreno_dev) && !adreno_is_a702(adreno_dev))
gmu_core_regrmw(device,
A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
else if (adreno_is_a619_holi(adreno_dev))
set_holi_sptprac_clock(device, true);
/* enable top level HWCG */
kgsl_regwrite(device, A6XX_RBBM_CLOCK_CNTL,
on ? __get_rbbm_clock_cntl_on(adreno_dev) : 0);
}
struct a6xx_reglist_list {
u32 *regs;
u32 count;
};
#define REGLIST(_a) \
((struct a6xx_reglist_list) { .regs = _a, .count = ARRAY_SIZE(_a), })
static void a6xx_patch_pwrup_reglist(struct adreno_device *adreno_dev)
{
struct a6xx_reglist_list reglist[4];
void *ptr = adreno_dev->pwrup_reglist->hostptr;
struct cpu_gpu_lock *lock = ptr;
int items = 0, i, j;
u32 *dest = ptr + sizeof(*lock);
u16 list_offset = 0;
/* Static IFPC-only registers */
reglist[items] = REGLIST(a6xx_ifpc_pwrup_reglist);
list_offset += reglist[items++].count * 2;
if (adreno_is_a650_family(adreno_dev)) {
reglist[items] = REGLIST(a650_ifpc_pwrup_reglist);
list_offset += reglist[items++].count * 2;
}
/* Static IFPC + preemption registers */
reglist[items++] = REGLIST(a6xx_pwrup_reglist);
/* Add target specific registers */
if (adreno_is_a615_family(adreno_dev))
reglist[items++] = REGLIST(a615_pwrup_reglist);
else if (adreno_is_a650_family(adreno_dev))
reglist[items++] = REGLIST(a650_pwrup_reglist);
/*
* For each entry in each of the lists, write the offset and the current
* register value into the GPU buffer
*/
for (i = 0; i < items; i++) {
u32 *r = reglist[i].regs;
for (j = 0; j < reglist[i].count; j++) {
*dest++ = r[j];
kgsl_regread(KGSL_DEVICE(adreno_dev), r[j], dest++);
}
lock->list_length += reglist[i].count * 2;
}
if (adreno_is_a630(adreno_dev)) {
*dest++ = A6XX_RBBM_VBIF_CLIENT_QOS_CNTL;
kgsl_regread(KGSL_DEVICE(adreno_dev),
A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, dest++);
} else {
*dest++ = A6XX_RBBM_GBIF_CLIENT_QOS_CNTL;
kgsl_regread(KGSL_DEVICE(adreno_dev),
A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, dest++);
}
lock->list_length += 2;
*dest++ = A6XX_RBBM_PERFCTR_CNTL;
*dest++ = 1;
lock->list_length += 2;
/*
* The overall register list is composed of
* 1. Static IFPC-only registers
* 2. Static IFPC + preemption registers
* 3. Dynamic IFPC + preemption registers (ex: perfcounter selects)
*
* The CP views the second and third entries as one dynamic list
* starting from list_offset. list_length should be the total dwords in
* all the lists and list_offset should be specified as the size in
* dwords of the first entry in the list.
*/
lock->list_offset = list_offset;
}
static void a6xx_llc_configure_gpu_scid(struct adreno_device *adreno_dev);
static void a6xx_llc_configure_gpuhtw_scid(struct adreno_device *adreno_dev);
static void a6xx_llc_enable_overrides(struct adreno_device *adreno_dev);
static void a6xx_set_secvid(struct kgsl_device *device)
{
static bool set;
if (set || !device->mmu.secured)
return;
kgsl_regwrite(device, A6XX_RBBM_SECVID_TSB_CNTL, 0x0);
kgsl_regwrite(device, A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
lower_32_bits(KGSL_IOMMU_SECURE_BASE32));
kgsl_regwrite(device, A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI,
upper_32_bits(KGSL_IOMMU_SECURE_BASE32));
kgsl_regwrite(device, A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE,
FIELD_PREP(GENMASK(31, 12),
(KGSL_IOMMU_SECURE_SIZE(&device->mmu) / SZ_4K)));
if (ADRENO_QUIRK(ADRENO_DEVICE(device), ADRENO_QUIRK_SECVID_SET_ONCE))
set = true;
}
static void a6xx_deassert_gbif_halt(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
kgsl_regwrite(device, A6XX_GBIF_HALT, 0x0);
if (adreno_is_a619_holi(adreno_dev))
kgsl_regwrite(device, A6XX_RBBM_GPR0_CNTL, 0x0);
else
kgsl_regwrite(device, A6XX_RBBM_GBIF_HALT, 0x0);
}
bool a6xx_gx_is_on(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
bool gdsc_on, clk_on;
clk_on = __clk_is_enabled(pwr->grp_clks[0]);
gdsc_on = regulator_is_enabled(pwr->gx_gdsc);
return (gdsc_on & clk_on);
}
/*
* Some targets support marking certain transactions as always privileged which
* allows us to mark more memory as privileged without having to explicitly set
* the APRIV bit. For those targets, choose the following transactions to be
* privileged by default:
* CDWRITE [6:6] - Crashdumper writes
* CDREAD [5:5] - Crashdumper reads
* RBRPWB [3:3] - RPTR shadow writes
* RBPRIVLEVEL [2:2] - Memory accesses from PM4 packets in the ringbuffer
* RBFETCH [1:1] - Ringbuffer reads
*/
#define A6XX_APRIV_DEFAULT \
((1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1))
void a6xx_start(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_a6xx_core *a6xx_core = to_a6xx_core(adreno_dev);
unsigned int mal, mode, hbb_hi = 0, hbb_lo = 0;
unsigned int uavflagprd_inv;
unsigned int amsbc = 0;
unsigned int rgb565_predicator = 0;
unsigned int level2_swizzling_dis = 0;
/* Enable 64 bit addressing */
kgsl_regwrite(device, A6XX_CP_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_VSC_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_RB_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_PC_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_VFD_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_VPC_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_SP_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
kgsl_regwrite(device, A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
/* Set up VBIF registers from the GPU core definition */
kgsl_regmap_multi_write(&device->regmap, a6xx_core->vbif,
a6xx_core->vbif_count);
if (ADRENO_QUIRK(adreno_dev, ADRENO_QUIRK_LIMIT_UCHE_GBIF_RW))
kgsl_regwrite(device, A6XX_UCHE_GBIF_GX_CONFIG, 0x10200F9);
/* Make all blocks contribute to the GPU BUSY perf counter */
kgsl_regwrite(device, A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xFFFFFFFF);
/*
* Set UCHE_WRITE_THRU_BASE to the UCHE_TRAP_BASE effectively
* disabling L2 bypass
*/
kgsl_regwrite(device, A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
kgsl_regwrite(device, A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
kgsl_regwrite(device, A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
kgsl_regwrite(device, A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
kgsl_regwrite(device, A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
kgsl_regwrite(device, A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
/*
* Some A6xx targets no longer use a programmed UCHE GMEM base
* address, so only write the registers if this address is
* non-zero.
*/
if (adreno_dev->uche_gmem_base) {
kgsl_regwrite(device, A6XX_UCHE_GMEM_RANGE_MIN_LO,
adreno_dev->uche_gmem_base);
kgsl_regwrite(device, A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x0);
kgsl_regwrite(device, A6XX_UCHE_GMEM_RANGE_MAX_LO,
adreno_dev->uche_gmem_base +
adreno_dev->gpucore->gmem_size - 1);
kgsl_regwrite(device, A6XX_UCHE_GMEM_RANGE_MAX_HI, 0x0);
}
kgsl_regwrite(device, A6XX_UCHE_FILTER_CNTL, 0x804);
kgsl_regwrite(device, A6XX_UCHE_CACHE_WAYS, 0x4);
/* ROQ sizes are twice as big on a640/a680 than on a630 */
if ((ADRENO_GPUREV(adreno_dev) >= ADRENO_REV_A640) &&
!adreno_is_a702(adreno_dev)) {
kgsl_regwrite(device, A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
kgsl_regwrite(device, A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362C);
} else if (adreno_is_a612(adreno_dev) || adreno_is_a610_family(adreno_dev) ||
adreno_is_a702(adreno_dev)) {
kgsl_regwrite(device, A6XX_CP_ROQ_THRESHOLDS_2, 0x00800060);
kgsl_regwrite(device, A6XX_CP_ROQ_THRESHOLDS_1, 0x40201b16);
} else {
kgsl_regwrite(device, A6XX_CP_ROQ_THRESHOLDS_2, 0x010000C0);
kgsl_regwrite(device, A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362C);
}
if (adreno_is_a660(adreno_dev))
kgsl_regwrite(device, A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
if (adreno_is_a663(adreno_dev)) {
kgsl_regwrite(device, A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
kgsl_regwrite(device, A6XX_RBBM_LPAC_GBIF_CLIENT_QOS_CNTL, 0x0);
kgsl_regwrite(device, A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
}
if (adreno_is_a612(adreno_dev) || adreno_is_a610_family(adreno_dev)) {
/* For A612 and A610 Mem pool size is reduced to 48 */
kgsl_regwrite(device, A6XX_CP_MEM_POOL_SIZE, 48);
kgsl_regwrite(device, A6XX_CP_MEM_POOL_DBG_ADDR, 47);
} else if (adreno_is_a702(adreno_dev)) {
kgsl_regwrite(device, A6XX_CP_MEM_POOL_SIZE, 64);
kgsl_regwrite(device, A6XX_CP_MEM_POOL_DBG_ADDR, 63);
} else {
kgsl_regwrite(device, A6XX_CP_MEM_POOL_SIZE, 128);
}
/* Setting the primFifo thresholds values */
kgsl_regwrite(device, A6XX_PC_DBG_ECO_CNTL,
a6xx_core->prim_fifo_threshold);
/* Set the AHB default slave response to "ERROR" */
kgsl_regwrite(device, A6XX_CP_AHB_CNTL, 0x1);
/* Turn on performance counters */
kgsl_regwrite(device, A6XX_RBBM_PERFCTR_CNTL, 0x1);
/* Turn on the IFPC counter (countable 4 on XOCLK4) */
if (gmu_core_isenabled(device))
gmu_core_regrmw(device, A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_1,
0xff, 0x4);
/* Turn on GX_MEM retention */
if (gmu_core_isenabled(device) && adreno_is_a612(adreno_dev)) {
kgsl_regwrite(device, A6XX_RBBM_BLOCK_GX_RETENTION_CNTL, 0x7FB);
/* For CP IPC interrupt */
kgsl_regwrite(device, A6XX_RBBM_INT_2_MASK, 0x00000010);
}
if (of_property_read_u32(device->pdev->dev.of_node,
"qcom,min-access-length", &mal))
mal = 32;
if (of_property_read_u32(device->pdev->dev.of_node,
"qcom,ubwc-mode", &mode))
mode = 0;
switch (mode) {
case KGSL_UBWC_1_0:
mode = 1;
break;
case KGSL_UBWC_2_0:
mode = 0;
break;
case KGSL_UBWC_3_0:
mode = 0;
amsbc = 1; /* Only valid for A640 and A680 */
break;
case KGSL_UBWC_4_0:
mode = 0;
rgb565_predicator = 1;
amsbc = 1;
if (adreno_is_a663(adreno_dev))
level2_swizzling_dis = 1;
break;
default:
break;
}
/* macrotilingmode 0: 4 channels (default)
* overwrite to 1: 8 channels for A680
*/
if (adreno_is_a680(adreno_dev) ||
adreno_is_a663(adreno_dev))
kgsl_regwrite(device, A6XX_RBBM_NC_MODE_CNTL, 1);
if (!WARN_ON(!adreno_dev->highest_bank_bit)) {
hbb_lo = (adreno_dev->highest_bank_bit - 13) & 3;
hbb_hi = ((adreno_dev->highest_bank_bit - 13) >> 2) & 1;
}
mal = (mal == 64) ? 1 : 0;
uavflagprd_inv = (adreno_is_a650_family(adreno_dev)) ? 2 : 0;
kgsl_regwrite(device, A6XX_RB_NC_MODE_CNTL,
(level2_swizzling_dis << 12) | (rgb565_predicator << 11)|
(hbb_hi << 10) | (amsbc << 4) | (mal << 3) |
(hbb_lo << 1) | mode);
kgsl_regwrite(device, A6XX_TPL1_NC_MODE_CNTL,
(level2_swizzling_dis << 6) | (hbb_hi << 4) |
(mal << 3) | (hbb_lo << 1) | mode);
kgsl_regwrite(device, A6XX_SP_NC_MODE_CNTL,
(level2_swizzling_dis << 12) | (hbb_hi << 10) |
(mal << 3) | (uavflagprd_inv << 4) |
(hbb_lo << 1) | mode);
kgsl_regwrite(device, A6XX_UCHE_MODE_CNTL, (mal << 23) |
(hbb_lo << 21));
kgsl_regwrite(device, A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
(1 << 30) | a6xx_core->hang_detect_cycles);
kgsl_regwrite(device, A6XX_UCHE_CLIENT_PF, BIT(7) |
FIELD_PREP(GENMASK(3, 0), adreno_dev->uche_client_pf));
/* Set weights for bicubic filtering */
if (adreno_is_a650_family(adreno_dev)) {
kgsl_regwrite(device, A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
kgsl_regwrite(device, A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
0x3FE05FF4);
kgsl_regwrite(device, A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
0x3FA0EBEE);
kgsl_regwrite(device, A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
0x3F5193ED);
kgsl_regwrite(device, A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
0x3F0243F0);
}
/* Set TWOPASSUSEWFI in A6XX_PC_DBG_ECO_CNTL if requested */
if (ADRENO_QUIRK(adreno_dev, ADRENO_QUIRK_TWO_PASS_USE_WFI))
kgsl_regrmw(device, A6XX_PC_DBG_ECO_CNTL, 0, (1 << 8));
/* Set the bit vccCacheSkipDis=1 to get rid of TSEskip logic */
if (a6xx_core->disable_tseskip)
kgsl_regrmw(device, A6XX_PC_DBG_ECO_CNTL, 0, (1 << 9));
/* Set the bit in HLSQ Cluster for A702 */
if (adreno_is_a702(adreno_dev))
kgsl_regwrite(device, A6XX_CP_CHICKEN_DBG, (1 << 24));
/* Enable the GMEM save/restore feature for preemption */
if (adreno_is_preemption_enabled(adreno_dev))
kgsl_regwrite(device, A6XX_RB_CONTEXT_SWITCH_GMEM_SAVE_RESTORE,
0x1);
/*
* Enable GMU power counter 0 to count GPU busy. This is applicable to
* all a6xx targets
*/
kgsl_regwrite(device, A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
kgsl_regrmw(device, A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, 0x20);
kgsl_regwrite(device, A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0x1);
a6xx_protect_init(adreno_dev);
/*
* We start LM here because we want all the following to be up
* 1. GX HS
* 2. SPTPRAC
* 3. HFI
* At this point, we are guaranteed all.
*/
/* Configure LLCC */
a6xx_llc_configure_gpu_scid(adreno_dev);
a6xx_llc_configure_gpuhtw_scid(adreno_dev);
a6xx_llc_enable_overrides(adreno_dev);
if (adreno_is_a662(adreno_dev))
kgsl_regrmw(device, A6XX_GBIF_CX_CONFIG, 0x3c0,
FIELD_PREP(GENMASK(7, 6), 0x1) |
FIELD_PREP(GENMASK(9, 8), 0x1));
if (adreno_is_a660(adreno_dev)) {
kgsl_regwrite(device, A6XX_CP_CHICKEN_DBG, 0x1);
kgsl_regwrite(device, A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
/* Set dualQ + disable afull for A660 GPU but not for A635 */
if (!adreno_is_a635(adreno_dev))
kgsl_regwrite(device, A6XX_UCHE_CMDQ_CONFIG, 0x66906);
}
if (ADRENO_FEATURE(adreno_dev, ADRENO_APRIV))
kgsl_regwrite(device, A6XX_CP_APRIV_CNTL, A6XX_APRIV_DEFAULT);
a6xx_set_secvid(device);
/*
* Enable hardware clock gating here to prevent any register access
* issue due to internal clock gating.
*/
a6xx_hwcg_set(adreno_dev, true);
/*
* All registers must be written before this point so that we don't
* miss any register programming when we patch the power up register
* list.
*/
if (!adreno_dev->patch_reglist &&
(adreno_dev->pwrup_reglist->gpuaddr != 0)) {
a6xx_patch_pwrup_reglist(adreno_dev);
adreno_dev->patch_reglist = true;
}
/*
* During adreno_stop, GBIF halt is asserted to ensure
* no further transaction can go through GPU before GPU
* headswitch is turned off.
*
* This halt is deasserted once headswitch goes off but
* incase headswitch doesn't goes off clear GBIF halt
* here to ensure GPU wake-up doesn't fail because of
* halted GPU transactions.
*/
a6xx_deassert_gbif_halt(adreno_dev);
}
/* Offsets into the MX/CX mapped register regions */
#define RDPM_MX_OFFSET 0xf00
#define RDPM_CX_OFFSET 0xf18
void a6xx_rdpm_mx_freq_update(struct a6xx_gmu_device *gmu,
u32 freq)
{
if (gmu->rdpm_mx_virt) {
writel_relaxed(freq/1000,
(gmu->rdpm_mx_virt + RDPM_MX_OFFSET));
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
}
}
void a6xx_rdpm_cx_freq_update(struct a6xx_gmu_device *gmu,
u32 freq)
{
if (gmu->rdpm_cx_virt) {
writel_relaxed(freq/1000,
(gmu->rdpm_cx_virt + RDPM_CX_OFFSET));
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
}
}
/* This is the start point for non GMU/RGMU targets */
static int a6xx_nogmu_start(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
/*
* During adreno_stop() GBIF halt is asserted to ensure that
* no further transactions go through the GPU before the
* GPU headswitch is turned off.
*
* The halt is supposed to be deasserted when the headswitch goes off
* but clear it again during start to be sure
*/
kgsl_regwrite(device, A6XX_GBIF_HALT, 0x0);
kgsl_regwrite(device, A6XX_RBBM_GBIF_HALT, 0x0);
ret = kgsl_mmu_start(device);
if (ret)
return ret;
adreno_get_bus_counters(adreno_dev);
adreno_perfcounter_restore(adreno_dev);
a6xx_start(adreno_dev);
return 0;
}
/*
* CP_INIT_MAX_CONTEXT bit tells if the multiple hardware contexts can
* be used at once of if they should be serialized
*/
#define CP_INIT_MAX_CONTEXT BIT(0)
/* Enables register protection mode */
#define CP_INIT_ERROR_DETECTION_CONTROL BIT(1)
/* Header dump information */
#define CP_INIT_HEADER_DUMP BIT(2) /* Reserved */
/* Default Reset states enabled for PFP and ME */
#define CP_INIT_DEFAULT_RESET_STATE BIT(3)
/* Drawcall filter range */
#define CP_INIT_DRAWCALL_FILTER_RANGE BIT(4)
/* Ucode workaround masks */
#define CP_INIT_UCODE_WORKAROUND_MASK BIT(5)
/*
* Operation mode mask
*
* This ordinal provides the option to disable the
* save/restore of performance counters across preemption.
*/
#define CP_INIT_OPERATION_MODE_MASK BIT(6)
/* Register initialization list */
#define CP_INIT_REGISTER_INIT_LIST BIT(7)
/* Register initialization list with spinlock */
#define CP_INIT_REGISTER_INIT_LIST_WITH_SPINLOCK BIT(8)
#define CP_INIT_MASK (CP_INIT_MAX_CONTEXT | \
CP_INIT_ERROR_DETECTION_CONTROL | \
CP_INIT_HEADER_DUMP | \
CP_INIT_DEFAULT_RESET_STATE | \
CP_INIT_UCODE_WORKAROUND_MASK | \
CP_INIT_OPERATION_MODE_MASK | \
CP_INIT_REGISTER_INIT_LIST_WITH_SPINLOCK)
void a6xx_cp_init_cmds(struct adreno_device *adreno_dev, u32 *cmds)
{
int i = 0;
cmds[i++] = cp_type7_packet(CP_ME_INIT, A6XX_CP_INIT_DWORDS - 1);
/* Enabled ordinal mask */
cmds[i++] = CP_INIT_MASK;
if (CP_INIT_MASK & CP_INIT_MAX_CONTEXT)
cmds[i++] = 0x00000003;
if (CP_INIT_MASK & CP_INIT_ERROR_DETECTION_CONTROL)
cmds[i++] = 0x20000000;
if (CP_INIT_MASK & CP_INIT_HEADER_DUMP) {
/* Header dump address */
cmds[i++] = 0x00000000;
/* Header dump enable and dump size */
cmds[i++] = 0x00000000;
}
if (CP_INIT_MASK & CP_INIT_UCODE_WORKAROUND_MASK)
cmds[i++] = 0x00000000;
if (CP_INIT_MASK & CP_INIT_OPERATION_MODE_MASK)
cmds[i++] = 0x00000002;
if (CP_INIT_MASK & CP_INIT_REGISTER_INIT_LIST_WITH_SPINLOCK) {
uint64_t gpuaddr = adreno_dev->pwrup_reglist->gpuaddr;
cmds[i++] = lower_32_bits(gpuaddr);
cmds[i++] = upper_32_bits(gpuaddr);
cmds[i++] = 0;
}
}
void a6xx_spin_idle_debug(struct adreno_device *adreno_dev,
const char *str)
{
struct kgsl_device *device = &adreno_dev->dev;
unsigned int rptr, wptr;
unsigned int status, status3, intstatus;
unsigned int hwfault;
dev_err(device->dev, str);
kgsl_regread(device, A6XX_CP_RB_RPTR, &rptr);
kgsl_regread(device, A6XX_CP_RB_WPTR, &wptr);
kgsl_regread(device, A6XX_RBBM_STATUS, &status);
kgsl_regread(device, A6XX_RBBM_STATUS3, &status3);
kgsl_regread(device, A6XX_RBBM_INT_0_STATUS, &intstatus);
kgsl_regread(device, A6XX_CP_HW_FAULT, &hwfault);
dev_err(device->dev,
"rb=%d pos=%X/%X rbbm_status=%8.8X/%8.8X int_0_status=%8.8X\n",
adreno_dev->cur_rb ? adreno_dev->cur_rb->id : -1, rptr, wptr,
status, status3, intstatus);
dev_err(device->dev, " hwfault=%8.8X\n", hwfault);
kgsl_device_snapshot(device, NULL, NULL, false);
}
/*
* a6xx_send_cp_init() - Initialize ringbuffer
* @adreno_dev: Pointer to adreno device
* @rb: Pointer to the ringbuffer of device
*
* Submit commands for ME initialization,
*/
static int a6xx_send_cp_init(struct adreno_device *adreno_dev,
struct adreno_ringbuffer *rb)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
unsigned int *cmds;
int ret;
cmds = adreno_ringbuffer_allocspace(rb, A6XX_CP_INIT_DWORDS);
if (IS_ERR(cmds))
return PTR_ERR(cmds);
a6xx_cp_init_cmds(adreno_dev, cmds);
ret = a6xx_ringbuffer_submit(rb, NULL, true);
if (!ret) {
ret = adreno_spin_idle(adreno_dev, 2000);
if (ret) {
a6xx_spin_idle_debug(adreno_dev,
"CP initialization failed to idle\n");
kgsl_sharedmem_writel(device->scratch,
SCRATCH_RB_OFFSET(rb->id, rptr), 0);
rb->wptr = 0;
rb->_wptr = 0;
}
}
return ret;
}
/*
* Follow the ME_INIT sequence with a preemption yield to allow the GPU to move
* to a different ringbuffer, if desired
*/
static int _preemption_init(struct adreno_device *adreno_dev,
struct adreno_ringbuffer *rb, unsigned int *cmds,
struct kgsl_context *context)
{
unsigned int *cmds_orig = cmds;
/* Turn CP protection OFF on legacy targets */
if (!ADRENO_FEATURE(adreno_dev, ADRENO_APRIV))
cmds += cp_protected_mode(adreno_dev, cmds, 0);
*cmds++ = cp_type7_packet(CP_SET_PSEUDO_REGISTER, 6);
*cmds++ = SET_PSEUDO_PRIV_NON_SECURE_SAVE_ADDR;
cmds += cp_gpuaddr(adreno_dev, cmds,
rb->preemption_desc->gpuaddr);
*cmds++ = SET_PSEUDO_PRIV_SECURE_SAVE_ADDR;
cmds += cp_gpuaddr(adreno_dev, cmds,
rb->secure_preemption_desc->gpuaddr);
/* Turn CP protection back ON */
if (!ADRENO_FEATURE(adreno_dev, ADRENO_APRIV))
cmds += cp_protected_mode(adreno_dev, cmds, 1);
*cmds++ = cp_type7_packet(CP_CONTEXT_SWITCH_YIELD, 4);
cmds += cp_gpuaddr(adreno_dev, cmds, 0x0);
*cmds++ = 0;
/* generate interrupt on preemption completion */
*cmds++ = 0;
return cmds - cmds_orig;
}
static int a6xx_post_start(struct adreno_device *adreno_dev)
{
int ret;
unsigned int *cmds, *start;
struct adreno_ringbuffer *rb = adreno_dev->cur_rb;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (!adreno_is_preemption_enabled(adreno_dev))
return 0;
cmds = adreno_ringbuffer_allocspace(rb, 42);
if (IS_ERR(cmds)) {
dev_err(device->dev,
"error allocating preemption init cmds\n");
return PTR_ERR(cmds);
}
start = cmds;
cmds += _preemption_init(adreno_dev, rb, cmds, NULL);
rb->_wptr = rb->_wptr - (42 - (cmds - start));
ret = a6xx_ringbuffer_submit(rb, NULL, false);
if (!ret) {
ret = adreno_spin_idle(adreno_dev, 2000);
if (ret)
a6xx_spin_idle_debug(adreno_dev,
"hw preemption initialization failed to idle\n");
}
return ret;
}
int a6xx_rb_start(struct adreno_device *adreno_dev)
{
const struct adreno_a6xx_core *a6xx_core = to_a6xx_core(adreno_dev);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 cp_rb_cntl = A6XX_CP_RB_CNTL_DEFAULT |
(ADRENO_FEATURE(adreno_dev, ADRENO_APRIV) ? 0 : (1 << 27));
struct adreno_firmware *fw = ADRENO_FW(adreno_dev, ADRENO_FW_SQE);
struct adreno_ringbuffer *rb;
uint64_t addr;
int ret, i;
unsigned int *cmds;
/* Clear all the ringbuffers */
FOR_EACH_RINGBUFFER(adreno_dev, rb, i) {
memset(rb->buffer_desc->hostptr, 0xaa, KGSL_RB_SIZE);
kgsl_sharedmem_writel(device->scratch,
SCRATCH_RB_OFFSET(rb->id, rptr), 0);
rb->wptr = 0;
rb->_wptr = 0;
rb->wptr_preempt_end = ~0;
}
a6xx_preemption_start(adreno_dev);
/* Set up the current ringbuffer */
rb = ADRENO_CURRENT_RINGBUFFER(adreno_dev);
addr = SCRATCH_RB_GPU_ADDR(device, rb->id, rptr);
kgsl_regwrite(device, A6XX_CP_RB_RPTR_ADDR_LO, lower_32_bits(addr));
kgsl_regwrite(device, A6XX_CP_RB_RPTR_ADDR_HI, upper_32_bits(addr));
/*
* The size of the ringbuffer in the hardware is the log2
* representation of the size in quadwords (sizedwords / 2).
*/
kgsl_regwrite(device, A6XX_CP_RB_CNTL, cp_rb_cntl);
kgsl_regwrite(device, A6XX_CP_RB_BASE,
lower_32_bits(rb->buffer_desc->gpuaddr));
kgsl_regwrite(device, A6XX_CP_RB_BASE_HI,
upper_32_bits(rb->buffer_desc->gpuaddr));
/* Program the ucode base for CP */
kgsl_regwrite(device, A6XX_CP_SQE_INSTR_BASE_LO,
lower_32_bits(fw->memdesc->gpuaddr));
kgsl_regwrite(device, A6XX_CP_SQE_INSTR_BASE_HI,
upper_32_bits(fw->memdesc->gpuaddr));
/* Clear the SQE_HALT to start the CP engine */
kgsl_regwrite(device, A6XX_CP_SQE_CNTL, 1);
ret = a6xx_send_cp_init(adreno_dev, rb);
if (ret)
return ret;
ret = adreno_zap_shader_load(adreno_dev, a6xx_core->zap_name);
if (ret)
return ret;
/*
* Take the GPU out of secure mode. Try the zap shader if it is loaded,
* otherwise just try to write directly to the secure control register
*/
if (!adreno_dev->zap_loaded)
kgsl_regwrite(device, A6XX_RBBM_SECVID_TRUST_CNTL, 0);
else {
cmds = adreno_ringbuffer_allocspace(rb, 2);
if (IS_ERR(cmds))
return PTR_ERR(cmds);
*cmds++ = cp_packet(adreno_dev, CP_SET_SECURE_MODE, 1);
*cmds++ = 0;
ret = a6xx_ringbuffer_submit(rb, NULL, true);
if (!ret) {
ret = adreno_spin_idle(adreno_dev, 2000);
if (ret) {
a6xx_spin_idle_debug(adreno_dev,
"Switch to unsecure failed to idle\n");
return ret;
}
}
}
return a6xx_post_start(adreno_dev);
}
/*
* a6xx_sptprac_enable() - Power on SPTPRAC
* @adreno_dev: Pointer to Adreno device
*/
static int a6xx_sptprac_enable(struct adreno_device *adreno_dev)
{
return a6xx_gmu_sptprac_enable(adreno_dev);
}
/*
* a6xx_sptprac_disable() - Power off SPTPRAC
* @adreno_dev: Pointer to Adreno device
*/
static void a6xx_sptprac_disable(struct adreno_device *adreno_dev)
{
a6xx_gmu_sptprac_disable(adreno_dev);
}
/*
* a6xx_prepare_for_regulator_disable() - Prepare for regulator disable
* @adreno_dev: Pointer to Adreno device
*/
static void a6xx_prepare_for_regulator_disable(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (!adreno_is_a611(adreno_dev))
return;
/* This sequence is only required for A611 */
kgsl_regwrite(device, A6XX_RBBM_SW_RESET_CMD, 0x1);
/* Make sure software reset is triggered and completed */
wmb();
udelay(100);
}
/*
* a6xx_gpu_keepalive() - GMU reg write to request GPU stays on
* @adreno_dev: Pointer to the adreno device that has the GMU
* @state: State to set: true is ON, false is OFF
*/
static void a6xx_gpu_keepalive(struct adreno_device *adreno_dev,
bool state)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (!gmu_core_isenabled(device))
return;
gmu_core_regwrite(device, A6XX_GMU_GMU_PWR_COL_KEEPALIVE, state);
}
bool a6xx_irq_pending(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 status;
kgsl_regread(device, A6XX_RBBM_INT_0_STATUS, &status);
/* Return busy if a interrupt is pending */
return ((status & adreno_dev->irq_mask) ||
atomic_read(&adreno_dev->pending_irq_refcnt));
}
static bool a619_holi_hw_isidle(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
unsigned int reg;
kgsl_regread(device, A6XX_RBBM_STATUS, &reg);
if (reg & 0xfffffffe)
return false;
return a6xx_irq_pending(adreno_dev) ? false : true;
}
bool a6xx_hw_isidle(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
unsigned int reg;
/* Non GMU devices monitor the RBBM status */
if (!gmu_core_isenabled(device)) {
kgsl_regread(device, A6XX_RBBM_STATUS, &reg);
if (reg & 0xfffffffe)
return false;
return a6xx_irq_pending(adreno_dev) ? false : true;
}
gmu_core_regread(device, A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, &reg);
/* Bit 23 is GPUBUSYIGNAHB */
return (reg & BIT(23)) ? false : true;
}
int a6xx_microcode_read(struct adreno_device *adreno_dev)
{
struct adreno_firmware *sqe_fw = ADRENO_FW(adreno_dev, ADRENO_FW_SQE);
const struct adreno_a6xx_core *a6xx_core = to_a6xx_core(adreno_dev);
return adreno_get_firmware(adreno_dev, a6xx_core->sqefw_name, sqe_fw);
}
static int64_t a6xx_read_throttling_counters(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int64_t adj = -1;
u32 a, b, c;
struct adreno_busy_data *busy = &adreno_dev->busy_data;
if (!(adreno_dev->lm_enabled || adreno_dev->bcl_enabled))
return 0;
a = counter_delta(device, A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_1_L,
&busy->throttle_cycles[0]);
b = counter_delta(device, A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_2_L,
&busy->throttle_cycles[1]);
c = counter_delta(device, A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_3_L,
&busy->throttle_cycles[2]);
/*
* Currently there are no a6xx targets with both LM and BCL enabled.
* So if BCL is enabled, we can log bcl counters and return.
*/
if (adreno_dev->bcl_enabled) {
trace_kgsl_bcl_clock_throttling(a, b, c);
return 0;
}
/*
* The adjustment is the number of cycles lost to throttling, which
* is calculated as a weighted average of the cycles throttled
* at different levels. The adjustment is negative because in A6XX,
* the busy count includes the throttled cycles. Therefore, we want
* to remove them to prevent appearing to be busier than
* we actually are.
*/
if (adreno_is_a620(adreno_dev) || adreno_is_a650(adreno_dev))
/*
* With the newer generations, CRC throttle from SIDs of 0x14
* and above cannot be observed in power counters. Since 90%
* throttle uses SID 0x16 the adjustment calculation needs
* correction. The throttling is in increments of 4.2%, and the
* 91.7% counter does a weighted count by the value of sid used
* which are taken into consideration for the final formula.
*/
adj *= div_s64((a * 42) + (b * 500) +
(div_s64((int64_t)c - a - b * 12, 22) * 917), 1000);
else
adj *= ((a * 5) + (b * 50) + (c * 90)) / 100;
trace_kgsl_clock_throttling(0, b, c, a, adj);
return adj;
}
#define GPU_CPR_FSM_CTL_OFFSET 0x4
static void a6xx_gx_cpr_toggle(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_a6xx_core *a6xx_core = to_a6xx_core(adreno_dev);
static void __iomem *gx_cpr_virt;
struct resource *res;
u32 val = 0;
if (!a6xx_core->gx_cpr_toggle)
return;
if (!gx_cpr_virt) {
res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM,
"gx_cpr");
if (res == NULL)
return;
gx_cpr_virt = devm_ioremap_resource(&device->pdev->dev, res);
if (!gx_cpr_virt) {
dev_err(device->dev, "Failed to map GX CPR\n");
return;
}
}
/*
* Toggle(disable -> enable) closed loop functionality to recover
* CPR measurements stall happened under certain conditions.
*/
val = readl_relaxed(gx_cpr_virt + GPU_CPR_FSM_CTL_OFFSET);
/* Make sure memory is updated before access */
rmb();
writel_relaxed(val & 0xfffffff0, gx_cpr_virt + GPU_CPR_FSM_CTL_OFFSET);
/* make sure register write committed */
wmb();
/* Wait for small time before we enable GX CPR */
udelay(5);
writel_relaxed(val | 0x00000001, gx_cpr_virt + GPU_CPR_FSM_CTL_OFFSET);
/* make sure register write committed */
wmb();
}
/* This is only defined for non-GMU and non-RGMU targets */
static int a6xx_clear_pending_transactions(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
if (adreno_is_a619_holi(adreno_dev)) {
kgsl_regwrite(device, A6XX_RBBM_GPR0_CNTL, 0x1e0);
ret = adreno_wait_for_halt_ack(device,
A6XX_RBBM_VBIF_GX_RESET_STATUS, 0xf0);
} else {
kgsl_regwrite(device, A6XX_RBBM_GBIF_HALT,
A6XX_GBIF_GX_HALT_MASK);
ret = adreno_wait_for_halt_ack(device, A6XX_RBBM_GBIF_HALT_ACK,
A6XX_GBIF_GX_HALT_MASK);
}
if (ret)
return ret;
return a6xx_halt_gbif(adreno_dev);
}
/**
* a6xx_reset() - Helper function to reset the GPU
* @adreno_dev: Pointer to the adreno device structure for the GPU
*
* Try to reset the GPU to recover from a fault for targets without
* a GMU.
*/
static int a6xx_reset(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
unsigned long flags = device->pwrctrl.ctrl_flags;
ret = a6xx_clear_pending_transactions(adreno_dev);
if (ret)
return ret;
/* Clear ctrl_flags to ensure clocks and regulators are turned off */
device->pwrctrl.ctrl_flags = 0;
kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT);
/* since device is officially off now clear start bit */
clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
a6xx_reset_preempt_records(adreno_dev);
ret = adreno_start(device, 0);
if (ret)
return ret;
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
device->pwrctrl.ctrl_flags = flags;
/* Toggle GX CPR on demand */
a6xx_gx_cpr_toggle(device);
/*
* If active_cnt is zero, there is no need to keep the GPU active. So,
* we should transition to SLUMBER.
*/
if (!atomic_read(&device->active_cnt))
kgsl_pwrctrl_change_state(device, KGSL_STATE_SLUMBER);
return 0;
}
static void a6xx_cp_hw_err_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
unsigned int status1, status2;
kgsl_regread(device, A6XX_CP_INTERRUPT_STATUS, &status1);
if (status1 & BIT(A6XX_CP_OPCODE_ERROR)) {
unsigned int opcode;
kgsl_regwrite(device, A6XX_CP_SQE_STAT_ADDR, 1);
kgsl_regread(device, A6XX_CP_SQE_STAT_DATA, &opcode);
dev_crit_ratelimited(device->dev,
"CP opcode error interrupt | opcode=0x%8.8x\n", opcode);
}
if (status1 & BIT(A6XX_CP_UCODE_ERROR))
dev_crit_ratelimited(device->dev, "CP ucode error interrupt\n");
if (status1 & BIT(A6XX_CP_HW_FAULT_ERROR)) {
kgsl_regread(device, A6XX_CP_HW_FAULT, &status2);
dev_crit_ratelimited(device->dev,
"CP | Ringbuffer HW fault | status=%x\n", status2);
}
if (status1 & BIT(A6XX_CP_REGISTER_PROTECTION_ERROR)) {
kgsl_regread(device, A6XX_CP_PROTECT_STATUS, &status2);
dev_crit_ratelimited(device->dev,
"CP | Protected mode error | %s | addr=%x | status=%x\n",
status2 & (1 << 20) ? "READ" : "WRITE",
status2 & 0x3FFFF, status2);
}
if (status1 & BIT(A6XX_CP_AHB_ERROR))
dev_crit_ratelimited(device->dev,
"CP AHB error interrupt\n");
if (status1 & BIT(A6XX_CP_VSD_PARITY_ERROR))
dev_crit_ratelimited(device->dev,
"CP VSD decoder parity error\n");
if (status1 & BIT(A6XX_CP_ILLEGAL_INSTR_ERROR))
dev_crit_ratelimited(device->dev,
"CP Illegal instruction error\n");
}
static void a6xx_err_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
switch (bit) {
case A6XX_INT_CP_AHB_ERROR:
dev_crit_ratelimited(device->dev, "CP: AHB bus error\n");
break;
case A6XX_INT_ATB_ASYNCFIFO_OVERFLOW:
dev_crit_ratelimited(device->dev,
"RBBM: ATB ASYNC overflow\n");
break;
case A6XX_INT_RBBM_ATB_BUS_OVERFLOW:
dev_crit_ratelimited(device->dev,
"RBBM: ATB bus overflow\n");
break;
case A6XX_INT_UCHE_OOB_ACCESS:
dev_crit_ratelimited(device->dev,
"UCHE: Out of bounds access\n");
break;
case A6XX_INT_UCHE_TRAP_INTR:
dev_crit_ratelimited(device->dev, "UCHE: Trap interrupt\n");
break;
case A6XX_INT_TSB_WRITE_ERROR:
dev_crit_ratelimited(device->dev, "TSB: Write error interrupt\n");
break;
default:
dev_crit_ratelimited(device->dev, "Unknown interrupt %d\n",
bit);
}
}
/*
* a6xx_llc_configure_gpu_scid() - Program the sub-cache ID for all GPU blocks
* @adreno_dev: The adreno device pointer
*/
static void a6xx_llc_configure_gpu_scid(struct adreno_device *adreno_dev)
{
uint32_t gpu_scid;
uint32_t gpu_cntl1_val = 0;
int i;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_mmu *mmu = &device->mmu;
if (IS_ERR_OR_NULL(adreno_dev->gpu_llc_slice) ||
!adreno_dev->gpu_llc_slice_enable)
return;
if (llcc_slice_activate(adreno_dev->gpu_llc_slice))
return;
gpu_scid = llcc_get_slice_id(adreno_dev->gpu_llc_slice);
for (i = 0; i < A6XX_LLC_NUM_GPU_SCIDS; i++)
gpu_cntl1_val = (gpu_cntl1_val << A6XX_GPU_LLC_SCID_NUM_BITS)
| gpu_scid;
if (mmu->subtype == KGSL_IOMMU_SMMU_V500)
kgsl_regrmw(device, A6XX_GBIF_SCACHE_CNTL1,
A6XX_GPU_LLC_SCID_MASK, gpu_cntl1_val);
else
adreno_cx_misc_regrmw(adreno_dev,
A6XX_GPU_CX_MISC_SYSTEM_CACHE_CNTL_1,
A6XX_GPU_LLC_SCID_MASK, gpu_cntl1_val);
/*
* On A660, the SCID programming for UCHE traffic is done in
* A6XX_GBIF_SCACHE_CNTL0[14:10]
* GFO ENABLE BIT(8) : LLC uses a 64 byte cache line size enabling
* GFO allows it allocate partial cache lines
*/
if (adreno_is_a660(adreno_dev) ||
adreno_is_a663(adreno_dev))
kgsl_regrmw(device, A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
BIT(8), (gpu_scid << 10) | BIT(8));
}
/*
* a6xx_llc_configure_gpuhtw_scid() - Program the SCID for GPU pagetables
* @adreno_dev: The adreno device pointer
*/
static void a6xx_llc_configure_gpuhtw_scid(struct adreno_device *adreno_dev)
{
uint32_t gpuhtw_scid;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_mmu *mmu = &device->mmu;
if (IS_ERR_OR_NULL(adreno_dev->gpuhtw_llc_slice) ||
!adreno_dev->gpuhtw_llc_slice_enable)
return;
if (llcc_slice_activate(adreno_dev->gpuhtw_llc_slice))
return;
/*
* On SMMU-v500, the GPUHTW SCID is configured via a NoC override in
* the XBL image.
*/
if (mmu->subtype == KGSL_IOMMU_SMMU_V500)
return;
gpuhtw_scid = llcc_get_slice_id(adreno_dev->gpuhtw_llc_slice);
adreno_cx_misc_regrmw(adreno_dev,
A6XX_GPU_CX_MISC_SYSTEM_CACHE_CNTL_1,
A6XX_GPUHTW_LLC_SCID_MASK,
gpuhtw_scid << A6XX_GPUHTW_LLC_SCID_SHIFT);
}
/*
* a6xx_llc_enable_overrides() - Override the page attributes
* @adreno_dev: The adreno device pointer
*/
static void a6xx_llc_enable_overrides(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_mmu *mmu = &device->mmu;
/*
* Attributes override through GBIF is not supported with MMU-500.
* Attributes are used as configured through SMMU pagetable entries.
*/
if (mmu->subtype == KGSL_IOMMU_SMMU_V500)
return;
/*
* 0x3: readnoallocoverrideen=0
* read-no-alloc=0 - Allocate lines on read miss
* writenoallocoverrideen=1
* write-no-alloc=1 - Do not allocates lines on write miss
*/
adreno_cx_misc_regwrite(adreno_dev,
A6XX_GPU_CX_MISC_SYSTEM_CACHE_CNTL_0, 0x3);
}
static const char *uche_client[7][3] = {
{"SP | VSC | VPC | HLSQ | PC | LRZ", "TP", "VFD"},
{"VSC | VPC | HLSQ | PC | LRZ", "TP | VFD", "SP"},
{"SP | VPC | HLSQ | PC | LRZ", "TP | VFD", "VSC"},
{"SP | VSC | HLSQ | PC | LRZ", "TP | VFD", "VPC"},
{"SP | VSC | VPC | PC | LRZ", "TP | VFD", "HLSQ"},
{"SP | VSC | VPC | HLSQ | LRZ", "TP | VFD", "PC"},
{"SP | VSC | VPC | HLSQ | PC", "TP | VFD", "LRZ"},
};
static const char *const uche_client_a660[] = { "VFD", "SP", "VSC", "VPC",
"HLSQ", "PC", "LRZ", "TP" };
#define SCOOBYDOO 0x5c00bd00
static const char *a6xx_fault_block_uche(struct kgsl_device *device,
unsigned int mid)
{
unsigned int uche_client_id = 0;
static char str[40];
/*
* Smmu driver takes a vote on CX gdsc before calling the kgsl
* pagefault handler. If there is contention for device mutex in this
* path and the dispatcher fault handler is holding this lock, trying
* to turn off CX gdsc will fail during the reset. So to avoid blocking
* here, try to lock device mutex and return if it fails.
*/
if (!mutex_trylock(&device->mutex))
return "UCHE: unknown";
if (!kgsl_state_is_awake(device)) {
mutex_unlock(&device->mutex);
return "UCHE: unknown";
}
kgsl_regread(device, A6XX_UCHE_CLIENT_PF, &uche_client_id);
mutex_unlock(&device->mutex);
/* Ignore the value if the gpu is in IFPC */
if (uche_client_id == SCOOBYDOO)
return "UCHE: unknown";
if (adreno_is_a660(ADRENO_DEVICE(device))) {
/* Mask is 7 bits for A660 */
uche_client_id &= 0x7F;
if (uche_client_id >= ARRAY_SIZE(uche_client_a660) ||
(mid == 2))
return "UCHE: Unknown";
if (mid == 1)
snprintf(str, sizeof(str), "UCHE: Not %s",
uche_client_a660[uche_client_id]);
else if (mid == 3)
snprintf(str, sizeof(str), "UCHE: %s",
uche_client_a660[uche_client_id]);
} else {
uche_client_id &= A6XX_UCHE_CLIENT_PF_CLIENT_ID_MASK;
if (uche_client_id >= ARRAY_SIZE(uche_client))
return "UCHE: Unknown";
snprintf(str, sizeof(str), "UCHE: %s",
uche_client[uche_client_id][mid - 1]);
}
return str;
}
static const char *a6xx_iommu_fault_block(struct kgsl_device *device,
unsigned int fsynr1)
{
unsigned int mid = fsynr1 & 0xff;
switch (mid) {
case 0:
return "CP";
case 1:
case 2:
case 3:
return a6xx_fault_block_uche(device, mid);
case 4:
return "CCU";
case 6:
return "CDP Prefetch";
case 7:
return "GPMU";
}
return "Unknown";
}
static void a6xx_cp_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (adreno_is_preemption_enabled(adreno_dev))
a6xx_preemption_trigger(adreno_dev, true);
adreno_dispatcher_schedule(device);
}
/*
* a6xx_gpc_err_int_callback() - Isr for GPC error interrupts
* @adreno_dev: Pointer to device
* @bit: Interrupt bit
*/
static void a6xx_gpc_err_int_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
/*
* GPC error is typically the result of mistake SW programming.
* Force GPU fault for this interrupt so that we can debug it
* with help of register dump.
*/
dev_crit(device->dev, "RBBM: GPC error\n");
adreno_irqctrl(adreno_dev, 0);
/* Trigger a fault in the dispatcher - this will effect a restart */
adreno_dispatcher_fault(adreno_dev, ADRENO_SOFT_FAULT);
}
static const struct adreno_irq_funcs a6xx_irq_funcs[32] = {
ADRENO_IRQ_CALLBACK(NULL), /* 0 - RBBM_GPU_IDLE */
ADRENO_IRQ_CALLBACK(a6xx_err_callback), /* 1 - RBBM_AHB_ERROR */
ADRENO_IRQ_CALLBACK(NULL), /* 2 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 3 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 4 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 5 - UNUSED */
/* 6 - RBBM_ATB_ASYNC_OVERFLOW */
ADRENO_IRQ_CALLBACK(a6xx_err_callback),
ADRENO_IRQ_CALLBACK(a6xx_gpc_err_int_callback), /* 7 - GPC_ERR */
ADRENO_IRQ_CALLBACK(a6xx_preemption_callback),/* 8 - CP_SW */
ADRENO_IRQ_CALLBACK(a6xx_cp_hw_err_callback), /* 9 - CP_HW_ERROR */
ADRENO_IRQ_CALLBACK(NULL), /* 10 - CP_CCU_FLUSH_DEPTH_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 11 - CP_CCU_FLUSH_COLOR_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 12 - CP_CCU_RESOLVE_TS */
ADRENO_IRQ_CALLBACK(adreno_cp_callback), /* 13 - CP_IB2_INT */
ADRENO_IRQ_CALLBACK(adreno_cp_callback), /* 14 - CP_IB1_INT */
ADRENO_IRQ_CALLBACK(adreno_cp_callback), /* 15 - CP_RB_INT */
ADRENO_IRQ_CALLBACK(NULL), /* 16 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 17 - CP_RB_DONE_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 18 - CP_WT_DONE_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 19 - UNUSED */
ADRENO_IRQ_CALLBACK(a6xx_cp_callback), /* 20 - CP_CACHE_FLUSH_TS */
ADRENO_IRQ_CALLBACK(NULL), /* 21 - UNUSED */
ADRENO_IRQ_CALLBACK(a6xx_err_callback), /* 22 - RBBM_ATB_BUS_OVERFLOW */
/* 23 - MISC_HANG_DETECT */
ADRENO_IRQ_CALLBACK(adreno_hang_int_callback),
ADRENO_IRQ_CALLBACK(a6xx_err_callback), /* 24 - UCHE_OOB_ACCESS */
ADRENO_IRQ_CALLBACK(a6xx_err_callback), /* 25 - UCHE_TRAP_INTR */
ADRENO_IRQ_CALLBACK(NULL), /* 26 - DEBBUS_INTR_0 */
ADRENO_IRQ_CALLBACK(NULL), /* 27 - DEBBUS_INTR_1 */
ADRENO_IRQ_CALLBACK(a6xx_err_callback), /* 28 - TSBWRITEERROR */
ADRENO_IRQ_CALLBACK(NULL), /* 29 - UNUSED */
ADRENO_IRQ_CALLBACK(NULL), /* 30 - ISDB_CPU_IRQ */
ADRENO_IRQ_CALLBACK(NULL), /* 31 - ISDB_UNDER_DEBUG */
};
/*
* If the AHB fence is not in ALLOW mode when we receive an RBBM
* interrupt, something went wrong. This means that we cannot proceed
* since the IRQ status and clear registers are not accessible.
* This is usually harmless because the GMU will abort power collapse
* and change the fence back to ALLOW. Poll so that this can happen.
*/
static int a6xx_irq_poll_fence(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 status, fence, fence_retries = 0;
u64 a, b, c;
if (!gmu_core_isenabled(device))
return 0;
a = a6xx_read_alwayson(adreno_dev);
kgsl_regread(device, A6XX_GMU_AO_AHB_FENCE_CTRL, &fence);
while (fence != 0) {
b = a6xx_read_alwayson(adreno_dev);
/* Wait for small time before trying again */
udelay(1);
kgsl_regread(device, A6XX_GMU_AO_AHB_FENCE_CTRL, &fence);
if (fence_retries == 100 && fence != 0) {
c = a6xx_read_alwayson(adreno_dev);
kgsl_regread(device, A6XX_GMU_RBBM_INT_UNMASKED_STATUS,
&status);
dev_crit_ratelimited(device->dev,
"status=0x%x Unmasked status=0x%x Mask=0x%x timestamps: %llx %llx %llx\n",
status & adreno_dev->irq_mask, status,
adreno_dev->irq_mask, a, b, c);
return -ETIMEDOUT;
}
fence_retries++;
}
return 0;
}
static irqreturn_t a6xx_irq_handler(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
irqreturn_t ret = IRQ_NONE;
u32 status;
/*
* On A6xx, the GPU can power down once the INT_0_STATUS is read
* below. But there still might be some register reads required
* so force the GMU/GPU into KEEPALIVE mode until done with the ISR.
*/
a6xx_gpu_keepalive(adreno_dev, true);
if (a6xx_irq_poll_fence(adreno_dev)) {
adreno_dispatcher_fault(adreno_dev, ADRENO_GMU_FAULT);
goto done;
}
kgsl_regread(device, A6XX_RBBM_INT_0_STATUS, &status);
kgsl_regwrite(device, A6XX_RBBM_INT_CLEAR_CMD, status);
ret = adreno_irq_callbacks(adreno_dev, a6xx_irq_funcs, status);
trace_kgsl_a5xx_irq_status(adreno_dev, status);
done:
/* If hard fault, then let snapshot turn off the keepalive */
if (!(adreno_gpu_fault(adreno_dev) & ADRENO_HARD_FAULT))
a6xx_gpu_keepalive(adreno_dev, false);
return ret;
}
int a6xx_probe_common(struct platform_device *pdev,
struct adreno_device *adreno_dev, u32 chipid,
const struct adreno_gpu_core *gpucore)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gpudev *gpudev = gpucore->gpudev;
int ret;
adreno_dev->gpucore = gpucore;
adreno_dev->chipid = chipid;
adreno_reg_offset_init(gpudev->reg_offsets);
if (gmu_core_isenabled(device) && (gpudev != &adreno_a6xx_rgmu_gpudev))
device->pwrctrl.cx_cfg_gdsc_offset = (adreno_is_a662(adreno_dev) ||
adreno_is_a621(adreno_dev)) ? A662_GPU_CC_CX_CFG_GDSCR :
A6XX_GPU_CC_CX_CFG_GDSCR;
adreno_dev->hwcg_enabled = true;
adreno_dev->uche_client_pf = 1;
adreno_dev->preempt.preempt_level = 1;
adreno_dev->preempt.skipsaverestore = true;
adreno_dev->preempt.usesgmem = true;
ret = adreno_device_probe(pdev, adreno_dev);
if (ret)
return ret;
a6xx_coresight_init(adreno_dev);
return 0;
}
static int a6xx_probe(struct platform_device *pdev,
u32 chipid, const struct adreno_gpu_core *gpucore)
{
struct adreno_device *adreno_dev;
struct kgsl_device *device;
int ret;
adreno_dev = (struct adreno_device *)
of_device_get_match_data(&pdev->dev);
memset(adreno_dev, 0, sizeof(*adreno_dev));
adreno_dev->irq_mask = A6XX_INT_MASK;
ret = a6xx_probe_common(pdev, adreno_dev, chipid, gpucore);
if (ret)
return ret;
ret = adreno_dispatcher_init(adreno_dev);
if (ret)
return ret;
device = KGSL_DEVICE(adreno_dev);
timer_setup(&device->idle_timer, kgsl_timer, 0);
INIT_WORK(&device->idle_check_ws, kgsl_idle_check);
return 0;
}
/* Register offset defines for A6XX, in order of enum adreno_regs */
static unsigned int a6xx_register_offsets[ADRENO_REG_REGISTER_MAX] = {
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_BASE, A6XX_CP_RB_BASE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_BASE_HI, A6XX_CP_RB_BASE_HI),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_RPTR_ADDR_LO,
A6XX_CP_RB_RPTR_ADDR_LO),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_RPTR_ADDR_HI,
A6XX_CP_RB_RPTR_ADDR_HI),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_RPTR, A6XX_CP_RB_RPTR),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_WPTR, A6XX_CP_RB_WPTR),
ADRENO_REG_DEFINE(ADRENO_REG_CP_RB_CNTL, A6XX_CP_RB_CNTL),
ADRENO_REG_DEFINE(ADRENO_REG_CP_ME_CNTL, A6XX_CP_SQE_CNTL),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB1_BASE, A6XX_CP_IB1_BASE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB1_BASE_HI, A6XX_CP_IB1_BASE_HI),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB1_BUFSZ, A6XX_CP_IB1_REM_SIZE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB2_BASE, A6XX_CP_IB2_BASE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB2_BASE_HI, A6XX_CP_IB2_BASE_HI),
ADRENO_REG_DEFINE(ADRENO_REG_CP_IB2_BUFSZ, A6XX_CP_IB2_REM_SIZE),
ADRENO_REG_DEFINE(ADRENO_REG_CP_PREEMPT, A6XX_CP_CONTEXT_SWITCH_CNTL),
ADRENO_REG_DEFINE(ADRENO_REG_CP_CONTEXT_SWITCH_SMMU_INFO_LO,
A6XX_CP_CONTEXT_SWITCH_SMMU_INFO_LO),
ADRENO_REG_DEFINE(ADRENO_REG_CP_CONTEXT_SWITCH_SMMU_INFO_HI,
A6XX_CP_CONTEXT_SWITCH_SMMU_INFO_HI),
ADRENO_REG_DEFINE(
ADRENO_REG_CP_CONTEXT_SWITCH_PRIV_NON_SECURE_RESTORE_ADDR_LO,
A6XX_CP_CONTEXT_SWITCH_PRIV_NON_SECURE_RESTORE_ADDR_LO),
ADRENO_REG_DEFINE(
ADRENO_REG_CP_CONTEXT_SWITCH_PRIV_NON_SECURE_RESTORE_ADDR_HI,
A6XX_CP_CONTEXT_SWITCH_PRIV_NON_SECURE_RESTORE_ADDR_HI),
ADRENO_REG_DEFINE(
ADRENO_REG_CP_CONTEXT_SWITCH_PRIV_SECURE_RESTORE_ADDR_LO,
A6XX_CP_CONTEXT_SWITCH_PRIV_SECURE_RESTORE_ADDR_LO),
ADRENO_REG_DEFINE(
ADRENO_REG_CP_CONTEXT_SWITCH_PRIV_SECURE_RESTORE_ADDR_HI,
A6XX_CP_CONTEXT_SWITCH_PRIV_SECURE_RESTORE_ADDR_HI),
ADRENO_REG_DEFINE(ADRENO_REG_CP_CONTEXT_SWITCH_NON_PRIV_RESTORE_ADDR_LO,
A6XX_CP_CONTEXT_SWITCH_NON_PRIV_RESTORE_ADDR_LO),
ADRENO_REG_DEFINE(ADRENO_REG_CP_CONTEXT_SWITCH_NON_PRIV_RESTORE_ADDR_HI,
A6XX_CP_CONTEXT_SWITCH_NON_PRIV_RESTORE_ADDR_HI),
ADRENO_REG_DEFINE(ADRENO_REG_CP_PREEMPT_LEVEL_STATUS,
A6XX_CP_CONTEXT_SWITCH_LEVEL_STATUS),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_STATUS, A6XX_RBBM_STATUS),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_STATUS3, A6XX_RBBM_STATUS3),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_INT_0_MASK, A6XX_RBBM_INT_0_MASK),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_CLOCK_CTL, A6XX_RBBM_CLOCK_CNTL),
ADRENO_REG_DEFINE(ADRENO_REG_RBBM_SW_RESET_CMD, A6XX_RBBM_SW_RESET_CMD),
ADRENO_REG_DEFINE(ADRENO_REG_GMU_AO_HOST_INTERRUPT_MASK,
A6XX_GMU_AO_HOST_INTERRUPT_MASK),
ADRENO_REG_DEFINE(ADRENO_REG_GMU_AHB_FENCE_STATUS,
A6XX_GMU_AHB_FENCE_STATUS),
ADRENO_REG_DEFINE(ADRENO_REG_GMU_GMU2HOST_INTR_MASK,
A6XX_GMU_GMU2HOST_INTR_MASK),
};
int a6xx_perfcounter_update(struct adreno_device *adreno_dev,
struct adreno_perfcount_register *reg, bool update_reg)
{
void *ptr = adreno_dev->pwrup_reglist->hostptr;
struct cpu_gpu_lock *lock = ptr;
u32 *data = ptr + sizeof(*lock);
int i, offset = 0;
bool select_reg_present = false;
for (i = 0; i < lock->list_length >> 1; i++) {
if (data[offset] == reg->select) {
select_reg_present = true;
break;
}
if (data[offset] == A6XX_RBBM_PERFCTR_CNTL)
break;
offset += 2;
}
if (kgsl_hwlock(lock)) {
kgsl_hwunlock(lock);
return -EBUSY;
}
/*
* If the perfcounter select register is already present in reglist
* update it, otherwise append the <select register, value> pair to
* the end of the list.
*/
if (select_reg_present) {
data[offset + 1] = reg->countable;
goto update;
}
/*
* For all targets A6XX_RBBM_PERFCTR_CNTL needs to be the last entry,
* so overwrite the existing A6XX_RBBM_PERFCNTL_CTRL and add it back to
* the end.
*/
data[offset] = reg->select;
data[offset + 1] = reg->countable;
data[offset + 2] = A6XX_RBBM_PERFCTR_CNTL;
data[offset + 3] = 1;
lock->list_length += 2;
update:
if (update_reg)
kgsl_regwrite(KGSL_DEVICE(adreno_dev), reg->select,
reg->countable);
kgsl_hwunlock(lock);
return 0;
}
u64 a6xx_read_alwayson(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 lo = 0, hi = 0, tmp = 0;
if (!gmu_core_isenabled(device)) {
kgsl_regread(device, A6XX_CP_ALWAYS_ON_COUNTER_LO, &lo);
kgsl_regread(device, A6XX_CP_ALWAYS_ON_COUNTER_HI, &hi);
} else {
/* Always use the GMU AO counter when doing a AHB read */
gmu_core_regread(device, A6XX_GMU_ALWAYS_ON_COUNTER_H, &hi);
gmu_core_regread(device, A6XX_GMU_ALWAYS_ON_COUNTER_L, &lo);
/* Check for overflow */
gmu_core_regread(device, A6XX_GMU_ALWAYS_ON_COUNTER_H, &tmp);
if (hi != tmp) {
gmu_core_regread(device, A6XX_GMU_ALWAYS_ON_COUNTER_L,
&lo);
hi = tmp;
}
}
return (((u64) hi) << 32) | lo;
}
static void a6xx_remove(struct adreno_device *adreno_dev)
{
if (adreno_preemption_feature_set(adreno_dev))
del_timer(&adreno_dev->preempt.timer);
}
static void a6xx_read_bus_stats(struct kgsl_device *device,
struct kgsl_power_stats *stats,
struct adreno_busy_data *busy)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
u64 ram_cycles, starved_ram;
ram_cycles = counter_delta(device, adreno_dev->ram_cycles_lo,
&busy->bif_ram_cycles);
starved_ram = counter_delta(device, adreno_dev->starved_ram_lo,
&busy->bif_starved_ram);
if (!adreno_is_a630(adreno_dev)) {
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch1_read,
&busy->bif_ram_cycles_read_ch1);
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch0_write,
&busy->bif_ram_cycles_write_ch0);
ram_cycles += counter_delta(device,
adreno_dev->ram_cycles_lo_ch1_write,
&busy->bif_ram_cycles_write_ch1);
starved_ram += counter_delta(device,
adreno_dev->starved_ram_lo_ch1,
&busy->bif_starved_ram_ch1);
}
stats->ram_time = ram_cycles;
stats->ram_wait = starved_ram;
}
static void a6xx_power_stats(struct adreno_device *adreno_dev,
struct kgsl_power_stats *stats)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct adreno_busy_data *busy = &adreno_dev->busy_data;
s64 gpu_busy;
/* Set the GPU busy counter for frequency scaling */
gpu_busy = counter_delta(device, A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
&busy->gpu_busy);
gpu_busy += a6xx_read_throttling_counters(adreno_dev);
/* If adjustment cycles are more than busy cycles make gpu_busy zero */
if (gpu_busy < 0)
gpu_busy = 0;
stats->busy_time = gpu_busy * 10;
do_div(stats->busy_time, 192);
if (ADRENO_FEATURE(adreno_dev, ADRENO_IFPC)) {
u32 ifpc = counter_delta(device,
A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_4_L,
&busy->num_ifpc);
adreno_dev->ifpc_count += ifpc;
if (ifpc > 0)
trace_adreno_ifpc_count(adreno_dev->ifpc_count);
}
if (device->pwrctrl.bus_control)
a6xx_read_bus_stats(device, stats, busy);
}
static int a6xx_setproperty(struct kgsl_device_private *dev_priv,
u32 type, void __user *value, u32 sizebytes)
{
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
u32 enable;
if (type != KGSL_PROP_PWRCTRL)
return -ENODEV;
if (sizebytes != sizeof(enable))
return -EINVAL;
if (copy_from_user(&enable, value, sizeof(enable)))
return -EFAULT;
mutex_lock(&device->mutex);
if (enable) {
if (gmu_core_isenabled(device))
clear_bit(GMU_DISABLE_SLUMBER, &device->gmu_core.flags);
else
device->pwrctrl.ctrl_flags = 0;
kgsl_pwrscale_enable(device);
} else {
if (gmu_core_isenabled(device)) {
set_bit(GMU_DISABLE_SLUMBER, &device->gmu_core.flags);
if (!adreno_active_count_get(adreno_dev))
adreno_active_count_put(adreno_dev);
} else {
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
device->pwrctrl.ctrl_flags = KGSL_PWR_ON;
}
kgsl_pwrscale_disable(device, true);
}
mutex_unlock(&device->mutex);
return 0;
}
static int a6xx_dev_add_to_minidump(struct adreno_device *adreno_dev)
{
return kgsl_add_va_to_minidump(adreno_dev->dev.dev, KGSL_ADRENO_DEVICE,
(void *)(adreno_dev), sizeof(struct adreno_device));
}
static void a6xx_set_isdb_breakpoint_registers(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct clk *clk;
int ret;
if (!device->set_isdb_breakpoint || device->ftbl->is_hwcg_on(device)
|| device->qdss_gfx_virt == NULL || !device->force_panic)
return;
clk = clk_get(&device->pdev->dev, "apb_pclk");
if (IS_ERR(clk)) {
dev_err(device->dev, "Unable to get QDSS clock\n");
goto err;
}
ret = clk_prepare_enable(clk);
if (ret) {
dev_err(device->dev, "QDSS Clock enable error: %d\n", ret);
clk_put(clk);
goto err;
}
/* Issue break command for all eight SPs */
isdb_write(device->qdss_gfx_virt, 0x0000);
isdb_write(device->qdss_gfx_virt, 0x1000);
isdb_write(device->qdss_gfx_virt, 0x2000);
isdb_write(device->qdss_gfx_virt, 0x3000);
isdb_write(device->qdss_gfx_virt, 0x4000);
isdb_write(device->qdss_gfx_virt, 0x5000);
isdb_write(device->qdss_gfx_virt, 0x6000);
isdb_write(device->qdss_gfx_virt, 0x7000);
clk_disable_unprepare(clk);
clk_put(clk);
return;
err:
/* Do not force kernel panic if isdb writes did not go through */
device->force_panic = false;
}
static int a619_holi_sptprac_enable(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
void __iomem *addr = kgsl_regmap_virt(&device->regmap,
A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
u32 val;
if (test_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED, &adreno_dev->priv))
return 0;
kgsl_regwrite(device, A6XX_GMU_GX_SPTPRAC_POWER_CONTROL,
SPTPRAC_POWERON_CTRL_MASK);
if (readl_poll_timeout(addr, val,
(val & SPTPRAC_POWERON_STATUS_MASK) ==
SPTPRAC_POWERON_STATUS_MASK, 10, 10 * 1000)) {
dev_err(device->dev, "power on SPTPRAC fail\n");
return -EINVAL;
}
set_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED, &adreno_dev->priv);
return 0;
}
static void a619_holi_sptprac_disable(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
void __iomem *addr = kgsl_regmap_virt(&device->regmap,
A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
u32 val;
if (!test_and_clear_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED,
&adreno_dev->priv))
return;
/* Ensure that retention is on */
kgsl_regrmw(device, A6XX_GPU_CC_GX_GDSCR, 0,
A6XX_RETAIN_FF_ENABLE_ENABLE_MASK);
kgsl_regwrite(device, A6XX_GMU_GX_SPTPRAC_POWER_CONTROL,
SPTPRAC_POWEROFF_CTRL_MASK);
if (readl_poll_timeout(addr, val,
(val & SPTPRAC_POWEROFF_STATUS_MASK) ==
SPTPRAC_POWEROFF_STATUS_MASK, 10, 10 * 1000))
dev_err(device->dev, "power off SPTPRAC fail\n");
}
/* This is a non GMU/RGMU part */
const struct adreno_gpudev adreno_a6xx_gpudev = {
.reg_offsets = a6xx_register_offsets,
.probe = a6xx_probe,
.start = a6xx_nogmu_start,
.snapshot = a6xx_snapshot,
.init = a6xx_nogmu_init,
.irq_handler = a6xx_irq_handler,
.rb_start = a6xx_rb_start,
.regulator_disable = a6xx_prepare_for_regulator_disable,
.gpu_keepalive = a6xx_gpu_keepalive,
.hw_isidle = a6xx_hw_isidle,
.iommu_fault_block = a6xx_iommu_fault_block,
.reset = a6xx_reset,
.preemption_schedule = a6xx_preemption_schedule,
.preemption_context_init = a6xx_preemption_context_init,
.read_alwayson = a6xx_read_alwayson,
.power_ops = &adreno_power_operations,
.clear_pending_transactions = a6xx_clear_pending_transactions,
.deassert_gbif_halt = a6xx_deassert_gbif_halt,
.remove = a6xx_remove,
.ringbuffer_submitcmd = a6xx_ringbuffer_submitcmd,
.is_hw_collapsible = adreno_isidle,
.power_stats = a6xx_power_stats,
.setproperty = a6xx_setproperty,
.add_to_va_minidump = a6xx_dev_add_to_minidump,
.gx_is_on = a6xx_gx_is_on,
};
const struct a6xx_gpudev adreno_a6xx_hwsched_gpudev = {
.base = {
.reg_offsets = a6xx_register_offsets,
.probe = a6xx_hwsched_probe,
.snapshot = a6xx_hwsched_snapshot,
.irq_handler = a6xx_irq_handler,
.iommu_fault_block = a6xx_iommu_fault_block,
.preemption_context_init = a6xx_preemption_context_init,
.context_detach = a6xx_hwsched_context_detach,
.read_alwayson = a6xx_read_alwayson,
.reset = a6xx_hwsched_reset_replay,
.power_ops = &a6xx_hwsched_power_ops,
.power_stats = a6xx_power_stats,
.setproperty = a6xx_setproperty,
.hw_isidle = a6xx_hw_isidle,
.add_to_va_minidump = a6xx_hwsched_add_to_minidump,
.gx_is_on = a6xx_gmu_gx_is_on,
.send_recurring_cmdobj = a6xx_hwsched_send_recurring_cmdobj,
.set_isdb_breakpoint_registers = a6xx_set_isdb_breakpoint_registers,
},
.hfi_probe = a6xx_hwsched_hfi_probe,
.hfi_remove = a6xx_hwsched_hfi_remove,
.handle_watchdog = a6xx_hwsched_handle_watchdog,
};
const struct a6xx_gpudev adreno_a6xx_gmu_gpudev = {
.base = {
.reg_offsets = a6xx_register_offsets,
.probe = a6xx_gmu_device_probe,
.snapshot = a6xx_gmu_snapshot,
.irq_handler = a6xx_irq_handler,
.rb_start = a6xx_rb_start,
.regulator_enable = a6xx_sptprac_enable,
.regulator_disable = a6xx_sptprac_disable,
.gpu_keepalive = a6xx_gpu_keepalive,
.hw_isidle = a6xx_hw_isidle,
.iommu_fault_block = a6xx_iommu_fault_block,
.reset = a6xx_gmu_reset,
.preemption_schedule = a6xx_preemption_schedule,
.preemption_context_init = a6xx_preemption_context_init,
.read_alwayson = a6xx_read_alwayson,
.power_ops = &a6xx_gmu_power_ops,
.remove = a6xx_remove,
.ringbuffer_submitcmd = a6xx_ringbuffer_submitcmd,
.power_stats = a6xx_power_stats,
.setproperty = a6xx_setproperty,
.add_to_va_minidump = a6xx_gmu_add_to_minidump,
.gx_is_on = a6xx_gmu_gx_is_on,
.set_isdb_breakpoint_registers = a6xx_set_isdb_breakpoint_registers,
},
.hfi_probe = a6xx_gmu_hfi_probe,
.handle_watchdog = a6xx_gmu_handle_watchdog,
};
const struct adreno_gpudev adreno_a6xx_rgmu_gpudev = {
.reg_offsets = a6xx_register_offsets,
.probe = a6xx_rgmu_device_probe,
.snapshot = a6xx_rgmu_snapshot,
.irq_handler = a6xx_irq_handler,
.rb_start = a6xx_rb_start,
.regulator_enable = a6xx_sptprac_enable,
.regulator_disable = a6xx_sptprac_disable,
.gpu_keepalive = a6xx_gpu_keepalive,
.hw_isidle = a6xx_hw_isidle,
.iommu_fault_block = a6xx_iommu_fault_block,
.reset = a6xx_rgmu_reset,
.preemption_schedule = a6xx_preemption_schedule,
.preemption_context_init = a6xx_preemption_context_init,
.read_alwayson = a6xx_read_alwayson,
.power_ops = &a6xx_rgmu_power_ops,
.remove = a6xx_remove,
.ringbuffer_submitcmd = a6xx_ringbuffer_submitcmd,
.power_stats = a6xx_power_stats,
.setproperty = a6xx_setproperty,
.add_to_va_minidump = a6xx_rgmu_add_to_minidump,
.gx_is_on = a6xx_rgmu_gx_is_on,
};
/* This is a non GMU/RGMU part */
const struct adreno_gpudev adreno_a619_holi_gpudev = {
.reg_offsets = a6xx_register_offsets,
.probe = a6xx_probe,
.start = a6xx_nogmu_start,
.snapshot = a6xx_snapshot,
.init = a6xx_nogmu_init,
.irq_handler = a6xx_irq_handler,
.rb_start = a6xx_rb_start,
.regulator_enable = a619_holi_sptprac_enable,
.regulator_disable = a619_holi_sptprac_disable,
.gpu_keepalive = a6xx_gpu_keepalive,
.hw_isidle = a619_holi_hw_isidle,
.iommu_fault_block = a6xx_iommu_fault_block,
.reset = a6xx_reset,
.preemption_schedule = a6xx_preemption_schedule,
.preemption_context_init = a6xx_preemption_context_init,
.read_alwayson = a6xx_read_alwayson,
.power_ops = &adreno_power_operations,
.clear_pending_transactions = a6xx_clear_pending_transactions,
.deassert_gbif_halt = a6xx_deassert_gbif_halt,
.remove = a6xx_remove,
.ringbuffer_submitcmd = a6xx_ringbuffer_submitcmd,
.is_hw_collapsible = adreno_isidle,
.power_stats = a6xx_power_stats,
.setproperty = a6xx_setproperty,
.add_to_va_minidump = a6xx_dev_add_to_minidump,
.gx_is_on = a619_holi_gx_is_on,
};
const struct a6xx_gpudev adreno_a630_gpudev = {
.base = {
.reg_offsets = a6xx_register_offsets,
.probe = a6xx_gmu_device_probe,
.snapshot = a6xx_gmu_snapshot,
.irq_handler = a6xx_irq_handler,
.rb_start = a6xx_rb_start,
.regulator_enable = a6xx_sptprac_enable,
.regulator_disable = a6xx_sptprac_disable,
.gpu_keepalive = a6xx_gpu_keepalive,
.hw_isidle = a6xx_hw_isidle,
.iommu_fault_block = a6xx_iommu_fault_block,
.reset = a6xx_gmu_reset,
.preemption_schedule = a6xx_preemption_schedule,
.preemption_context_init = a6xx_preemption_context_init,
.read_alwayson = a6xx_read_alwayson,
.power_ops = &a630_gmu_power_ops,
.remove = a6xx_remove,
.ringbuffer_submitcmd = a6xx_ringbuffer_submitcmd,
.power_stats = a6xx_power_stats,
.setproperty = a6xx_setproperty,
.add_to_va_minidump = a6xx_gmu_add_to_minidump,
.gx_is_on = a6xx_gmu_gx_is_on,
},
.hfi_probe = a6xx_gmu_hfi_probe,
.handle_watchdog = a6xx_gmu_handle_watchdog,
};