android_kernel_samsung_sm86.../qcom/opensource/graphics-kernel/adreno.c
David Wronek 880d405719 Add 'qcom/opensource/graphics-kernel/' from commit 'b4fdc4c04295ac59109ae19d64747522740c3f14'
git-subtree-dir: qcom/opensource/graphics-kernel
git-subtree-mainline: 992813d9c1
git-subtree-split: b4fdc4c042
Change-Id:
repo: https://git.codelinaro.org/clo/la/platform/vendor/qcom/opensource/graphics-kernel
tag: GRAPHICS.LA.14.0.r1-07700-lanai.0
2024-10-06 16:44:56 +02:00

3838 lines
100 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2002,2007-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/input.h>
#include <linux/interconnect.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_fdt.h>
#include <linux/module.h>
#include <linux/msm_kgsl.h>
#include <linux/regulator/consumer.h>
#include <linux/nvmem-consumer.h>
#include <linux/reset.h>
#include <linux/trace.h>
#include <linux/units.h>
#include <linux/version.h>
#include <soc/qcom/dcvs.h>
#include <soc/qcom/socinfo.h>
#include <linux/suspend.h>
#include "adreno.h"
#include "adreno_a3xx.h"
#include "adreno_a5xx.h"
#include "adreno_a6xx.h"
#include "adreno_compat.h"
#include "adreno_pm4types.h"
#include "adreno_trace.h"
#include "kgsl_bus.h"
#include "kgsl_reclaim.h"
#include "kgsl_trace.h"
#include "kgsl_util.h"
/* Include the master list of GPU cores that are supported */
#include "adreno-gpulist.h"
static void adreno_unbind(struct device *dev);
static void adreno_input_work(struct work_struct *work);
static int adreno_soft_reset(struct kgsl_device *device);
static unsigned int counter_delta(struct kgsl_device *device,
unsigned int reg, unsigned int *counter);
static struct device_node *
adreno_get_gpu_model_node(struct platform_device *pdev);
static struct adreno_device device_3d0;
static bool adreno_preemption_enable;
/* Nice level for the higher priority GPU start thread */
int adreno_wake_nice = -7;
/* Number of milliseconds to stay active after a wake on touch */
unsigned int adreno_wake_timeout = 100;
static u32 get_ucode_version(const u32 *data)
{
u32 version;
version = data[1];
if ((version & 0xf) != 0xa)
return version;
version &= ~0xfff;
return version | ((data[3] & 0xfff000) >> 12);
}
int adreno_get_firmware(struct adreno_device *adreno_dev,
const char *fwfile, struct adreno_firmware *firmware)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct firmware *fw = NULL;
int ret;
if (!IS_ERR_OR_NULL(firmware->memdesc))
return 0;
ret = request_firmware(&fw, fwfile, &device->pdev->dev);
if (ret) {
dev_err(device->dev, "request_firmware(%s) failed: %d\n",
fwfile, ret);
return ret;
}
firmware->memdesc = kgsl_allocate_global(device, fw->size - 4, 0,
KGSL_MEMFLAGS_GPUREADONLY, KGSL_MEMDESC_UCODE,
"ucode");
ret = PTR_ERR_OR_ZERO(firmware->memdesc);
if (!ret) {
memcpy(firmware->memdesc->hostptr, &fw->data[4], fw->size - 4);
firmware->size = (fw->size - 4) / sizeof(u32);
firmware->version = get_ucode_version((u32 *)fw->data);
}
release_firmware(fw);
return ret;
}
int adreno_zap_shader_load(struct adreno_device *adreno_dev,
const char *name)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
if (!name || adreno_dev->zap_loaded)
return 0;
ret = kgsl_zap_shader_load(&device->pdev->dev, name);
if (!ret)
adreno_dev->zap_loaded = true;
return ret;
}
#if (IS_ENABLED(CONFIG_QCOM_KGSL_HIBERNATION) || IS_ENABLED(CONFIG_DEEPSLEEP))
static void adreno_zap_shader_unload(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
if (adreno_dev->zap_loaded) {
ret = kgsl_zap_shader_unload(&device->pdev->dev);
if (!ret)
adreno_dev->zap_loaded = false;
}
}
#endif
/**
* adreno_readreg64() - Read a 64bit register by getting its offset from the
* offset array defined in gpudev node
* @adreno_dev: Pointer to the adreno device
* @lo: lower 32bit register enum that is to be read
* @hi: higher 32bit register enum that is to be read
* @val: 64 bit Register value read is placed here
*/
void adreno_readreg64(struct adreno_device *adreno_dev,
enum adreno_regs lo, enum adreno_regs hi, uint64_t *val)
{
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
unsigned int val_lo = 0, val_hi = 0;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (adreno_checkreg_off(adreno_dev, lo))
kgsl_regread(device, gpudev->reg_offsets[lo], &val_lo);
if (adreno_checkreg_off(adreno_dev, hi))
kgsl_regread(device, gpudev->reg_offsets[hi], &val_hi);
*val = (val_lo | ((uint64_t)val_hi << 32));
}
/**
* adreno_get_rptr() - Get the current ringbuffer read pointer
* @rb: Pointer the ringbuffer to query
*
* Get the latest rptr
*/
unsigned int adreno_get_rptr(struct adreno_ringbuffer *rb)
{
struct adreno_device *adreno_dev = ADRENO_RB_DEVICE(rb);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
u32 rptr = 0;
if (adreno_is_a3xx(adreno_dev))
kgsl_regread(device, A3XX_CP_RB_RPTR, &rptr);
else
kgsl_sharedmem_readl(device->scratch, &rptr,
SCRATCH_RB_OFFSET(rb->id, rptr));
return rptr;
}
static void adreno_touch_wakeup(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
/*
* Don't schedule adreno_start in a high priority workqueue, we are
* already in a workqueue which should be sufficient
*/
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
/*
* When waking up from a touch event we want to stay active long enough
* for the user to send a draw command. The default idle timer timeout
* is shorter than we want so go ahead and push the idle timer out
* further for this special case
*/
mod_timer(&device->idle_timer,
jiffies + msecs_to_jiffies(adreno_wake_timeout));
}
/*
* A workqueue callback responsible for actually turning on the GPU after a
* touch event. kgsl_pwrctrl_change_state(ACTIVE) is used without any
* active_count protection to avoid the need to maintain state. Either
* somebody will start using the GPU or the idle timer will fire and put the
* GPU back into slumber.
*/
static void adreno_input_work(struct work_struct *work)
{
struct adreno_device *adreno_dev = container_of(work,
struct adreno_device, input_work);
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_power_ops *ops = ADRENO_POWER_OPS(adreno_dev);
mutex_lock(&device->mutex);
device->pwrctrl.wake_on_touch = true;
ops->touch_wakeup(adreno_dev);
mutex_unlock(&device->mutex);
}
/* Wake up the touch event kworker to initiate GPU wakeup */
void adreno_touch_wake(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
/*
* Don't do anything if anything hasn't been rendered since we've been
* here before
*/
if (device->pwrctrl.wake_on_touch)
return;
if (gmu_core_isenabled(device) || (device->state == KGSL_STATE_SLUMBER))
schedule_work(&adreno_dev->input_work);
}
/*
* Process input events and schedule work if needed. At this point we are only
* interested in groking EV_ABS touchscreen events
*/
static void adreno_input_event(struct input_handle *handle, unsigned int type,
unsigned int code, int value)
{
struct kgsl_device *device = handle->handler->private;
/* Only consider EV_ABS (touch) events */
if (type == EV_ABS)
adreno_touch_wake(device);
}
#ifdef CONFIG_INPUT
static int adreno_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
struct input_handle *handle;
int ret;
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
if (handle == NULL)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = handler->name;
ret = input_register_handle(handle);
if (ret) {
kfree(handle);
return ret;
}
ret = input_open_device(handle);
if (ret) {
input_unregister_handle(handle);
kfree(handle);
}
return ret;
}
static void adreno_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
#else
static int adreno_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
return 0;
}
static void adreno_input_disconnect(struct input_handle *handle) {}
#endif
/*
* We are only interested in EV_ABS events so only register handlers for those
* input devices that have EV_ABS events
*/
static const struct input_device_id adreno_input_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
.evbit = { BIT_MASK(EV_ABS) },
/* assumption: MT_.._X & MT_.._Y are in the same long */
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
BIT_MASK(ABS_MT_POSITION_X) |
BIT_MASK(ABS_MT_POSITION_Y) },
},
{ },
};
static struct input_handler adreno_input_handler = {
.event = adreno_input_event,
.connect = adreno_input_connect,
.disconnect = adreno_input_disconnect,
.name = "kgsl",
.id_table = adreno_input_ids,
};
/*
* _soft_reset() - Soft reset GPU
* @adreno_dev: Pointer to adreno device
*
* Soft reset the GPU by doing a AHB write of value 1 to RBBM_SW_RESET
* register. This is used when we want to reset the GPU without
* turning off GFX power rail. The reset when asserted resets
* all the HW logic, restores GPU registers to default state and
* flushes out pending VBIF transactions.
*/
static void _soft_reset(struct adreno_device *adreno_dev)
{
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
unsigned int reg;
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, 1);
/*
* Do a dummy read to get a brief read cycle delay for the
* reset to take effect
*/
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, &reg);
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, 0);
/* The SP/TP regulator gets turned off after a soft reset */
clear_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED, &adreno_dev->priv);
if (gpudev->regulator_enable)
gpudev->regulator_enable(adreno_dev);
}
/**
* adreno_irqctrl() - Enables/disables the RBBM interrupt mask
* @adreno_dev: Pointer to an adreno_device
* @state: 1 for masked or 0 for unmasked
* Power: The caller of this function must make sure to use OOBs
* so that we know that the GPU is powered on
*/
void adreno_irqctrl(struct adreno_device *adreno_dev, int state)
{
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (!adreno_dev->irq_mask)
return;
adreno_writereg(adreno_dev, ADRENO_REG_RBBM_INT_0_MASK,
state ? adreno_dev->irq_mask : 0);
if (gpudev->swfuse_irqctrl)
gpudev->swfuse_irqctrl(adreno_dev, state);
}
/*
* adreno_hang_int_callback() - Isr for fatal interrupts that hang GPU
* @adreno_dev: Pointer to device
* @bit: Interrupt bit
*/
void adreno_hang_int_callback(struct adreno_device *adreno_dev, int bit)
{
dev_crit_ratelimited(KGSL_DEVICE(adreno_dev)->dev,
"MISC: GPU hang detected\n");
adreno_irqctrl(adreno_dev, 0);
/* Trigger a fault in the dispatcher - this will effect a restart */
adreno_dispatcher_fault(adreno_dev, ADRENO_HARD_FAULT);
}
/*
* adreno_cp_callback() - CP interrupt handler
* @adreno_dev: Adreno device pointer
* @irq: irq number
*
* Handle the cp interrupt generated by GPU.
*/
void adreno_cp_callback(struct adreno_device *adreno_dev, int bit)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
adreno_dispatcher_schedule(device);
}
static irqreturn_t adreno_irq_handler(int irq, void *data)
{
struct kgsl_device *device = data;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
irqreturn_t ret;
atomic_inc(&adreno_dev->pending_irq_refcnt);
/* Ensure this increment is done before the IRQ status is updated */
smp_mb__after_atomic();
ret = gpudev->irq_handler(adreno_dev);
/* Make sure the regwrites are done before the decrement */
smp_mb__before_atomic();
atomic_dec(&adreno_dev->pending_irq_refcnt);
/* Ensure other CPUs see the decrement */
smp_mb__after_atomic();
return ret;
}
static irqreturn_t adreno_freq_limiter_irq_handler(int irq, void *data)
{
struct kgsl_device *device = data;
KGSL_PWRCTRL_LOG_FREQLIM(device);
reset_control_reset(device->freq_limiter_irq_clear);
return IRQ_HANDLED;
}
irqreturn_t adreno_irq_callbacks(struct adreno_device *adreno_dev,
const struct adreno_irq_funcs *funcs, u32 status)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
irqreturn_t ret = IRQ_NONE;
/* Loop through all set interrupts and call respective handlers */
while (status) {
int i = fls(status) - 1;
if (funcs[i].func) {
if (adreno_dev->irq_mask & BIT(i))
funcs[i].func(adreno_dev, i);
} else
dev_crit_ratelimited(device->dev,
"Unhandled interrupt bit %x\n", i);
ret = IRQ_HANDLED;
status &= ~BIT(i);
}
return ret;
}
static int adreno_get_chipid(struct platform_device *pdev, u32 *chipid);
static inline bool _rev_match(unsigned int id, unsigned int entry)
{
return (entry == ANY_ID || entry == id);
}
static const struct adreno_gpu_core *
_get_gpu_core(struct platform_device *pdev, u32 *chipid)
{
int i;
struct device_node *node;
/*
* When "qcom,gpu-models" is defined, use gpu model node to match
* on a compatible string, otherwise match using legacy way.
*/
node = adreno_get_gpu_model_node(pdev);
if (!node || !of_find_property(node, "compatible", NULL))
node = pdev->dev.of_node;
*chipid = 0;
/* Check to see if any of the entries match on a compatible string */
for (i = 0; i < ARRAY_SIZE(adreno_gpulist); i++) {
if (adreno_gpulist[i]->compatible &&
of_device_is_compatible(node,
adreno_gpulist[i]->compatible)) {
/*
* We matched compat string, set chipid based on
* dtsi, else fail.
*/
if (!adreno_get_chipid(pdev, chipid))
return adreno_gpulist[i];
dev_crit(&pdev->dev,
"No chipid associated with %s\n",
adreno_gpulist[i]->compatible);
return NULL;
}
}
/* No compatible string so try and match on chipid */
if (!adreno_get_chipid(pdev, chipid)) {
unsigned int core = ADRENO_CHIPID_CORE(*chipid);
unsigned int major = ADRENO_CHIPID_MAJOR(*chipid);
unsigned int minor = ADRENO_CHIPID_MINOR(*chipid);
unsigned int patchid = ADRENO_CHIPID_PATCH(*chipid);
for (i = 0; i < ARRAY_SIZE(adreno_gpulist); i++) {
if (core == adreno_gpulist[i]->core &&
_rev_match(major, adreno_gpulist[i]->major) &&
_rev_match(minor, adreno_gpulist[i]->minor) &&
_rev_match(patchid, adreno_gpulist[i]->patchid))
return adreno_gpulist[i];
}
}
dev_crit(&pdev->dev, "Unknown GPU chip ID %8.8x\n", *chipid);
return NULL;
}
static struct {
unsigned int quirk;
const char *prop;
} adreno_quirks[] = {
{ ADRENO_QUIRK_TWO_PASS_USE_WFI, "qcom,gpu-quirk-two-pass-use-wfi" },
{ ADRENO_QUIRK_CRITICAL_PACKETS, "qcom,gpu-quirk-critical-packets" },
{ ADRENO_QUIRK_FAULT_DETECT_MASK, "qcom,gpu-quirk-fault-detect-mask" },
{ ADRENO_QUIRK_DISABLE_RB_DP2CLOCKGATING,
"qcom,gpu-quirk-dp2clockgating-disable" },
{ ADRENO_QUIRK_DISABLE_LMLOADKILL,
"qcom,gpu-quirk-lmloadkill-disable" },
{ ADRENO_QUIRK_HFI_USE_REG, "qcom,gpu-quirk-hfi-use-reg" },
{ ADRENO_QUIRK_SECVID_SET_ONCE, "qcom,gpu-quirk-secvid-set-once" },
{ ADRENO_QUIRK_LIMIT_UCHE_GBIF_RW,
"qcom,gpu-quirk-limit-uche-gbif-rw" },
{ ADRENO_QUIRK_CX_GDSC, "qcom,gpu-quirk-cx-gdsc" },
};
static int adreno_get_chipid(struct platform_device *pdev, u32 *chipid)
{
u32 id;
if (!of_property_read_u32(pdev->dev.of_node, "qcom,chipid", chipid))
return 0;
id = socinfo_get_partinfo_chip_id(SOCINFO_PART_GPU);
if (id)
*chipid = id;
return id ? 0 : -EINVAL;
}
static void
adreno_update_soc_hw_revision_quirks(struct adreno_device *adreno_dev,
struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
int i;
/* update quirk */
for (i = 0; i < ARRAY_SIZE(adreno_quirks); i++) {
if (of_property_read_bool(node, adreno_quirks[i].prop))
adreno_dev->quirks |= adreno_quirks[i].quirk;
}
}
static const struct adreno_gpu_core *
adreno_identify_gpu(struct platform_device *pdev, u32 *chipid)
{
const struct adreno_gpu_core *gpucore;
gpucore = _get_gpu_core(pdev, chipid);
if (!gpucore)
return ERR_PTR(-ENODEV);
/*
* Identify non-longer supported targets and spins and print a helpful
* message
*/
if (gpucore->features & ADRENO_DEPRECATED) {
if (gpucore->compatible)
dev_err(&pdev->dev,
"Support for GPU %s has been deprecated\n",
gpucore->compatible);
else
dev_err(&pdev->dev,
"Support for GPU %x.%d.%x.%d has been deprecated\n",
gpucore->core, gpucore->major,
gpucore->minor, gpucore->patchid);
return ERR_PTR(-ENODEV);
}
return gpucore;
}
static const struct of_device_id adreno_match_table[] = {
{ .compatible = "qcom,kgsl-3d0", .data = &device_3d0 },
{ },
};
MODULE_DEVICE_TABLE(of, adreno_match_table);
/* Dynamically build the OPP table for the GPU device */
static void adreno_build_opp_table(struct device *dev, struct kgsl_pwrctrl *pwr)
{
int i;
/* Skip if the table has already been populated */
if (dev_pm_opp_get_opp_count(dev) > 0)
return;
/* Add all the supported frequencies into the tree */
for (i = 0; i < pwr->num_pwrlevels; i++)
dev_pm_opp_add(dev, pwr->pwrlevels[i].gpu_freq, 0);
}
static int adreno_of_parse_pwrlevels(struct adreno_device *adreno_dev,
struct device_node *node)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
struct device_node *child;
int ret;
pwr->num_pwrlevels = 0;
for_each_child_of_node(node, child) {
u32 index, freq = 0, voltage, bus;
struct kgsl_pwrlevel *level;
ret = of_property_read_u32(child, "reg", &index);
if (ret) {
dev_err(device->dev, "%pOF: powerlevel index not found\n",
child);
goto out;
}
ret = of_property_read_u32(child, "qcom,gpu-freq", &freq);
if (ret) {
dev_err(device->dev, "%pOF: Unable to read qcom,gpu-freq\n",
child);
goto out;
}
/* Ignore "zero" powerlevels */
if (!freq)
continue;
ret = of_property_read_u32(child, "qcom,level", &voltage);
if (ret) {
dev_err(device->dev, "%pOF: Unable to read qcom,level\n",
child);
goto out;
}
ret = kgsl_of_property_read_ddrtype(child, "qcom,bus-freq",
&bus);
if (ret) {
dev_err(device->dev, "%pOF:Unable to read qcom,bus-freq\n",
child);
goto out;
}
if (index >= ARRAY_SIZE(pwr->pwrlevels)) {
dev_err(device->dev, "%pOF: Pwrlevel index %d is out of range\n",
child, index);
continue;
}
if (index >= pwr->num_pwrlevels)
pwr->num_pwrlevels = index + 1;
level = &pwr->pwrlevels[index];
level->gpu_freq = freq;
level->bus_freq = bus;
level->voltage_level = voltage;
level->cx_level = 0xffffffff;
of_property_read_u32(child, "qcom,acd-level",
&level->acd_level);
of_property_read_u32(child, "qcom,cx-level",
&level->cx_level);
level->bus_min = level->bus_freq;
kgsl_of_property_read_ddrtype(child,
"qcom,bus-min", &level->bus_min);
level->bus_max = level->bus_freq;
kgsl_of_property_read_ddrtype(child,
"qcom,bus-max", &level->bus_max);
}
adreno_build_opp_table(&device->pdev->dev, pwr);
return 0;
out:
of_node_put(child);
return ret;
}
static void adreno_of_get_initial_pwrlevels(struct kgsl_pwrctrl *pwr,
struct device_node *node)
{
int level;
/* Get and set the initial power level */
if (of_property_read_u32(node, "qcom,initial-pwrlevel", &level))
level = 1;
if (level < 0 || level >= pwr->num_pwrlevels)
level = 1;
pwr->active_pwrlevel = level;
pwr->default_pwrlevel = level;
/* Set the max power level */
pwr->max_pwrlevel = 0;
/* Get and set the min power level */
if (of_property_read_u32(node, "qcom,initial-min-pwrlevel", &level))
level = pwr->num_pwrlevels - 1;
if (level < 0 || level >= pwr->num_pwrlevels || level < pwr->default_pwrlevel)
level = pwr->num_pwrlevels - 1;
pwr->min_render_pwrlevel = level;
pwr->min_pwrlevel = level;
}
static void adreno_of_get_limits(struct adreno_device *adreno_dev,
struct device_node *node)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_pwrctrl *pwrctrl = &device->pwrctrl;
unsigned int throttle_level;
if (!ADRENO_FEATURE(adreno_dev, ADRENO_LM) || of_property_read_u32(node,
"qcom,throttle-pwrlevel", &throttle_level))
return;
throttle_level = min(throttle_level, pwrctrl->num_pwrlevels - 1);
pwrctrl->throttle_mask = GENMASK(pwrctrl->num_pwrlevels - 1,
pwrctrl->num_pwrlevels - 1 - throttle_level);
adreno_dev->lm_enabled = true;
}
static int adreno_of_get_legacy_pwrlevels(struct adreno_device *adreno_dev,
struct device_node *parent)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct device_node *node;
int ret;
node = of_find_node_by_name(parent, "qcom,gpu-pwrlevels");
if (node == NULL) {
dev_err(&device->pdev->dev,
"Unable to find 'qcom,gpu-pwrlevels'\n");
return -EINVAL;
}
ret = adreno_of_parse_pwrlevels(adreno_dev, node);
if (!ret) {
adreno_of_get_initial_pwrlevels(&device->pwrctrl, parent);
adreno_of_get_limits(adreno_dev, parent);
}
of_node_put(node);
return ret;
}
static int adreno_of_get_pwrlevels(struct adreno_device *adreno_dev,
struct device_node *parent)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct device_node *node, *child;
int feature_code, pcode;
node = of_find_node_by_name(parent, "qcom,gpu-pwrlevel-bins");
if (node == NULL)
return adreno_of_get_legacy_pwrlevels(adreno_dev, parent);
feature_code = max_t(int, socinfo_get_feature_code(), SOCINFO_FC_UNKNOWN);
pcode = (feature_code >= SOCINFO_FC_Y0 && feature_code < SOCINFO_FC_INT_RESERVE) ?
max_t(int, socinfo_get_pcode(), SOCINFO_PCODE_UNKNOWN) : SOCINFO_PCODE_UNKNOWN;
device->soc_code = FIELD_PREP(GENMASK(31, 16), pcode) |
FIELD_PREP(GENMASK(15, 0), feature_code);
for_each_child_of_node(node, child) {
bool match = false;
int tbl_size;
u32 bin = 0;
/* Check if the bin has a speed-bin requirement */
if (!of_property_read_u32(child, "qcom,speed-bin", &bin))
match = (bin == device->speed_bin);
/* Check if the bin has a sku-code requirement */
if (of_get_property(child, "qcom,sku-codes", &tbl_size)) {
int num_codes = tbl_size / sizeof(u32);
int i;
u32 sku_code;
/*
* If we have a speed-bin requirement that did not match
* keep searching.
*/
if (bin && !match)
continue;
/* Check if the soc_code matches any of the sku codes */
match = false;
for (i = 0; i < num_codes; i++) {
if (!of_property_read_u32_index(child, "qcom,sku-codes",
i, &sku_code) &&
(sku_code == 0 || device->soc_code == sku_code)) {
match = true;
break;
}
}
}
if (match) {
int ret;
ret = adreno_of_parse_pwrlevels(adreno_dev, child);
if (ret) {
of_node_put(child);
return ret;
}
adreno_of_get_initial_pwrlevels(&device->pwrctrl, child);
/*
* Check for global throttle-pwrlevel first and override
* with speedbin specific one if found.
*/
adreno_of_get_limits(adreno_dev, parent);
adreno_of_get_limits(adreno_dev, child);
of_node_put(child);
return 0;
}
}
dev_err(&device->pdev->dev,
"No match for speed_bin:%d and soc_code:0x%x\n",
device->speed_bin, device->soc_code);
return -ENODEV;
}
static int register_l3_voter(struct kgsl_device *device)
{
int ret = 0;
mutex_lock(&device->mutex);
if (!device->l3_vote)
goto done;
/* This indicates that we are already set up */
if (device->num_l3_pwrlevels != 0)
goto done;
memset(device->l3_freq, 0x0, sizeof(device->l3_freq));
ret = qcom_dcvs_register_voter(KGSL_L3_DEVICE, DCVS_L3, DCVS_SLOW_PATH);
if (ret) {
dev_err_once(&device->pdev->dev,
"Unable to register l3 dcvs voter: %d\n", ret);
goto done;
}
ret = qcom_dcvs_hw_minmax_get(DCVS_L3, &device->l3_freq[1],
&device->l3_freq[2]);
if (ret) {
dev_err_once(&device->pdev->dev,
"Unable to get min/max for l3 dcvs: %d\n", ret);
qcom_dcvs_unregister_voter(KGSL_L3_DEVICE, DCVS_L3,
DCVS_SLOW_PATH);
memset(device->l3_freq, 0x0, sizeof(device->l3_freq));
goto done;
}
device->num_l3_pwrlevels = 3;
done:
mutex_unlock(&device->mutex);
return ret;
}
static int adreno_of_get_power(struct adreno_device *adreno_dev,
struct platform_device *pdev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
ret = adreno_of_get_pwrlevels(adreno_dev, pdev->dev.of_node);
if (ret)
return ret;
device->pwrctrl.interval_timeout = CONFIG_QCOM_KGSL_IDLE_TIMEOUT;
/* Set default bus control to true on all targets */
device->pwrctrl.bus_control = true;
return 0;
}
static void adreno_cx_misc_probe(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct resource *res;
res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM,
"cx_misc");
if (res == NULL)
return;
adreno_dev->cx_misc_len = resource_size(res);
adreno_dev->cx_misc_virt = devm_ioremap(&device->pdev->dev,
res->start, adreno_dev->cx_misc_len);
}
static void adreno_isense_probe(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct resource *res;
res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM,
"isense_cntl");
if (res == NULL)
return;
adreno_dev->isense_base = res->start - device->regmap.base->start;
adreno_dev->isense_len = resource_size(res);
adreno_dev->isense_virt = devm_ioremap(&device->pdev->dev, res->start,
adreno_dev->isense_len);
if (adreno_dev->isense_virt == NULL)
dev_warn(device->dev, "isense ioremap failed\n");
}
/* Read the fuse through the new and fancy nvmem method */
static int adreno_read_speed_bin(struct platform_device *pdev)
{
struct nvmem_cell *cell = nvmem_cell_get(&pdev->dev, "speed_bin");
int ret = PTR_ERR_OR_ZERO(cell);
void *buf;
int val = 0;
size_t len;
if (ret) {
if (ret == -ENOENT)
return 0;
return ret;
}
buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
memcpy(&val, buf, min(len, sizeof(val)));
kfree(buf);
return val;
}
static int adreno_read_gpu_model_fuse(struct platform_device *pdev)
{
struct nvmem_cell *cell = nvmem_cell_get(&pdev->dev, "gpu_model");
void *buf;
int val = 0;
size_t len;
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
memcpy(&val, buf, min(len, sizeof(val)));
kfree(buf);
return val;
}
static struct device_node *
adreno_get_gpu_model_node(struct platform_device *pdev)
{
struct device_node *node, *child;
int fuse_model = adreno_read_gpu_model_fuse(pdev);
if (fuse_model < 0)
return NULL;
node = of_find_node_by_name(pdev->dev.of_node, "qcom,gpu-models");
if (node == NULL)
return NULL;
for_each_child_of_node(node, child) {
u32 model;
if (of_property_read_u32(child, "qcom,gpu-model-id", &model))
continue;
if (model == fuse_model) {
of_node_put(node);
return child;
}
}
of_node_put(node);
return NULL;
}
const char *adreno_get_gpu_model(struct kgsl_device *device)
{
struct device_node *node;
static char gpu_model[32];
const char *model;
int ret;
if (strlen(gpu_model))
return gpu_model;
node = adreno_get_gpu_model_node(device->pdev);
if (!node)
node = of_node_get(device->pdev->dev.of_node);
ret = of_property_read_string(node, "qcom,gpu-model", &model);
of_node_put(node);
if (!ret)
goto done;
model = socinfo_get_partinfo_part_name(SOCINFO_PART_GPU);
if (model)
goto done;
scnprintf(gpu_model, sizeof(gpu_model), "Adreno%u%u%uv%u",
(u32)ADRENO_CHIPID_CORE(ADRENO_DEVICE(device)->chipid),
(u32)ADRENO_CHIPID_MAJOR(ADRENO_DEVICE(device)->chipid),
(u32)ADRENO_CHIPID_MINOR(ADRENO_DEVICE(device)->chipid),
(u32)ADRENO_CHIPID_PATCH(ADRENO_DEVICE(device)->chipid) + 1);
return gpu_model;
done:
strscpy(gpu_model, model, sizeof(gpu_model));
return gpu_model;
}
static u32 adreno_get_vk_device_id(struct kgsl_device *device)
{
struct device_node *node;
static u32 device_id;
u32 vk_id;
int ret;
if (device_id)
return device_id;
node = adreno_get_gpu_model_node(device->pdev);
if (!node)
node = of_node_get(device->pdev->dev.of_node);
ret = of_property_read_u32(node, "qcom,vk-device-id", &device_id);
of_node_put(node);
if (!ret)
return device_id;
vk_id = socinfo_get_partinfo_vulkan_id(SOCINFO_PART_GPU);
device_id = vk_id ? vk_id : ADRENO_DEVICE(device)->chipid;
return device_id;
}
#if IS_ENABLED(CONFIG_QCOM_LLCC)
static int adreno_probe_llcc(struct adreno_device *adreno_dev,
struct platform_device *pdev)
{
int ret;
/* Get the system cache slice descriptor for GPU */
adreno_dev->gpu_llc_slice = llcc_slice_getd(LLCC_GPU);
ret = PTR_ERR_OR_ZERO(adreno_dev->gpu_llc_slice);
if (ret) {
/* Propagate EPROBE_DEFER back to the probe function */
if (ret == -EPROBE_DEFER)
return ret;
if (ret != -ENOENT)
dev_warn(&pdev->dev,
"Unable to get the GPU LLC slice: %d\n", ret);
} else
adreno_dev->gpu_llc_slice_enable = true;
/* Get the system cache slice descriptor for GPU pagetables */
adreno_dev->gpuhtw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
ret = PTR_ERR_OR_ZERO(adreno_dev->gpuhtw_llc_slice);
if (ret) {
if (ret == -EPROBE_DEFER) {
llcc_slice_putd(adreno_dev->gpu_llc_slice);
return ret;
}
if (ret != -ENOENT)
dev_warn(&pdev->dev,
"Unable to get GPU HTW LLC slice: %d\n", ret);
} else
adreno_dev->gpuhtw_llc_slice_enable = true;
return 0;
}
#else
static int adreno_probe_llcc(struct adreno_device *adreno_dev,
struct platform_device *pdev)
{
return 0;
}
#endif
static void adreno_regmap_op_preaccess(struct kgsl_regmap_region *region)
{
struct kgsl_device *device = region->priv;
/*
* kgsl panic notifier will be called in atomic context to get
* GPU snapshot. Also panic handler will skip snapshot dumping
* incase GPU is in SLUMBER state. So we can safely ignore the
* kgsl_pre_hwaccess().
*/
if (!device->snapshot_atomic && !in_interrupt())
kgsl_pre_hwaccess(device);
}
static const struct kgsl_regmap_ops adreno_regmap_ops = {
.preaccess = adreno_regmap_op_preaccess,
};
static const struct kgsl_functable adreno_functable;
static void adreno_setup_device(struct adreno_device *adreno_dev)
{
u32 i;
adreno_dev->dev.name = "kgsl-3d0";
adreno_dev->dev.ftbl = &adreno_functable;
init_completion(&adreno_dev->dev.hwaccess_gate);
init_completion(&adreno_dev->dev.halt_gate);
idr_init(&adreno_dev->dev.context_idr);
mutex_init(&adreno_dev->dev.mutex);
INIT_LIST_HEAD(&adreno_dev->dev.globals);
/* Set the fault tolerance policy to replay, skip, throttle */
adreno_dev->ft_policy = BIT(KGSL_FT_REPLAY) |
BIT(KGSL_FT_SKIPCMD) | BIT(KGSL_FT_THROTTLE);
/* Enable command timeouts by default */
adreno_dev->long_ib_detect = true;
INIT_WORK(&adreno_dev->input_work, adreno_input_work);
INIT_LIST_HEAD(&adreno_dev->active_list);
spin_lock_init(&adreno_dev->active_list_lock);
for (i = 0; i < ARRAY_SIZE(adreno_dev->ringbuffers); i++) {
struct adreno_ringbuffer *rb = &adreno_dev->ringbuffers[i];
INIT_LIST_HEAD(&rb->events.group);
}
/*
* Some GPUs needs specific alignment for UCHE GMEM base address.
* Configure UCHE GMEM base based on GMEM size and align it accordingly.
* This needs to be done based on GMEM size to avoid overlap between
* RB and UCHE GMEM range.
*/
if (adreno_dev->gpucore->uche_gmem_alignment)
adreno_dev->uche_gmem_base =
ALIGN(adreno_dev->gpucore->gmem_size,
adreno_dev->gpucore->uche_gmem_alignment);
}
static const struct of_device_id adreno_component_match[] = {
{ .compatible = "qcom,gen8-gmu" },
{ .compatible = "qcom,gen7-gmu" },
{ .compatible = "qcom,gpu-gmu" },
{ .compatible = "qcom,gpu-rgmu" },
{ .compatible = "qcom,kgsl-smmu-v2" },
{ .compatible = "qcom,smmu-kgsl-cb" },
{},
};
static int adreno_irq_setup(struct platform_device *pdev,
struct adreno_device *adreno_dev)
{
if (!adreno_dev->irq_mask)
return 0;
return kgsl_request_irq(pdev, "kgsl_3d0_irq", adreno_irq_handler, KGSL_DEVICE(adreno_dev));
}
int adreno_device_probe(struct platform_device *pdev,
struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct device *dev = &pdev->dev;
unsigned int priv = 0;
int status;
u32 size;
KGSL_BOOT_MARKER("GPU Init");
/* Initialize the adreno device structure */
adreno_setup_device(adreno_dev);
dev_set_drvdata(dev, device);
device->pdev = pdev;
adreno_update_soc_hw_revision_quirks(adreno_dev, pdev);
status = adreno_read_speed_bin(pdev);
if (status < 0)
goto err;
device->speed_bin = status;
status = adreno_of_get_power(adreno_dev, pdev);
if (status)
goto err;
status = kgsl_bus_init(device, pdev);
if (status)
goto err;
status = kgsl_regmap_init(pdev, &device->regmap, "kgsl_3d0_reg_memory",
&adreno_regmap_ops, device);
if (status)
goto err_bus_close;
/*
* The SMMU APIs use unsigned long for virtual addresses which means
* that we cannot use 64 bit virtual addresses on a 32 bit kernel even
* though the hardware and the rest of the KGSL driver supports it.
*/
if (adreno_support_64bit(adreno_dev))
kgsl_mmu_set_feature(device, KGSL_MMU_64BIT);
/*
* Set the SMMU aperture on A6XX/Gen7 targets to use per-process
* pagetables.
*/
if (ADRENO_GPUREV(adreno_dev) >= 600)
kgsl_mmu_set_feature(device, KGSL_MMU_SMMU_APERTURE);
if (ADRENO_FEATURE(adreno_dev, ADRENO_IOCOHERENT))
kgsl_mmu_set_feature(device, KGSL_MMU_IO_COHERENT);
/*
* Support VBOs on hardware where HLOS has access to PRR registers
* configuration.
*/
if (!adreno_is_a650(adreno_dev))
kgsl_mmu_set_feature(device, KGSL_MMU_SUPPORT_VBO);
if (adreno_preemption_enable)
adreno_dev->preempt_override = true;
device->pwrctrl.bus_width = adreno_dev->gpucore->bus_width;
device->mmu.secured = (IS_ENABLED(CONFIG_QCOM_SECURE_BUFFER) &&
ADRENO_FEATURE(adreno_dev, ADRENO_CONTENT_PROTECTION));
/* Probe the LLCC - this could return -EPROBE_DEFER */
status = adreno_probe_llcc(adreno_dev, pdev);
if (status)
goto err_bus_close;
/*
* IF the GPU HTW slice was successsful set the MMU feature so the
* domain can set the appropriate attributes
*/
if (!IS_ERR_OR_NULL(adreno_dev->gpuhtw_llc_slice))
kgsl_mmu_set_feature(device, KGSL_MMU_LLCC_ENABLE);
/* Bind the components before doing the KGSL platform probe. */
status = component_bind_all(dev, NULL);
if (status)
goto err_remove_llcc;
status = adreno_irq_setup(pdev, adreno_dev);
if (status < 0)
goto err_unbind;
device->pwrctrl.interrupt_num = status;
device->freq_limiter_intr_num = kgsl_request_irq_optional(pdev, "freq_limiter_irq",
adreno_freq_limiter_irq_handler, device);
device->freq_limiter_irq_clear =
devm_reset_control_get(&pdev->dev, "freq_limiter_irq_clear");
status = kgsl_device_platform_probe(device);
if (status)
goto err_unbind;
adreno_fence_trace_array_init(device);
/* Add CX_DBGC block to the regmap*/
kgsl_regmap_add_region(&device->regmap, pdev, "cx_dbgc", NULL, NULL);
/* Probe for the optional CX_MISC block */
adreno_cx_misc_probe(device);
adreno_isense_probe(device);
/* Allocate the memstore for storing timestamps and other useful info */
if (ADRENO_FEATURE(adreno_dev, ADRENO_APRIV))
priv |= KGSL_MEMDESC_PRIVILEGED;
device->memstore = kgsl_allocate_global(device,
KGSL_MEMSTORE_SIZE, 0, 0, priv, "memstore");
status = PTR_ERR_OR_ZERO(device->memstore);
if (status) {
trace_array_put(device->fence_trace_array);
kgsl_device_platform_remove(device);
goto err_unbind;
}
/* Initialize the snapshot engine */
size = adreno_dev->gpucore->snapshot_size;
/*
* Use a default size if one wasn't specified, but print a warning so
* the developer knows to fix it
*/
if (WARN(!size, "The snapshot size was not specified in the gpucore\n"))
size = SZ_1M;
kgsl_device_snapshot_probe(device, size);
adreno_debugfs_init(adreno_dev);
adreno_profile_init(adreno_dev);
adreno_dev->perfcounter = false;
adreno_sysfs_init(adreno_dev);
/* Ignore return value, as driver can still function without pwrscale enabled */
kgsl_pwrscale_init(device, pdev, CONFIG_QCOM_ADRENO_DEFAULT_GOVERNOR);
if (ADRENO_FEATURE(adreno_dev, ADRENO_L3_VOTE))
device->l3_vote = true;
#ifdef CONFIG_INPUT
if (!of_property_read_bool(pdev->dev.of_node,
"qcom,disable-wake-on-touch")) {
adreno_input_handler.private = device;
/*
* It isn't fatal if we cannot register the input handler. Sad,
* perhaps, but not fatal
*/
if (input_register_handler(&adreno_input_handler)) {
adreno_input_handler.private = NULL;
dev_err(device->dev,
"Unable to register the input handler\n");
}
}
#endif
kgsl_qcom_va_md_register(device);
KGSL_BOOT_MARKER("GPU Ready");
return 0;
err_unbind:
component_unbind_all(dev, NULL);
err_remove_llcc:
if (!IS_ERR_OR_NULL(adreno_dev->gpu_llc_slice))
llcc_slice_putd(adreno_dev->gpu_llc_slice);
if (!IS_ERR_OR_NULL(adreno_dev->gpuhtw_llc_slice))
llcc_slice_putd(adreno_dev->gpuhtw_llc_slice);
err_bus_close:
kgsl_bus_close(device);
err:
device->pdev = NULL;
dev_err_probe(&pdev->dev, status, "adreno device probe failed\n");
return status;
}
static int adreno_bind(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
const struct adreno_gpu_core *gpucore;
int ret;
u32 chipid;
gpucore = adreno_identify_gpu(pdev, &chipid);
if (IS_ERR(gpucore))
return PTR_ERR(gpucore);
ret = gpucore->gpudev->probe(pdev, chipid, gpucore);
if (!ret) {
struct kgsl_device *device = dev_get_drvdata(dev);
device->pdev_loaded = true;
srcu_init_notifier_head(&device->nh);
} else {
/*
* Handle resource clean up through unbind, instead of a
* lengthy goto error path.
*/
adreno_unbind(dev);
}
return ret;
}
static void adreno_unbind(struct device *dev)
{
struct adreno_device *adreno_dev;
struct kgsl_device *device;
const struct adreno_gpudev *gpudev;
device = dev_get_drvdata(dev);
if (!device)
return;
/* Return if cleanup happens in adreno_device_probe */
if (!device->pdev)
return;
if (device->pdev_loaded) {
srcu_cleanup_notifier_head(&device->nh);
device->pdev_loaded = false;
}
adreno_dev = ADRENO_DEVICE(device);
gpudev = ADRENO_GPU_DEVICE(adreno_dev);
trace_array_put(device->fence_trace_array);
if (gpudev->remove != NULL)
gpudev->remove(adreno_dev);
#ifdef CONFIG_INPUT
if (adreno_input_handler.private)
input_unregister_handler(&adreno_input_handler);
#endif
kgsl_qcom_va_md_unregister(device);
adreno_coresight_remove(adreno_dev);
adreno_profile_close(adreno_dev);
/* Release the system cache slice descriptor */
if (!IS_ERR_OR_NULL(adreno_dev->gpu_llc_slice))
llcc_slice_putd(adreno_dev->gpu_llc_slice);
if (!IS_ERR_OR_NULL(adreno_dev->gpuhtw_llc_slice))
llcc_slice_putd(adreno_dev->gpuhtw_llc_slice);
kgsl_pwrscale_close(device);
if (adreno_dev->dispatch_ops && adreno_dev->dispatch_ops->close)
adreno_dev->dispatch_ops->close(adreno_dev);
kgsl_device_platform_remove(device);
component_unbind_all(dev, NULL);
kgsl_bus_close(device);
device->pdev = NULL;
if (device->num_l3_pwrlevels != 0)
qcom_dcvs_unregister_voter(KGSL_L3_DEVICE, DCVS_L3,
DCVS_SLOW_PATH);
clear_bit(ADRENO_DEVICE_PWRON_FIXUP, &adreno_dev->priv);
clear_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv);
}
static void adreno_resume(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (device->state == KGSL_STATE_SUSPEND) {
adreno_put_gpu_halt(adreno_dev);
kgsl_pwrctrl_change_state(device, KGSL_STATE_SLUMBER);
} else if (device->state != KGSL_STATE_INIT) {
/*
* This is an error situation so wait for the device to idle and
* then put the device in SLUMBER state. This will get us to
* the right place when we resume.
*/
if (device->state == KGSL_STATE_ACTIVE)
adreno_idle(device);
kgsl_pwrctrl_change_state(device, KGSL_STATE_SLUMBER);
dev_err(device->dev, "resume invoked without a suspend\n");
}
}
static int adreno_pm_resume(struct device *dev)
{
struct kgsl_device *device = dev_get_drvdata(dev);
struct adreno_device *adreno_dev;
const struct adreno_power_ops *ops;
if (!device)
return 0;
adreno_dev = ADRENO_DEVICE(device);
ops = ADRENO_POWER_OPS(adreno_dev);
#if IS_ENABLED(CONFIG_DEEPSLEEP)
if (pm_suspend_via_firmware()) {
struct kgsl_iommu *iommu = &device->mmu.iommu;
int status = kgsl_set_smmu_aperture(device, &iommu->user_context);
if (status)
return status;
status = kgsl_set_smmu_lpac_aperture(device, &iommu->lpac_context);
if (status < 0)
return status;
}
#endif
mutex_lock(&device->mutex);
ops->pm_resume(adreno_dev);
mutex_unlock(&device->mutex);
kgsl_reclaim_start();
return 0;
}
static int adreno_suspend(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int status = kgsl_pwrctrl_change_state(device, KGSL_STATE_SUSPEND);
if (!status && device->state == KGSL_STATE_SUSPEND)
adreno_get_gpu_halt(adreno_dev);
return status;
}
static int adreno_pm_suspend(struct device *dev)
{
struct kgsl_device *device = dev_get_drvdata(dev);
struct adreno_device *adreno_dev;
const struct adreno_power_ops *ops;
int status;
if (!device)
return 0;
adreno_dev = ADRENO_DEVICE(device);
ops = ADRENO_POWER_OPS(adreno_dev);
mutex_lock(&device->mutex);
status = ops->pm_suspend(adreno_dev);
#if IS_ENABLED(CONFIG_DEEPSLEEP)
if (!status && pm_suspend_via_firmware())
adreno_zap_shader_unload(adreno_dev);
#endif
mutex_unlock(&device->mutex);
if (status)
return status;
/*
* When the device enters in suspend state, the CX can be collapsed causing
* the GPU CX timer to pause. Clear the ADRENO_DEVICE_CX_TIMER_INITIALIZED
* flag to ensure that the CX timer is reseeded during resume.
*/
clear_bit(ADRENO_DEVICE_CX_TIMER_INITIALIZED, &adreno_dev->priv);
kgsl_reclaim_close();
kthread_flush_worker(device->events_worker);
flush_workqueue(kgsl_driver.lockless_workqueue);
return status;
}
void adreno_create_profile_buffer(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
unsigned int priv = 0;
if (ADRENO_FEATURE(adreno_dev, ADRENO_APRIV))
priv = KGSL_MEMDESC_PRIVILEGED;
adreno_allocate_global(device, &adreno_dev->profile_buffer,
PAGE_SIZE, 0, 0, priv, "alwayson");
adreno_dev->profile_index = 0;
if (!IS_ERR(adreno_dev->profile_buffer))
set_bit(ADRENO_DEVICE_DRAWOBJ_PROFILE,
&adreno_dev->priv);
}
static int adreno_init(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int ret;
ret = kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT);
if (ret)
return ret;
/*
* initialization only needs to be done once initially until
* device is shutdown
*/
if (test_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv))
return 0;
ret = gpudev->init(adreno_dev);
if (ret)
return ret;
set_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv);
return 0;
}
static bool regulators_left_on(struct kgsl_device *device)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
if (gmu_core_gpmu_isenabled(device))
return false;
if (!IS_ERR_OR_NULL(pwr->cx_gdsc))
if (regulator_is_enabled(pwr->cx_gdsc))
return true;
if (!IS_ERR_OR_NULL(pwr->gx_gdsc))
return regulator_is_enabled(pwr->gx_gdsc);
return false;
}
void adreno_set_active_ctxs_null(struct adreno_device *adreno_dev)
{
int i;
struct adreno_ringbuffer *rb;
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
FOR_EACH_RINGBUFFER(adreno_dev, rb, i) {
if (rb->drawctxt_active)
kgsl_context_put(&(rb->drawctxt_active->base));
rb->drawctxt_active = NULL;
kgsl_sharedmem_writel(device->scratch,
SCRATCH_RB_OFFSET(rb->id, current_rb_ptname),
0);
}
}
static int adreno_open(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret;
/*
* active_cnt special case: we are starting up for the first
* time, so use this sequence instead of the kgsl_pwrctrl_wake()
* which will be called by adreno_active_count_get().
*/
atomic_inc(&device->active_cnt);
memset(device->memstore->hostptr, 0, device->memstore->size);
ret = adreno_init(device);
if (ret)
goto err;
ret = adreno_start(device, 0);
if (ret)
goto err;
complete_all(&device->hwaccess_gate);
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
adreno_active_count_put(adreno_dev);
return 0;
err:
kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT);
atomic_dec(&device->active_cnt);
return ret;
}
static int adreno_first_open(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_power_ops *ops = ADRENO_POWER_OPS(adreno_dev);
if (!device->pdev_loaded)
return -ENODEV;
return ops->first_open(adreno_dev);
}
static int adreno_close(struct adreno_device *adreno_dev)
{
return kgsl_pwrctrl_change_state(KGSL_DEVICE(adreno_dev),
KGSL_STATE_INIT);
}
static int adreno_last_close(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_power_ops *ops = ADRENO_POWER_OPS(adreno_dev);
/*
* Wait up to 1 second for the active count to go low
* and then start complaining about it
*/
if (kgsl_active_count_wait(device, 0, HZ)) {
dev_err(device->dev,
"Waiting for the active count to become 0\n");
while (kgsl_active_count_wait(device, 0, HZ))
dev_err(device->dev,
"Still waiting for the active count\n");
}
return ops->last_close(adreno_dev);
}
static int adreno_pwrctrl_active_count_get(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret = 0;
if (WARN_ON(!mutex_is_locked(&device->mutex)))
return -EINVAL;
if ((atomic_read(&device->active_cnt) == 0) &&
(device->state != KGSL_STATE_ACTIVE)) {
mutex_unlock(&device->mutex);
wait_for_completion(&device->hwaccess_gate);
mutex_lock(&device->mutex);
device->pwrctrl.superfast = true;
ret = kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
}
if (ret == 0)
atomic_inc(&device->active_cnt);
trace_kgsl_active_count(device,
(unsigned long) __builtin_return_address(0));
return ret;
}
static void adreno_pwrctrl_active_count_put(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
if (WARN_ON(!mutex_is_locked(&device->mutex)))
return;
if (WARN(atomic_read(&device->active_cnt) == 0,
"Unbalanced get/put calls to KGSL active count\n"))
return;
if (atomic_dec_and_test(&device->active_cnt)) {
kgsl_pwrscale_update_stats(device);
kgsl_pwrscale_update(device);
kgsl_start_idle_timer(device);
}
trace_kgsl_active_count(device,
(unsigned long) __builtin_return_address(0));
wake_up(&device->active_cnt_wq);
}
int adreno_active_count_get(struct adreno_device *adreno_dev)
{
const struct adreno_power_ops *ops = ADRENO_POWER_OPS(adreno_dev);
return ops->active_count_get(adreno_dev);
}
void adreno_active_count_put(struct adreno_device *adreno_dev)
{
const struct adreno_power_ops *ops = ADRENO_POWER_OPS(adreno_dev);
ops->active_count_put(adreno_dev);
}
void adreno_get_bus_counters(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int ret = 0;
if (!device->pwrctrl.bus_control)
return;
/* VBIF waiting for RAM */
ret |= adreno_perfcounter_kernel_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF_PWR, 0,
&adreno_dev->starved_ram_lo, NULL);
/* Target has GBIF */
if (adreno_is_gen8(adreno_dev) || adreno_is_gen7(adreno_dev) ||
(adreno_is_a6xx(adreno_dev) && !adreno_is_a630(adreno_dev))) {
ret |= adreno_perfcounter_kernel_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF_PWR, 1,
&adreno_dev->starved_ram_lo_ch1, NULL);
ret |= adreno_perfcounter_kernel_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
GBIF_AXI0_READ_DATA_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo, NULL);
ret |= adreno_perfcounter_kernel_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
GBIF_AXI1_READ_DATA_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo_ch1_read, NULL);
ret |= adreno_perfcounter_kernel_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
GBIF_AXI0_WRITE_DATA_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo_ch0_write, NULL);
ret |= adreno_perfcounter_kernel_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
GBIF_AXI1_WRITE_DATA_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo_ch1_write, NULL);
} else {
/* VBIF DDR cycles */
ret |= adreno_perfcounter_kernel_get(adreno_dev,
KGSL_PERFCOUNTER_GROUP_VBIF,
VBIF_AXI_TOTAL_BEATS,
&adreno_dev->ram_cycles_lo, NULL);
}
if (ret)
dev_err(KGSL_DEVICE(adreno_dev)->dev,
"Unable to get perf counters for bus DCVS\n");
}
#define ADRENO_AHB_MIN_TIMEOUT_VAL_USEC 1000
u32 adreno_get_ahb_timeout_val(struct adreno_device *adreno_dev, u32 noc_timeout_us)
{
u64 cycles, hub_clk_freq = adreno_dev->gmu_hub_clk_freq;
u32 timeout_val;
if (!noc_timeout_us)
return 0;
do_div(hub_clk_freq, HZ_PER_MHZ);
cycles = hub_clk_freq * noc_timeout_us;
/*
* Get max possible AHB timeout value which is less than the GPU NOC timeout value.
* When cycles are exact power of two, the calculated AHB timeout value will be same
* as GPU config NOC timeout. Just reduce one cycle to make sure we do not program AHB
* timeout same as GPU config NOC timeout.
*/
if (is_power_of_2(cycles))
cycles -= 1;
timeout_val = ilog2(cycles);
/*
* Make sure, AHB timeout value fits into bit fields and it is not too low
* which can cause false timeouts.
*/
if ((timeout_val > GENMASK(4, 0)) ||
((ADRENO_AHB_MIN_TIMEOUT_VAL_USEC * hub_clk_freq) > (1 << timeout_val))) {
dev_warn(adreno_dev->dev.dev, "Invalid AHB timeout_val %u\n", timeout_val);
return 0;
}
/*
* Return (timeout_val - 1). Based on timeout_val programmed, a timeout will occur if
* an AHB transaction is not completed in 2 ^ (timeout_val + 1) cycles.
*/
return (timeout_val - 1);
}
/**
* _adreno_start - Power up the GPU and prepare to accept commands
* @adreno_dev: Pointer to an adreno_device structure
*
* The core function that powers up and initalizes the GPU. This function is
* called at init and after coming out of SLUMBER
*/
static int _adreno_start(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int status;
unsigned int state = device->state;
bool regulator_left_on;
/* make sure ADRENO_DEVICE_STARTED is not set here */
WARN_ON(test_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv));
regulator_left_on = regulators_left_on(device);
/* Clear any GPU faults that might have been left over */
adreno_clear_gpu_fault(adreno_dev);
/* Put the GPU in a responsive state */
status = kgsl_pwrctrl_change_state(device, KGSL_STATE_AWARE);
if (status)
goto error_pwr_off;
/* Set any stale active contexts to NULL */
adreno_set_active_ctxs_null(adreno_dev);
/* Set the bit to indicate that we've just powered on */
set_bit(ADRENO_DEVICE_PWRON, &adreno_dev->priv);
/* Clear the busy_data stats - we're starting over from scratch */
memset(&adreno_dev->busy_data, 0, sizeof(adreno_dev->busy_data));
/* Soft reset the GPU if a regulator is stuck on*/
if (regulator_left_on)
_soft_reset(adreno_dev);
/* Start the GPU */
status = gpudev->start(adreno_dev);
if (status)
goto error_pwr_off;
/* Re-initialize the coresight registers if applicable */
adreno_coresight_start(adreno_dev);
adreno_irqctrl(adreno_dev, 1);
adreno_perfcounter_start(adreno_dev);
/* Clear FSR here in case it is set from a previous pagefault */
kgsl_mmu_clear_fsr(&device->mmu);
status = gpudev->rb_start(adreno_dev);
if (status)
goto error_pwr_off;
/*
* At this point it is safe to assume that we recovered. Setting
* this field allows us to take a new snapshot for the next failure
* if we are prioritizing the first unrecoverable snapshot.
*/
if (device->snapshot)
device->snapshot->recovered = true;
/* Start the dispatcher */
adreno_dispatcher_start(device);
device->reset_counter++;
set_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
/*
* There is a possible deadlock scenario during kgsl firmware reading
* (request_firmware) and devfreq update calls. During first boot, kgsl
* device mutex is held and then request_firmware is called for reading
* firmware. request_firmware internally takes dev_pm_qos_mtx lock.
* Whereas in case of devfreq update calls triggered by thermal/bcl or
* devfreq sysfs, it first takes the same dev_pm_qos_mtx lock and then
* tries to take kgsl device mutex as part of get_dev_status/target
* calls. This results in deadlock when both thread are unable to acquire
* the mutex held by other thread. Enable devfreq updates now as we are
* done reading all firmware files.
*/
device->pwrscale.devfreq_enabled = true;
return 0;
error_pwr_off:
/* set the state back to original state */
kgsl_pwrctrl_change_state(device, state);
return status;
}
/**
* adreno_start() - Power up and initialize the GPU
* @device: Pointer to the KGSL device to power up
* @priority: Boolean flag to specify of the start should be scheduled in a low
* latency work queue
*
* Power up the GPU and initialize it. If priority is specified then elevate
* the thread priority for the duration of the start operation
*/
int adreno_start(struct kgsl_device *device, int priority)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
int nice = task_nice(current);
int ret;
if (priority && (adreno_wake_nice < nice))
set_user_nice(current, adreno_wake_nice);
ret = _adreno_start(adreno_dev);
if (priority)
set_user_nice(current, nice);
return ret;
}
static int adreno_stop(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int error = 0;
if (!test_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv))
return 0;
kgsl_pwrscale_update_stats(device);
adreno_irqctrl(adreno_dev, 0);
/* Save active coresight registers if applicable */
adreno_coresight_stop(adreno_dev);
/* Save physical performance counter values before GPU power down*/
adreno_perfcounter_save(adreno_dev);
if (gpudev->clear_pending_transactions)
gpudev->clear_pending_transactions(adreno_dev);
adreno_dispatcher_stop(adreno_dev);
adreno_ringbuffer_stop(adreno_dev);
adreno_llcc_slice_deactivate(adreno_dev);
adreno_set_active_ctxs_null(adreno_dev);
clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
return error;
}
/**
* adreno_reset() - Helper function to reset the GPU
* @device: Pointer to the KGSL device structure for the GPU
* @fault: Type of fault. Needed to skip soft reset for MMU fault
*
* Try to reset the GPU to recover from a fault. First, try to do a low latency
* soft reset. If the soft reset fails for some reason, then bring out the big
* guns and toggle the footswitch.
*/
int adreno_reset(struct kgsl_device *device, int fault)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int ret = -EINVAL;
int i;
if (gpudev->reset)
return gpudev->reset(adreno_dev);
/*
* Try soft reset first Do not do soft reset for a IOMMU fault (because
* the IOMMU hardware needs a reset too)
*/
if (!(fault & ADRENO_IOMMU_PAGE_FAULT))
ret = adreno_soft_reset(device);
if (ret) {
/* If soft reset failed/skipped, then pull the power */
kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT);
/* since device is officially off now clear start bit */
clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
/* Try to reset the device */
ret = adreno_start(device, 0);
for (i = 0; ret && i < 4; i++) {
msleep(20);
ret = adreno_start(device, 0);
}
if (ret)
return ret;
if (i != 0)
dev_warn(device->dev,
"Device hard reset tried %d tries\n", i);
}
/*
* If active_cnt is non-zero then the system was active before
* going into a reset - put it back in that state
*/
if (atomic_read(&device->active_cnt))
kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE);
return ret;
}
static int copy_prop(struct kgsl_device_getproperty *param,
void *src, size_t size)
{
if (copy_to_user(param->value, src,
min_t(u32, size, param->sizebytes)))
return -EFAULT;
return 0;
}
static int adreno_prop_device_info(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct kgsl_devinfo devinfo = {
.device_id = device->id + 1,
.chip_id = adreno_dev->chipid,
.mmu_enabled = kgsl_mmu_has_feature(device, KGSL_MMU_PAGED),
.gmem_gpubaseaddr = 0,
.gmem_sizebytes = adreno_dev->gpucore->gmem_size,
};
return copy_prop(param, &devinfo, sizeof(devinfo));
}
static int adreno_prop_gpu_model(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
struct kgsl_gpu_model model = {0};
strscpy(model.gpu_model, adreno_get_gpu_model(device),
sizeof(model.gpu_model));
return copy_prop(param, &model, sizeof(model));
}
static int adreno_prop_device_shadow(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
struct kgsl_shadowprop shadowprop = { 0 };
if (device->memstore->hostptr) {
/* Pass a dummy address to identify memstore */
shadowprop.gpuaddr = KGSL_MEMSTORE_TOKEN_ADDRESS;
shadowprop.size = device->memstore->size;
shadowprop.flags = KGSL_FLAGS_INITIALIZED |
KGSL_FLAGS_PER_CONTEXT_TIMESTAMPS;
}
return copy_prop(param, &shadowprop, sizeof(shadowprop));
}
static int adreno_prop_device_qdss_stm(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
struct kgsl_qdss_stm_prop qdssprop = {0};
if (!IS_ERR_OR_NULL(device->qdss_desc)) {
qdssprop.gpuaddr = device->qdss_desc->gpuaddr;
qdssprop.size = device->qdss_desc->size;
}
return copy_prop(param, &qdssprop, sizeof(qdssprop));
}
static int adreno_prop_device_qtimer(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
struct kgsl_qtimer_prop qtimerprop = {0};
if (!IS_ERR_OR_NULL(device->qtimer_desc)) {
qtimerprop.gpuaddr = device->qtimer_desc->gpuaddr;
qtimerprop.size = device->qtimer_desc->size;
}
return copy_prop(param, &qtimerprop, sizeof(qtimerprop));
}
static int adreno_prop_s32(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
int val = 0;
if (param->type == KGSL_PROP_MMU_ENABLE)
val = kgsl_mmu_has_feature(device, KGSL_MMU_PAGED);
else if (param->type == KGSL_PROP_INTERRUPT_WAITS)
val = 1;
return copy_prop(param, &val, sizeof(val));
}
static int adreno_prop_uche_gmem_addr(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
return copy_prop(param, &adreno_dev->uche_gmem_base,
sizeof(adreno_dev->uche_gmem_base));
}
static int adreno_prop_ucode_version(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct kgsl_ucode_version ucode = {
.pfp = adreno_dev->fw[ADRENO_FW_PFP].version,
.pm4 = adreno_dev->fw[ADRENO_FW_PM4].version,
};
return copy_prop(param, &ucode, sizeof(ucode));
}
static int adreno_prop_gaming_bin(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
void *buf;
size_t len;
int ret;
struct nvmem_cell *cell;
cell = nvmem_cell_get(&device->pdev->dev, "gaming_bin");
if (IS_ERR(cell))
return -EINVAL;
buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (!IS_ERR(buf)) {
ret = copy_prop(param, buf, len);
kfree(buf);
return ret;
}
dev_err(device->dev, "failed to read gaming_bin nvmem cell\n");
return -EINVAL;
}
static int adreno_prop_u32(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
u32 val = 0;
if (param->type == KGSL_PROP_HIGHEST_BANK_BIT) {
val = adreno_dev->highest_bank_bit;
} else if (param->type == KGSL_PROP_MIN_ACCESS_LENGTH)
of_property_read_u32(device->pdev->dev.of_node,
"qcom,min-access-length", &val);
else if (param->type == KGSL_PROP_UBWC_MODE)
of_property_read_u32(device->pdev->dev.of_node,
"qcom,ubwc-mode", &val);
else if (param->type == KGSL_PROP_DEVICE_BITNESS)
val = adreno_support_64bit(adreno_dev) ? 48 : 32;
else if (param->type == KGSL_PROP_SPEED_BIN)
val = device->speed_bin;
else if (param->type == KGSL_PROP_VK_DEVICE_ID)
val = adreno_get_vk_device_id(device);
else if (param->type == KGSL_PROP_IS_LPAC_ENABLED)
val = adreno_dev->lpac_enabled ? 1 : 0;
else if (param->type == KGSL_PROP_IS_RAYTRACING_ENABLED)
val = adreno_dev->raytracing_enabled ? 1 : 0;
else if (param->type == KGSL_PROP_IS_FASTBLEND_ENABLED)
val = adreno_dev->fastblend_enabled ? 1 : 0;
else if (param->type == KGSL_PROP_IS_AQE_ENABLED)
val = ADRENO_FEATURE(adreno_dev, ADRENO_AQE) ? 1 : 0;
return copy_prop(param, &val, sizeof(val));
}
static int adreno_prop_uche_trap_base(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
u64 val = 0;
if (!gpudev->get_uche_trap_base)
return -EINVAL;
val = gpudev->get_uche_trap_base();
return copy_prop(param, &val, sizeof(val));
}
static const struct {
int type;
int (*func)(struct kgsl_device *device,
struct kgsl_device_getproperty *param);
} adreno_property_funcs[] = {
{ KGSL_PROP_DEVICE_INFO, adreno_prop_device_info },
{ KGSL_PROP_DEVICE_SHADOW, adreno_prop_device_shadow },
{ KGSL_PROP_DEVICE_QDSS_STM, adreno_prop_device_qdss_stm },
{ KGSL_PROP_DEVICE_QTIMER, adreno_prop_device_qtimer },
{ KGSL_PROP_MMU_ENABLE, adreno_prop_s32 },
{ KGSL_PROP_INTERRUPT_WAITS, adreno_prop_s32 },
{ KGSL_PROP_UCHE_GMEM_VADDR, adreno_prop_uche_gmem_addr },
{ KGSL_PROP_UCODE_VERSION, adreno_prop_ucode_version },
{ KGSL_PROP_HIGHEST_BANK_BIT, adreno_prop_u32 },
{ KGSL_PROP_MIN_ACCESS_LENGTH, adreno_prop_u32 },
{ KGSL_PROP_UBWC_MODE, adreno_prop_u32 },
{ KGSL_PROP_DEVICE_BITNESS, adreno_prop_u32 },
{ KGSL_PROP_SPEED_BIN, adreno_prop_u32 },
{ KGSL_PROP_GAMING_BIN, adreno_prop_gaming_bin },
{ KGSL_PROP_GPU_MODEL, adreno_prop_gpu_model},
{ KGSL_PROP_VK_DEVICE_ID, adreno_prop_u32},
{ KGSL_PROP_IS_LPAC_ENABLED, adreno_prop_u32 },
{ KGSL_PROP_IS_RAYTRACING_ENABLED, adreno_prop_u32},
{ KGSL_PROP_IS_FASTBLEND_ENABLED, adreno_prop_u32},
{ KGSL_PROP_UCHE_TRAP_BASE, adreno_prop_uche_trap_base },
{ KGSL_PROP_IS_AQE_ENABLED, adreno_prop_u32 },
};
static int adreno_getproperty(struct kgsl_device *device,
struct kgsl_device_getproperty *param)
{
int i;
for (i = 0; i < ARRAY_SIZE(adreno_property_funcs); i++) {
if (param->type == adreno_property_funcs[i].type)
return adreno_property_funcs[i].func(device, param);
}
return -ENODEV;
}
static int adreno_query_property_list(struct kgsl_device *device, u32 *list,
u32 count)
{
int i;
if (!list)
return ARRAY_SIZE(adreno_property_funcs);
for (i = 0; i < count && i < ARRAY_SIZE(adreno_property_funcs); i++)
list[i] = adreno_property_funcs[i].type;
return i;
}
int adreno_set_constraint(struct kgsl_device *device,
struct kgsl_context *context,
struct kgsl_device_constraint *constraint)
{
int status = 0;
switch (constraint->type) {
case KGSL_CONSTRAINT_PWRLEVEL: {
struct kgsl_device_constraint_pwrlevel pwr;
if (constraint->size != sizeof(pwr)) {
status = -EINVAL;
break;
}
if (copy_from_user(&pwr,
(void __user *)constraint->data,
sizeof(pwr))) {
status = -EFAULT;
break;
}
if (pwr.level >= KGSL_CONSTRAINT_PWR_MAXLEVELS) {
status = -EINVAL;
break;
}
context->pwr_constraint.type =
KGSL_CONSTRAINT_PWRLEVEL;
context->pwr_constraint.sub_type = pwr.level;
trace_kgsl_user_pwrlevel_constraint(device,
context->id,
context->pwr_constraint.type,
context->pwr_constraint.sub_type);
}
break;
case KGSL_CONSTRAINT_NONE:
if (context->pwr_constraint.type == KGSL_CONSTRAINT_PWRLEVEL)
trace_kgsl_user_pwrlevel_constraint(device,
context->id,
KGSL_CONSTRAINT_NONE,
context->pwr_constraint.sub_type);
context->pwr_constraint.type = KGSL_CONSTRAINT_NONE;
break;
case KGSL_CONSTRAINT_L3_PWRLEVEL: {
struct kgsl_device_constraint_pwrlevel pwr;
if (constraint->size != sizeof(pwr)) {
status = -EINVAL;
break;
}
if (copy_from_user(&pwr, constraint->data, sizeof(pwr))) {
status = -EFAULT;
break;
}
status = register_l3_voter(device);
if (status)
break;
if (pwr.level >= KGSL_CONSTRAINT_PWR_MAXLEVELS)
pwr.level = KGSL_CONSTRAINT_PWR_MAXLEVELS - 1;
context->l3_pwr_constraint.type = KGSL_CONSTRAINT_L3_PWRLEVEL;
context->l3_pwr_constraint.sub_type = pwr.level;
trace_kgsl_user_pwrlevel_constraint(device, context->id,
context->l3_pwr_constraint.type,
context->l3_pwr_constraint.sub_type);
}
break;
case KGSL_CONSTRAINT_L3_NONE: {
unsigned int type = context->l3_pwr_constraint.type;
if (type == KGSL_CONSTRAINT_L3_PWRLEVEL)
trace_kgsl_user_pwrlevel_constraint(device, context->id,
KGSL_CONSTRAINT_L3_NONE,
context->l3_pwr_constraint.sub_type);
context->l3_pwr_constraint.type = KGSL_CONSTRAINT_L3_NONE;
}
break;
default:
status = -EINVAL;
break;
}
/* If a new constraint has been set for a context, cancel the old one */
if ((status == 0) &&
(context->id == device->pwrctrl.constraint.owner_id)) {
trace_kgsl_constraint(device, device->pwrctrl.constraint.type,
device->pwrctrl.active_pwrlevel, 0);
device->pwrctrl.constraint.type = KGSL_CONSTRAINT_NONE;
}
return status;
}
static int adreno_setproperty(struct kgsl_device_private *dev_priv,
unsigned int type,
void __user *value,
unsigned int sizebytes)
{
int status = -EINVAL;
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
switch (type) {
case KGSL_PROP_PWR_CONSTRAINT:
case KGSL_PROP_L3_PWR_CONSTRAINT: {
struct kgsl_device_constraint constraint;
struct kgsl_context *context;
if (sizebytes != sizeof(constraint))
break;
if (copy_from_user(&constraint, value,
sizeof(constraint))) {
status = -EFAULT;
break;
}
context = kgsl_context_get_owner(dev_priv,
constraint.context_id);
if (context == NULL)
break;
status = adreno_set_constraint(device, context,
&constraint);
kgsl_context_put(context);
}
break;
default:
status = gpudev->setproperty(dev_priv, type, value, sizebytes);
break;
}
return status;
}
/*
* adreno_soft_reset - Do a soft reset of the GPU hardware
* @device: KGSL device to soft reset
*
* "soft reset" the GPU hardware - this is a fast path GPU reset
* The GPU hardware is reset but we never pull power so we can skip
* a lot of the standard adreno_stop/adreno_start sequence
*/
static int adreno_soft_reset(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
int ret;
/*
* Don't allow a soft reset for a304 because the SMMU needs to be hard
* reset
*/
if (adreno_is_a304(adreno_dev))
return -ENODEV;
if (gpudev->clear_pending_transactions) {
ret = gpudev->clear_pending_transactions(adreno_dev);
if (ret)
return ret;
}
kgsl_pwrctrl_change_state(device, KGSL_STATE_AWARE);
adreno_set_active_ctxs_null(adreno_dev);
adreno_irqctrl(adreno_dev, 0);
adreno_clear_gpu_fault(adreno_dev);
/* since device is oficially off now clear start bit */
clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
/* save physical performance counter values before GPU soft reset */
adreno_perfcounter_save(adreno_dev);
_soft_reset(adreno_dev);
/* Clear the busy_data stats - we're starting over from scratch */
adreno_dev->busy_data.gpu_busy = 0;
adreno_dev->busy_data.bif_ram_cycles = 0;
adreno_dev->busy_data.bif_ram_cycles_read_ch1 = 0;
adreno_dev->busy_data.bif_ram_cycles_write_ch0 = 0;
adreno_dev->busy_data.bif_ram_cycles_write_ch1 = 0;
adreno_dev->busy_data.bif_starved_ram = 0;
adreno_dev->busy_data.bif_starved_ram_ch1 = 0;
/* Reinitialize the GPU */
gpudev->start(adreno_dev);
/* Re-initialize the coresight registers if applicable */
adreno_coresight_start(adreno_dev);
/* Enable IRQ */
adreno_irqctrl(adreno_dev, 1);
/* stop all ringbuffers to cancel RB events */
adreno_ringbuffer_stop(adreno_dev);
/* Start the ringbuffer(s) again */
ret = gpudev->rb_start(adreno_dev);
if (ret == 0) {
device->reset_counter++;
set_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv);
}
/* Restore physical performance counter values after soft reset */
adreno_perfcounter_restore(adreno_dev);
if (ret)
dev_err(device->dev, "Device soft reset failed: %d\n", ret);
return ret;
}
bool adreno_isidle(struct adreno_device *adreno_dev)
{
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
struct adreno_ringbuffer *rb;
int i;
if (!kgsl_state_is_awake(KGSL_DEVICE(adreno_dev)))
return true;
/*
* wptr is updated when we add commands to ringbuffer, add a barrier
* to make sure updated wptr is compared to rptr
*/
smp_mb();
/*
* ringbuffer is truly idle when all ringbuffers read and write
* pointers are equal
*/
FOR_EACH_RINGBUFFER(adreno_dev, rb, i) {
if (!adreno_rb_empty(rb))
return false;
}
return gpudev->hw_isidle(adreno_dev);
}
/**
* adreno_spin_idle() - Spin wait for the GPU to idle
* @adreno_dev: Pointer to an adreno device
* @timeout: milliseconds to wait before returning error
*
* Spin the CPU waiting for the RBBM status to return idle
*/
int adreno_spin_idle(struct adreno_device *adreno_dev, unsigned int timeout)
{
unsigned long wait = jiffies + msecs_to_jiffies(timeout);
do {
/*
* If we fault, stop waiting and return an error. The dispatcher
* will clean up the fault from the work queue, but we need to
* make sure we don't block it by waiting for an idle that
* will never come.
*/
if (adreno_gpu_fault(adreno_dev) != 0)
return -EDEADLK;
if (adreno_isidle(adreno_dev))
return 0;
} while (time_before(jiffies, wait));
/*
* Under rare conditions, preemption can cause the while loop to exit
* without checking if the gpu is idle. check one last time before we
* return failure.
*/
if (adreno_gpu_fault(adreno_dev) != 0)
return -EDEADLK;
if (adreno_isidle(adreno_dev))
return 0;
return -ETIMEDOUT;
}
/**
* adreno_idle() - wait for the GPU hardware to go idle
* @device: Pointer to the KGSL device structure for the GPU
*
* Wait up to ADRENO_IDLE_TIMEOUT milliseconds for the GPU hardware to go quiet.
* Caller must hold the device mutex, and must not hold the dispatcher mutex.
*/
int adreno_idle(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
int ret;
/*
* Make sure the device mutex is held so the dispatcher can't send any
* more commands to the hardware
*/
if (WARN_ON(!mutex_is_locked(&device->mutex)))
return -EDEADLK;
/* Check if we are already idle before idling dispatcher */
if (adreno_isidle(adreno_dev))
return 0;
/*
* Wait for dispatcher to finish completing commands
* already submitted
*/
ret = adreno_dispatcher_idle(adreno_dev);
if (ret)
return ret;
return adreno_spin_idle(adreno_dev, ADRENO_IDLE_TIMEOUT);
}
static int adreno_drain_and_idle(struct kgsl_device *device)
{
int ret;
reinit_completion(&device->halt_gate);
ret = kgsl_active_count_wait(device, 0, HZ);
if (ret)
return ret;
return adreno_idle(device);
}
/* Caller must hold the device mutex. */
int adreno_suspend_context(struct kgsl_device *device)
{
/* process any profiling results that are available */
adreno_profile_process_results(ADRENO_DEVICE(device));
/* Wait for the device to go idle */
return adreno_idle(device);
}
void adreno_cx_misc_regread(struct adreno_device *adreno_dev,
unsigned int offsetwords, unsigned int *value)
{
unsigned int cx_misc_offset;
WARN_ONCE(!adreno_dev->cx_misc_virt,
"cx_misc region is not defined in device tree");
cx_misc_offset = (offsetwords << 2);
if (!adreno_dev->cx_misc_virt ||
(cx_misc_offset >= adreno_dev->cx_misc_len))
return;
*value = __raw_readl(adreno_dev->cx_misc_virt + cx_misc_offset);
/*
* ensure this read finishes before the next one.
* i.e. act like normal readl()
*/
rmb();
}
void adreno_isense_regread(struct adreno_device *adreno_dev,
unsigned int offsetwords, unsigned int *value)
{
unsigned int isense_offset;
isense_offset = (offsetwords << 2);
if (!adreno_dev->isense_virt ||
(isense_offset >= adreno_dev->isense_len))
return;
*value = __raw_readl(adreno_dev->isense_virt + isense_offset);
/*
* ensure this read finishes before the next one.
* i.e. act like normal readl()
*/
rmb();
}
bool adreno_gx_is_on(struct adreno_device *adreno_dev)
{
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
return gpudev->gx_is_on(adreno_dev);
}
void adreno_cx_misc_regwrite(struct adreno_device *adreno_dev,
unsigned int offsetwords, unsigned int value)
{
unsigned int cx_misc_offset;
WARN_ONCE(!adreno_dev->cx_misc_virt,
"cx_misc region is not defined in device tree");
cx_misc_offset = (offsetwords << 2);
if (!adreno_dev->cx_misc_virt ||
(cx_misc_offset >= adreno_dev->cx_misc_len))
return;
/*
* ensure previous writes post before this one,
* i.e. act like normal writel()
*/
wmb();
__raw_writel(value, adreno_dev->cx_misc_virt + cx_misc_offset);
}
void adreno_cx_misc_regrmw(struct adreno_device *adreno_dev,
unsigned int offsetwords,
unsigned int mask, unsigned int bits)
{
unsigned int val = 0;
adreno_cx_misc_regread(adreno_dev, offsetwords, &val);
val &= ~mask;
adreno_cx_misc_regwrite(adreno_dev, offsetwords, val | bits);
}
void adreno_profile_submit_time(struct adreno_submit_time *time)
{
struct kgsl_drawobj *drawobj;
struct kgsl_drawobj_cmd *cmdobj;
struct kgsl_mem_entry *entry;
struct kgsl_drawobj_profiling_buffer *profile_buffer;
if (!time)
return;
drawobj = time->drawobj;
if (drawobj == NULL)
return;
cmdobj = CMDOBJ(drawobj);
entry = cmdobj->profiling_buf_entry;
if (!entry)
return;
profile_buffer = kgsl_gpuaddr_to_vaddr(&entry->memdesc,
cmdobj->profiling_buffer_gpuaddr);
if (profile_buffer == NULL)
return;
/* Return kernel clock time to the client if requested */
if (drawobj->flags & KGSL_DRAWOBJ_PROFILING_KTIME) {
u64 secs = time->ktime;
profile_buffer->wall_clock_ns =
do_div(secs, NSEC_PER_SEC);
profile_buffer->wall_clock_s = secs;
} else {
profile_buffer->wall_clock_s = time->utime.tv_sec;
profile_buffer->wall_clock_ns = time->utime.tv_nsec;
}
profile_buffer->gpu_ticks_queued = time->ticks;
kgsl_memdesc_unmap(&entry->memdesc);
}
/**
* adreno_waittimestamp - sleep while waiting for the specified timestamp
* @device - pointer to a KGSL device structure
* @context - pointer to the active kgsl context
* @timestamp - GPU timestamp to wait for
* @msecs - amount of time to wait (in milliseconds)
*
* Wait up to 'msecs' milliseconds for the specified timestamp to expire.
*/
static int adreno_waittimestamp(struct kgsl_device *device,
struct kgsl_context *context,
unsigned int timestamp,
unsigned int msecs)
{
int ret;
if (context == NULL) {
/* If they are doing then complain once */
dev_WARN_ONCE(device->dev, 1,
"IOCTL_KGSL_DEVICE_WAITTIMESTAMP is deprecated\n");
return -ENOTTY;
}
/* Return -ENOENT if the context has been detached */
if (kgsl_context_detached(context))
return -ENOENT;
ret = adreno_drawctxt_wait(ADRENO_DEVICE(device), context,
timestamp, msecs);
/* If the context got invalidated then return a specific error */
if (kgsl_context_invalid(context))
ret = -EDEADLK;
/*
* Return -EPROTO if the device has faulted since the last time we
* checked. Userspace uses this as a marker for performing post
* fault activities
*/
if (!ret && test_and_clear_bit(ADRENO_CONTEXT_FAULT, &context->priv))
ret = -EPROTO;
return ret;
}
/**
* __adreno_readtimestamp() - Reads the timestamp from memstore memory
* @adreno_dev: Pointer to an adreno device
* @index: Index into the memstore memory
* @type: Type of timestamp to read
* @timestamp: The out parameter where the timestamp is read
*/
static int __adreno_readtimestamp(struct adreno_device *adreno_dev, int index,
int type, unsigned int *timestamp)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
int status = 0;
switch (type) {
case KGSL_TIMESTAMP_CONSUMED:
kgsl_sharedmem_readl(device->memstore, timestamp,
KGSL_MEMSTORE_OFFSET(index, soptimestamp));
break;
case KGSL_TIMESTAMP_RETIRED:
kgsl_sharedmem_readl(device->memstore, timestamp,
KGSL_MEMSTORE_OFFSET(index, eoptimestamp));
break;
default:
status = -EINVAL;
*timestamp = 0;
break;
}
return status;
}
/**
* adreno_rb_readtimestamp(): Return the value of given type of timestamp
* for a RB
* @adreno_dev: adreno device whose timestamp values are being queried
* @priv: The object being queried for a timestamp (expected to be a rb pointer)
* @type: The type of timestamp (one of 3) to be read
* @timestamp: Pointer to where the read timestamp is to be written to
*
* CONSUMED and RETIRED type timestamps are sorted by id and are constantly
* updated by the GPU through shared memstore memory. QUEUED type timestamps
* are read directly from context struct.
* The function returns 0 on success and timestamp value at the *timestamp
* address and returns -EINVAL on any read error/invalid type and timestamp = 0.
*/
int adreno_rb_readtimestamp(struct adreno_device *adreno_dev,
void *priv, enum kgsl_timestamp_type type,
unsigned int *timestamp)
{
int status = 0;
struct adreno_ringbuffer *rb = priv;
if (type == KGSL_TIMESTAMP_QUEUED)
*timestamp = rb->timestamp;
else
status = __adreno_readtimestamp(adreno_dev,
rb->id + KGSL_MEMSTORE_MAX,
type, timestamp);
return status;
}
/**
* adreno_readtimestamp(): Return the value of given type of timestamp
* @device: GPU device whose timestamp values are being queried
* @priv: The object being queried for a timestamp (expected to be a context)
* @type: The type of timestamp (one of 3) to be read
* @timestamp: Pointer to where the read timestamp is to be written to
*
* CONSUMED and RETIRED type timestamps are sorted by id and are constantly
* updated by the GPU through shared memstore memory. QUEUED type timestamps
* are read directly from context struct.
* The function returns 0 on success and timestamp value at the *timestamp
* address and returns -EINVAL on any read error/invalid type and timestamp = 0.
*/
static int adreno_readtimestamp(struct kgsl_device *device,
void *priv, enum kgsl_timestamp_type type,
unsigned int *timestamp)
{
int status = 0;
struct kgsl_context *context = priv;
if (type == KGSL_TIMESTAMP_QUEUED) {
struct adreno_context *ctxt = ADRENO_CONTEXT(context);
*timestamp = ctxt->timestamp;
} else
status = __adreno_readtimestamp(ADRENO_DEVICE(device),
context->id, type, timestamp);
return status;
}
/**
* adreno_device_private_create(): Allocate an adreno_device_private structure
*/
static struct kgsl_device_private *adreno_device_private_create(void)
{
struct adreno_device_private *adreno_priv =
kzalloc(sizeof(*adreno_priv), GFP_KERNEL);
if (adreno_priv) {
INIT_LIST_HEAD(&adreno_priv->perfcounter_list);
return &adreno_priv->dev_priv;
}
return NULL;
}
/**
* adreno_device_private_destroy(): Destroy an adreno_device_private structure
* and release the perfcounters held by the kgsl fd.
* @dev_priv: The kgsl device private structure
*/
static void adreno_device_private_destroy(struct kgsl_device_private *dev_priv)
{
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_device_private *adreno_priv =
container_of(dev_priv, struct adreno_device_private,
dev_priv);
struct adreno_perfcounter_list_node *p, *tmp;
mutex_lock(&device->mutex);
list_for_each_entry_safe(p, tmp, &adreno_priv->perfcounter_list, node) {
adreno_perfcounter_put(adreno_dev, p->groupid,
p->countable, PERFCOUNTER_FLAG_NONE);
list_del(&p->node);
kfree(p);
}
mutex_unlock(&device->mutex);
kfree(adreno_priv);
}
/**
* adreno_power_stats() - Reads the counters needed for freq decisions
* @device: Pointer to device whose counters are read
* @stats: Pointer to stats set that needs updating
* Power: The caller is expected to be in a clock enabled state as this
* function does reg reads
*/
static void adreno_power_stats(struct kgsl_device *device,
struct kgsl_power_stats *stats)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
return gpudev->power_stats(adreno_dev, stats);
}
static int adreno_regulator_enable(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->regulator_enable)
return gpudev->regulator_enable(adreno_dev);
return 0;
}
static bool adreno_is_hw_collapsible(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (!gpudev->is_hw_collapsible(adreno_dev))
return false;
if (gpudev->clear_pending_transactions(adreno_dev))
return false;
adreno_dispatcher_stop_fault_timer(device);
return true;
}
static void adreno_regulator_disable(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->regulator_disable)
gpudev->regulator_disable(adreno_dev);
}
static void adreno_pwrlevel_change_settings(struct kgsl_device *device,
unsigned int prelevel, unsigned int postlevel, bool post)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->pwrlevel_change_settings)
gpudev->pwrlevel_change_settings(adreno_dev, prelevel,
postlevel, post);
}
static bool adreno_is_hwcg_on(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
return adreno_dev->hwcg_enabled;
}
static int adreno_queue_cmds(struct kgsl_device_private *dev_priv,
struct kgsl_context *context, struct kgsl_drawobj *drawobj[],
u32 count, u32 *timestamp)
{
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
if (WARN_ON(!adreno_dev->dispatch_ops || !adreno_dev->dispatch_ops->queue_cmds))
return -ENODEV;
return adreno_dev->dispatch_ops->queue_cmds(dev_priv, context, drawobj,
count, timestamp);
}
static inline bool _verify_ib(struct kgsl_device_private *dev_priv,
struct kgsl_context *context, struct kgsl_memobj_node *ib)
{
struct kgsl_device *device = dev_priv->device;
struct kgsl_process_private *private = dev_priv->process_priv;
/* The maximum allowable size for an IB in the CP is 0xFFFFF dwords */
if (ib->size == 0 || ((ib->size >> 2) > 0xFFFFF)) {
pr_context(device, context, "ctxt %u invalid ib size %lld\n",
context->id, ib->size);
return false;
}
/* Make sure that the address is in range and dword aligned */
if (!kgsl_mmu_gpuaddr_in_range(private->pagetable, ib->gpuaddr,
ib->size) || !IS_ALIGNED(ib->gpuaddr, 4)) {
pr_context(device, context, "ctxt %u invalid ib gpuaddr %llX\n",
context->id, ib->gpuaddr);
return false;
}
return true;
}
int adreno_verify_cmdobj(struct kgsl_device_private *dev_priv,
struct kgsl_context *context, struct kgsl_drawobj *drawobj[],
uint32_t count)
{
struct kgsl_device *device = dev_priv->device;
struct kgsl_memobj_node *ib;
unsigned int i;
for (i = 0; i < count; i++) {
/* Verify the IBs before they get queued */
if (drawobj[i]->type == CMDOBJ_TYPE) {
struct kgsl_drawobj_cmd *cmdobj = CMDOBJ(drawobj[i]);
list_for_each_entry(ib, &cmdobj->cmdlist, node)
if (!_verify_ib(dev_priv,
&ADRENO_CONTEXT(context)->base, ib))
return -EINVAL;
/*
* Clear the wake on touch bit to indicate an IB has
* been submitted since the last time we set it.
* But only clear it when we have rendering commands.
*/
device->pwrctrl.wake_on_touch = false;
}
/* A3XX does not have support for drawobj profiling */
if (adreno_is_a3xx(ADRENO_DEVICE(device)) &&
(drawobj[i]->flags & KGSL_DRAWOBJ_PROFILING))
return -EOPNOTSUPP;
}
return 0;
}
static int adreno_queue_recurring_cmd(struct kgsl_device_private *dev_priv,
struct kgsl_context *context, struct kgsl_drawobj *drawobj)
{
struct kgsl_device *device = dev_priv->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_hwsched *hwsched = &adreno_dev->hwsched;
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
struct kgsl_drawobj_cmd *cmdobj = CMDOBJ(drawobj);
int ret;
if (!ADRENO_FEATURE(adreno_dev, ADRENO_LSR))
return -EOPNOTSUPP;
if (!gpudev->send_recurring_cmdobj)
return -ENODEV;
ret = adreno_verify_cmdobj(dev_priv, context, &drawobj, 1);
if (ret)
return ret;
mutex_lock(&device->mutex);
/* Only one recurring command allowed */
if (hwsched->recurring_cmdobj) {
mutex_unlock(&device->mutex);
return -EINVAL;
}
ret = kgsl_check_context_state(context);
if (ret) {
mutex_unlock(&device->mutex);
return ret;
}
set_bit(CMDOBJ_RECURRING_START, &cmdobj->priv);
ret = gpudev->send_recurring_cmdobj(adreno_dev, cmdobj);
mutex_unlock(&device->mutex);
if (!ret)
srcu_notifier_call_chain(&device->nh, GPU_GMU_READY, NULL);
return ret;
}
static int adreno_dequeue_recurring_cmd(struct kgsl_device *device,
struct kgsl_context *context)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_hwsched *hwsched = &adreno_dev->hwsched;
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
struct kgsl_drawobj *recurring_drawobj;
int ret;
if (!ADRENO_FEATURE(adreno_dev, ADRENO_LSR))
return -EOPNOTSUPP;
if (!gpudev->send_recurring_cmdobj)
return -ENODEV;
mutex_lock(&device->mutex);
/* We can safely return here as recurring wokload is already untracked */
if (hwsched->recurring_cmdobj == NULL) {
mutex_unlock(&device->mutex);
return -EINVAL;
}
recurring_drawobj = DRAWOBJ(hwsched->recurring_cmdobj);
/* Check if the recurring command is for same context or not*/
if (recurring_drawobj->context != context) {
mutex_unlock(&device->mutex);
return -EINVAL;
}
ret = kgsl_check_context_state(context);
if (ret) {
mutex_unlock(&device->mutex);
return ret;
}
clear_bit(CMDOBJ_RECURRING_START, &hwsched->recurring_cmdobj->priv);
set_bit(CMDOBJ_RECURRING_STOP, &hwsched->recurring_cmdobj->priv);
ret = gpudev->send_recurring_cmdobj(adreno_dev, hwsched->recurring_cmdobj);
mutex_unlock(&device->mutex);
if (!ret)
srcu_notifier_call_chain(&device->nh, GPU_GMU_STOP, NULL);
return ret;
}
static void adreno_set_isdb_breakpoint_registers(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->set_isdb_breakpoint_registers)
gpudev->set_isdb_breakpoint_registers(adreno_dev);
}
static void adreno_drawctxt_sched(struct kgsl_device *device,
struct kgsl_context *context)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
if (WARN_ON(!adreno_dev->dispatch_ops || !adreno_dev->dispatch_ops->queue_context))
return;
adreno_dev->dispatch_ops->queue_context(adreno_dev,
ADRENO_CONTEXT(context));
}
void adreno_mark_for_coldboot(struct adreno_device *adreno_dev)
{
if (!adreno_dev->warmboot_enabled)
return;
set_bit(ADRENO_DEVICE_FORCE_COLDBOOT, &adreno_dev->priv);
}
bool adreno_smmu_is_stalled(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_mmu *mmu = &device->mmu;
u32 fault, val;
/*
* RBBM_STATUS3:SMMU_STALLED_ON_FAULT (BIT 24) to tells if GPU
* encoutnered a pagefault. Gen8 page fault status checked from
* the software condition as RBBM_STATS3 is not available.
*/
if (ADRENO_GPUREV(adreno_dev) < 0x080000) {
adreno_readreg(adreno_dev, ADRENO_REG_RBBM_STATUS3, &val);
return (val & BIT(24));
}
if (WARN_ON(!adreno_dev->dispatch_ops || !adreno_dev->dispatch_ops->get_fault))
return false;
fault = adreno_dev->dispatch_ops->get_fault(adreno_dev);
return ((fault & ADRENO_IOMMU_PAGE_FAULT) &&
test_bit(KGSL_FT_PAGEFAULT_GPUHALT_ENABLE, &mmu->pfpolicy)) ? true : false;
}
int adreno_power_cycle(struct adreno_device *adreno_dev,
void (*callback)(struct adreno_device *adreno_dev, void *priv),
void *priv)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
const struct adreno_power_ops *ops = ADRENO_POWER_OPS(adreno_dev);
int ret;
mutex_lock(&device->mutex);
ret = ops->pm_suspend(adreno_dev);
if (!ret) {
callback(adreno_dev, priv);
adreno_mark_for_coldboot(adreno_dev);
ops->pm_resume(adreno_dev);
}
mutex_unlock(&device->mutex);
return ret;
}
struct cycle_data {
void *ptr;
void *val;
};
static void cycle_set_bool(struct adreno_device *adreno_dev, void *priv)
{
struct cycle_data *data = priv;
*((bool *) data->ptr) = *((bool *) data->val);
}
int adreno_power_cycle_bool(struct adreno_device *adreno_dev,
bool *flag, bool val)
{
struct cycle_data data = { .ptr = flag, .val = &val };
return adreno_power_cycle(adreno_dev, cycle_set_bool, &data);
}
static void cycle_set_u32(struct adreno_device *adreno_dev, void *priv)
{
struct cycle_data *data = priv;
*((u32 *) data->ptr) = *((u32 *) data->val);
}
int adreno_power_cycle_u32(struct adreno_device *adreno_dev,
u32 *flag, u32 val)
{
struct cycle_data data = { .ptr = flag, .val = &val };
return adreno_power_cycle(adreno_dev, cycle_set_u32, &data);
}
static int adreno_gpu_clock_set(struct kgsl_device *device, u32 pwrlevel)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_power_ops *ops = ADRENO_POWER_OPS(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
struct kgsl_pwrlevel *pl = &pwr->pwrlevels[pwrlevel];
int ret;
if (ops->gpu_clock_set)
return ops->gpu_clock_set(adreno_dev, pwrlevel);
ret = clk_set_rate(pwr->grp_clks[0], pl->gpu_freq);
if (ret)
dev_err(device->dev, "GPU clk freq set failure: %d\n", ret);
return ret;
}
static int adreno_interconnect_bus_set(struct adreno_device *adreno_dev,
int level, u32 ab)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
if ((level == pwr->cur_buslevel) && (ab == pwr->cur_ab))
return 0;
kgsl_icc_set_tag(pwr, level);
pwr->cur_buslevel = level;
pwr->cur_ab = ab;
icc_set_bw(pwr->icc_path, MBps_to_icc(ab),
kBps_to_icc(pwr->ddr_table[level]));
trace_kgsl_buslevel(device, pwr->active_pwrlevel, level, ab);
return 0;
}
static int adreno_gpu_bus_set(struct kgsl_device *device, int level, u32 ab)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_power_ops *ops = ADRENO_POWER_OPS(adreno_dev);
if (ops->gpu_bus_set)
return ops->gpu_bus_set(adreno_dev, level, ab);
return adreno_interconnect_bus_set(adreno_dev, level, ab);
}
static void adreno_deassert_gbif_halt(struct kgsl_device *device)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev);
if (gpudev->deassert_gbif_halt)
gpudev->deassert_gbif_halt(adreno_dev);
}
static void adreno_create_hw_fence(struct kgsl_device *device, struct kgsl_sync_fence *kfence)
{
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
if (WARN_ON(!adreno_dev->dispatch_ops))
return;
if (adreno_dev->dispatch_ops->create_hw_fence)
adreno_dev->dispatch_ops->create_hw_fence(adreno_dev, kfence);
}
u64 adreno_read_cx_timer(struct adreno_device *adreno_dev)
{
/* Check if the CX timer is initialized */
if (!test_bit(ADRENO_DEVICE_CX_TIMER_INITIALIZED, &adreno_dev->priv))
return 0;
/* Since the GPU CX and CPU timers are synchronized return the CPU timer */
return arch_timer_read_counter();
}
static const struct kgsl_functable adreno_functable = {
/* Mandatory functions */
.suspend_context = adreno_suspend_context,
.first_open = adreno_first_open,
.start = adreno_start,
.stop = adreno_stop,
.last_close = adreno_last_close,
.getproperty = adreno_getproperty,
.getproperty_compat = adreno_getproperty_compat,
.waittimestamp = adreno_waittimestamp,
.readtimestamp = adreno_readtimestamp,
.queue_cmds = adreno_queue_cmds,
.ioctl = adreno_ioctl,
.compat_ioctl = adreno_compat_ioctl,
.power_stats = adreno_power_stats,
.snapshot = adreno_snapshot,
.drain_and_idle = adreno_drain_and_idle,
.device_private_create = adreno_device_private_create,
.device_private_destroy = adreno_device_private_destroy,
/* Optional functions */
.drawctxt_create = adreno_drawctxt_create,
.drawctxt_detach = adreno_drawctxt_detach,
.drawctxt_destroy = adreno_drawctxt_destroy,
.drawctxt_dump = adreno_drawctxt_dump,
.setproperty = adreno_setproperty,
.setproperty_compat = adreno_setproperty_compat,
.drawctxt_sched = adreno_drawctxt_sched,
.resume = adreno_dispatcher_start,
.regulator_enable = adreno_regulator_enable,
.is_hw_collapsible = adreno_is_hw_collapsible,
.regulator_disable = adreno_regulator_disable,
.pwrlevel_change_settings = adreno_pwrlevel_change_settings,
.query_property_list = adreno_query_property_list,
.is_hwcg_on = adreno_is_hwcg_on,
.gpu_clock_set = adreno_gpu_clock_set,
.gpu_bus_set = adreno_gpu_bus_set,
.deassert_gbif_halt = adreno_deassert_gbif_halt,
.queue_recurring_cmd = adreno_queue_recurring_cmd,
.dequeue_recurring_cmd = adreno_dequeue_recurring_cmd,
.set_isdb_breakpoint_registers = adreno_set_isdb_breakpoint_registers,
.create_hw_fence = adreno_create_hw_fence,
};
static const struct component_master_ops adreno_ops = {
.bind = adreno_bind,
.unbind = adreno_unbind,
};
const struct adreno_power_ops adreno_power_operations = {
.first_open = adreno_open,
.last_close = adreno_close,
.active_count_get = adreno_pwrctrl_active_count_get,
.active_count_put = adreno_pwrctrl_active_count_put,
.pm_suspend = adreno_suspend,
.pm_resume = adreno_resume,
.touch_wakeup = adreno_touch_wakeup,
};
static int _compare_of(struct device *dev, void *data)
{
return (dev->of_node == data);
}
static void _release_of(struct device *dev, void *data)
{
of_node_put(data);
}
static void adreno_add_components(struct device *dev,
struct component_match **match)
{
struct device_node *node;
/*
* Add kgsl-smmu, context banks and gmu as components, if supported.
* Master bind (adreno_bind) will be called only once all added
* components are available.
*/
for_each_matching_node(node, adreno_component_match) {
if (!of_device_is_available(node))
continue;
component_match_add_release(dev, match, _release_of, _compare_of, node);
}
}
static int adreno_probe(struct platform_device *pdev)
{
struct component_match *match = NULL;
adreno_add_components(&pdev->dev, &match);
if (!match)
return -ENODEV;
return component_master_add_with_match(&pdev->dev,
&adreno_ops, match);
}
static int adreno_remove(struct platform_device *pdev)
{
component_master_del(&pdev->dev, &adreno_ops);
return 0;
}
#if IS_ENABLED(CONFIG_QCOM_KGSL_HIBERNATION)
#if IS_ENABLED(CONFIG_QCOM_SECURE_BUFFER)
/*
* Issue hyp_assign call to assign non-used internal/userspace secure
* buffers to kernel.
*/
static int adreno_secure_pt_hibernate(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_process_private *process;
struct kgsl_mem_entry *entry;
struct kgsl_global_memdesc *md;
struct kgsl_memdesc *memdesc;
int ret, id;
read_lock(&kgsl_driver.proclist_lock);
list_for_each_entry(process, &kgsl_driver.process_list, list) {
idr_for_each_entry(&process->mem_idr, entry, id) {
memdesc = &entry->memdesc;
if (!kgsl_memdesc_is_secured(memdesc) ||
(memdesc->flags & KGSL_MEMFLAGS_USERMEM_ION) ||
(memdesc->priv & KGSL_MEMDESC_HYPASSIGNED_HLOS))
continue;
read_unlock(&kgsl_driver.proclist_lock);
if (kgsl_unlock_sgt(memdesc->sgt))
dev_err(device->dev, "kgsl_unlock_sgt failed\n");
memdesc->priv |= KGSL_MEMDESC_HYPASSIGNED_HLOS;
read_lock(&kgsl_driver.proclist_lock);
}
}
read_unlock(&kgsl_driver.proclist_lock);
list_for_each_entry(md, &device->globals, node) {
memdesc = &md->memdesc;
if (kgsl_memdesc_is_secured(memdesc) &&
!(memdesc->priv & KGSL_MEMDESC_HYPASSIGNED_HLOS)) {
ret = kgsl_unlock_sgt(memdesc->sgt);
if (ret) {
dev_err(device->dev, "kgsl_unlock_sgt failed ret %d\n", ret);
goto fail;
}
memdesc->priv |= KGSL_MEMDESC_HYPASSIGNED_HLOS;
}
}
return 0;
fail:
list_for_each_entry(md, &device->globals, node) {
memdesc = &md->memdesc;
if (kgsl_memdesc_is_secured(memdesc) &&
(memdesc->priv & KGSL_MEMDESC_HYPASSIGNED_HLOS)) {
kgsl_lock_sgt(memdesc->sgt, memdesc->size);
memdesc->priv &= ~KGSL_MEMDESC_HYPASSIGNED_HLOS;
}
}
return -EBUSY;
}
static int adreno_secure_pt_restore(struct adreno_device *adreno_dev)
{
struct kgsl_device *device = KGSL_DEVICE(adreno_dev);
struct kgsl_process_private *process;
struct kgsl_mem_entry *entry;
struct kgsl_memdesc *memdesc;
struct kgsl_global_memdesc *md;
int ret, id;
list_for_each_entry(md, &device->globals, node) {
memdesc = &md->memdesc;
if (kgsl_memdesc_is_secured(memdesc) &&
(memdesc->priv & KGSL_MEMDESC_HYPASSIGNED_HLOS)) {
ret = kgsl_lock_sgt(memdesc->sgt, memdesc->size);
if (ret) {
dev_err(device->dev, "kgsl_lock_sgt failed ret %d\n", ret);
return ret;
}
memdesc->priv &= ~KGSL_MEMDESC_HYPASSIGNED_HLOS;
}
}
read_lock(&kgsl_driver.proclist_lock);
list_for_each_entry(process, &kgsl_driver.process_list, list) {
idr_for_each_entry(&process->mem_idr, entry, id) {
memdesc = &entry->memdesc;
if (!kgsl_memdesc_is_secured(memdesc) ||
(memdesc->flags & KGSL_MEMFLAGS_USERMEM_ION) ||
!(memdesc->priv & KGSL_MEMDESC_HYPASSIGNED_HLOS))
continue;
read_unlock(&kgsl_driver.proclist_lock);
ret = kgsl_lock_sgt(memdesc->sgt, memdesc->size);
if (ret) {
dev_err(device->dev, "kgsl_lock_sgt failed ret %d\n", ret);
return ret;
}
memdesc->priv &= ~KGSL_MEMDESC_HYPASSIGNED_HLOS;
read_lock(&kgsl_driver.proclist_lock);
}
}
read_unlock(&kgsl_driver.proclist_lock);
return 0;
}
#else
static int adreno_secure_pt_hibernate(struct adreno_device *adreno_dev)
{
return 0;
}
static int adreno_secure_pt_restore(struct adreno_device *adreno_dev)
{
return 0;
}
#endif /* IS_ENABLED(CONFIG_QCOM_SECURE_BUFFER) */
static int adreno_hibernation_suspend(struct device *dev)
{
struct kgsl_device *device = dev_get_drvdata(dev);
struct adreno_device *adreno_dev;
const struct adreno_power_ops *ops;
int status;
if (!device)
return 0;
adreno_dev = ADRENO_DEVICE(device);
ops = ADRENO_POWER_OPS(adreno_dev);
mutex_lock(&device->mutex);
status = ops->pm_suspend(adreno_dev);
if (status)
goto err;
/*
* When the device enters in hibernation state, the CX will be collapsed causing
* the GPU CX timer to pause. Clear the ADRENO_DEVICE_CX_TIMER_INITIALIZED flag
* to ensure that the CX timer is reseeded during resume.
*/
clear_bit(ADRENO_DEVICE_CX_TIMER_INITIALIZED, &adreno_dev->priv);
/*
* Unload zap shader during device hibernation and reload it
* during resume as there is possibility that TZ driver
* is not aware of the hibernation.
*/
adreno_zap_shader_unload(adreno_dev);
status = adreno_secure_pt_hibernate(adreno_dev);
err:
mutex_unlock(&device->mutex);
return status;
}
static int adreno_hibernation_resume(struct device *dev)
{
struct kgsl_device *device = dev_get_drvdata(dev);
struct kgsl_iommu *iommu;
struct kgsl_pwrscale *pwrscale;
struct adreno_device *adreno_dev;
const struct adreno_power_ops *ops;
int ret;
if (!device)
return 0;
iommu = &device->mmu.iommu;
pwrscale = &device->pwrscale;
adreno_dev = ADRENO_DEVICE(device);
ops = ADRENO_POWER_OPS(adreno_dev);
mutex_lock(&device->mutex);
ret = adreno_secure_pt_restore(adreno_dev);
if (ret)
goto err;
ret = kgsl_set_smmu_aperture(device, &iommu->user_context);
if (ret)
goto err;
ret = kgsl_set_smmu_lpac_aperture(device, &iommu->lpac_context);
if (ret < 0)
goto err;
gmu_core_dev_force_first_boot(device);
msm_adreno_tz_reinit(pwrscale->devfreqptr);
ops->pm_resume(adreno_dev);
err:
mutex_unlock(&device->mutex);
return ret;
}
static const struct dev_pm_ops adreno_pm_ops = {
.suspend = adreno_pm_suspend,
.resume = adreno_pm_resume,
.freeze = adreno_hibernation_suspend,
.thaw = adreno_hibernation_resume,
.poweroff = adreno_hibernation_suspend,
.restore = adreno_hibernation_resume,
};
#else
static const struct dev_pm_ops adreno_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(adreno_pm_suspend, adreno_pm_resume)
};
#endif /* IS_ENABLED(CONFIG_QCOM_KGSL_HIBERNATION) */
static struct platform_driver adreno_platform_driver = {
.probe = adreno_probe,
.remove = adreno_remove,
.driver = {
.name = "kgsl-3d",
.pm = &adreno_pm_ops,
.of_match_table = of_match_ptr(adreno_match_table),
}
};
static int __init kgsl_3d_init(void)
{
int ret;
ret = kgsl_core_init();
if (ret)
return ret;
ret = kgsl_mmu_init();
if (ret) {
kgsl_core_exit();
return ret;
}
gmu_core_register();
ret = platform_driver_register(&adreno_platform_driver);
if (ret) {
gmu_core_unregister();
kgsl_mmu_exit();
kgsl_core_exit();
}
return ret;
}
static void __exit kgsl_3d_exit(void)
{
platform_driver_unregister(&adreno_platform_driver);
gmu_core_unregister();
kgsl_mmu_exit();
kgsl_core_exit();
}
module_param_named(preempt_enable, adreno_preemption_enable, bool, 0600);
MODULE_PARM_DESC(preempt_enable, "Enable GPU HW Preemption");
module_init(kgsl_3d_init);
module_exit(kgsl_3d_exit);
MODULE_DESCRIPTION("3D Graphics driver");
MODULE_LICENSE("GPL v2");
MODULE_SOFTDEP("pre: arm_smmu nvmem_qfprom socinfo");
#if (KERNEL_VERSION(5, 18, 0) <= LINUX_VERSION_CODE)
MODULE_IMPORT_NS(DMA_BUF);
#endif