android_kernel_samsung_sm86.../nxp/opensource/driver/nfc/common.c
David Wronek 99ab089c55 Add 'nxp/opensource/driver/' from commit 'c6f0de7127de042241c6f2ac7c60c5deb77d7d85'
git-subtree-dir: nxp/opensource/driver
git-subtree-mainline: 47018f8d6d
git-subtree-split: c6f0de7127
Change-Id:
repo: https://git.codelinaro.org/clo/la/platform/vendor/nxp/opensource/driver
tag: LA.VENDOR.14.3.0.r1-17300-lanai.QSSI15.0
2024-10-06 16:43:44 +02:00

863 lines
25 KiB
C

/******************************************************************************
* Copyright (C) 2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2019-2022 NXP
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
******************************************************************************/
/*
* Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*
*****************************************************************************/
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/delay.h>
#include <linux/pinctrl/qcom-pinctrl.h>
#include "common.h"
bool secure_peripheral_not_found = true;
int nfc_parse_dt(struct device *dev, struct platform_configs *nfc_configs,
uint8_t interface)
{
int ret;
struct device_node *np = dev->of_node;
struct platform_gpio *nfc_gpio = &nfc_configs->gpio;
struct platform_ldo *ldo = &nfc_configs->ldo;
if (!np) {
pr_err("NxpDrv: %s: nfc of_node NULL\n", __func__);
return -EINVAL;
}
nfc_gpio->irq = -EINVAL;
nfc_gpio->dwl_req = -EINVAL;
nfc_gpio->ven = -EINVAL;
nfc_gpio->clkreq = -EINVAL;
/* irq required for i2c based chips only */
if (interface == PLATFORM_IF_I2C) {
nfc_gpio->irq = of_get_named_gpio(np, DTS_IRQ_GPIO_STR, 0);
if ((!gpio_is_valid(nfc_gpio->irq))) {
pr_err("NxpDrv: %s: irq gpio invalid %d\n", __func__,
nfc_gpio->irq);
return nfc_gpio->irq;
}
pr_info("NxpDrv: %s: irq %d\n", __func__, nfc_gpio->irq);
}
nfc_gpio->ven = of_get_named_gpio(np, DTS_VEN_GPIO_STR, 0);
if ((!gpio_is_valid(nfc_gpio->ven))) {
pr_err("NxpDrv: %s: ven gpio invalid %d\n", __func__, nfc_gpio->ven);
return nfc_gpio->ven;
}
/* some products like sn220 does not required fw dwl pin */
nfc_gpio->dwl_req = of_get_named_gpio(np, DTS_FWDN_GPIO_STR, 0);
/* not returning failure for dwl gpio as it is optional for sn220 */
if ((!gpio_is_valid(nfc_gpio->dwl_req))) {
pr_warn("NxpDrv: %s: dwl_req gpio invalid %d\n", __func__,
nfc_gpio->dwl_req);
}
/* Read clock request gpio configuration if MGPIO configurations are not preasent */
if (of_property_read_string(np, DTS_CLKSRC_GPIO_STR, &nfc_configs->clk_src_name)) {
nfc_configs->clk_pin_voting = false;
} else
nfc_configs->clk_pin_voting = true;
/* Read clkreq GPIO pin number from DTSI */
nfc_gpio->clkreq = of_get_named_gpio(np, DTS_CLKREQ_GPIO_STR, 0);
if (!gpio_is_valid(nfc_gpio->clkreq)) {
dev_err(dev, "NxpDrv: clkreq gpio invalid %d\n", nfc_gpio->clkreq);
return -EINVAL;
}
#ifdef NFC_SECURE_PERIPHERAL_ENABLED
/* Read DTS_SZONE_STR to check secure zone support */
if (of_property_read_string(np, DTS_SZONE_STR, &nfc_configs->szone)) {
nfc_configs->CNSS_NFC_HW_SECURE_ENABLE = false;
}else
nfc_configs->CNSS_NFC_HW_SECURE_ENABLE = true;
#endif
pr_info("NxpDrv: %s: irq %d, ven %d, dwl %d, clkreq %d \n", __func__, nfc_gpio->irq, nfc_gpio->ven,
nfc_gpio->dwl_req, nfc_gpio->clkreq);
/* optional property */
ret = of_property_read_u32_array(np, NFC_LDO_VOL_DT_NAME,
(u32 *) ldo->vdd_levels,
ARRAY_SIZE(ldo->vdd_levels));
if (ret) {
dev_err(dev, "NxpDrv: error reading NFC VDDIO min and max value\n");
// set default as per datasheet
ldo->vdd_levels[0] = NFC_VDDIO_MIN;
ldo->vdd_levels[1] = NFC_VDDIO_MAX;
}
/* optional property */
ret = of_property_read_u32(np, NFC_LDO_CUR_DT_NAME, &ldo->max_current);
if (ret) {
dev_err(dev, "NxpDrv: error reading NFC current value\n");
// set default as per datasheet
ldo->max_current = NFC_CURRENT_MAX;
}
return 0;
}
void set_valid_gpio(int gpio, int value)
{
if (gpio_is_valid(gpio)) {
pr_debug("NxpDrv: %s: gpio %d value %d\n", __func__, gpio, value);
gpio_set_value(gpio, value);
/* hardware dependent delay */
usleep_range(NFC_GPIO_SET_WAIT_TIME_US,
NFC_GPIO_SET_WAIT_TIME_US + 100);
}
}
int get_valid_gpio(int gpio)
{
int value = -EINVAL;
if (gpio_is_valid(gpio)) {
value = gpio_get_value(gpio);
pr_debug("NxpDrv: %s: gpio %d value %d\n", __func__, gpio, value);
}
return value;
}
void gpio_set_ven(struct nfc_dev *nfc_dev, int value)
{
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
if (gpio_get_value(nfc_gpio->ven) != value) {
pr_debug("NxpDrv: %s: value %d\n", __func__, value);
#ifdef NFC_SECURE_PERIPHERAL_ENABLED
if(secure_peripheral_not_found)
{
/*secure peripheral feature is not enabled*/
gpio_set_value(nfc_gpio->ven, value);
}
else
{
/*secure peripheral feature is enabled*/
if(!nfc_hw_secure_check())
gpio_set_value(nfc_gpio->ven, value);
}
#else
gpio_set_value(nfc_gpio->ven, value);
#endif
/* hardware dependent delay */
usleep_range(NFC_GPIO_SET_WAIT_TIME_US,
NFC_GPIO_SET_WAIT_TIME_US + 100);
}
}
int configure_gpio(unsigned int gpio, int flag)
{
int ret;
pr_debug("NxpDrv: %s: nfc gpio [%d] flag [%01x]\n", __func__, gpio, flag);
if (gpio_is_valid(gpio)) {
ret = gpio_request(gpio, "nfc_gpio");
if (ret) {
pr_err("NxpDrv: %s: unable to request nfc gpio [%d]\n",
__func__, gpio);
return ret;
}
/* set direction and value for output pin */
if (flag & GPIO_OUTPUT) {
ret = gpio_direction_output(gpio, (GPIO_HIGH & flag));
pr_debug("NxpDrv: %s: nfc o/p gpio %d level %d\n", __func__,
gpio, gpio_get_value(gpio));
} else {
ret = gpio_direction_input(gpio);
pr_debug("NxpDrv: %s: nfc i/p gpio %d\n", __func__, gpio);
}
if (ret) {
pr_err("NxpDrv: %s: unable to set direction for nfc gpio [%d]\n", __func__, gpio);
gpio_free(gpio);
return ret;
}
/* Consider value as control for input IRQ pin */
if (flag & GPIO_IRQ) {
ret = gpio_to_irq(gpio);
if (ret < 0) {
pr_err("NxpDrv: %s: unable to set irq [%d]\n", __func__,
gpio);
gpio_free(gpio);
return ret;
}
pr_debug("NxpDrv: %s: gpio_to_irq successful [%d]\n", __func__,
gpio);
return ret;
}
} else {
pr_err("NxpDrv: %s: invalid gpio\n", __func__);
ret = -EINVAL;
}
return ret;
}
void gpio_free_all(struct nfc_dev *nfc_dev)
{
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
if (gpio_is_valid(nfc_gpio->clkreq))
gpio_free(nfc_gpio->clkreq);
if (gpio_is_valid(nfc_gpio->dwl_req))
gpio_free(nfc_gpio->dwl_req);
if (gpio_is_valid(nfc_gpio->irq))
gpio_free(nfc_gpio->irq);
if (gpio_is_valid(nfc_gpio->ven))
gpio_free(nfc_gpio->ven);
}
void nfc_misc_unregister(struct nfc_dev *nfc_dev, int count)
{
pr_debug("NxpDrv: %s: entry\n", __func__);
kfree(nfc_dev->kbuf);
device_destroy(nfc_dev->nfc_class, nfc_dev->devno);
cdev_del(&nfc_dev->c_dev);
class_destroy(nfc_dev->nfc_class);
unregister_chrdev_region(nfc_dev->devno, count);
if (nfc_dev->ipcl)
ipc_log_context_destroy(nfc_dev->ipcl);
}
int nfc_misc_register(struct nfc_dev *nfc_dev,
const struct file_operations *nfc_fops, int count,
char *devname, char *classname)
{
int ret = 0;
ret = alloc_chrdev_region(&nfc_dev->devno, 0, count, devname);
if (ret < 0) {
pr_err("NxpDrv: %s: failed to alloc chrdev region ret %d\n", __func__,
ret);
return ret;
}
nfc_dev->nfc_class = class_create(THIS_MODULE, classname);
if (IS_ERR(nfc_dev->nfc_class)) {
ret = PTR_ERR(nfc_dev->nfc_class);
pr_err("NxpDrv: %s: failed to register device class ret %d\n", __func__,
ret);
unregister_chrdev_region(nfc_dev->devno, count);
return ret;
}
cdev_init(&nfc_dev->c_dev, nfc_fops);
ret = cdev_add(&nfc_dev->c_dev, nfc_dev->devno, count);
if (ret < 0) {
pr_err("NxpDrv: %s: failed to add cdev ret %d\n", __func__, ret);
class_destroy(nfc_dev->nfc_class);
unregister_chrdev_region(nfc_dev->devno, count);
return ret;
}
nfc_dev->nfc_device = device_create(nfc_dev->nfc_class, NULL,
nfc_dev->devno, nfc_dev, devname);
if (IS_ERR(nfc_dev->nfc_device)) {
ret = PTR_ERR(nfc_dev->nfc_device);
pr_err("NxpDrv: %s: failed to create the device ret %d\n", __func__,
ret);
cdev_del(&nfc_dev->c_dev);
class_destroy(nfc_dev->nfc_class);
unregister_chrdev_region(nfc_dev->devno, count);
return ret;
}
nfc_dev->ipcl = ipc_log_context_create(NUM_OF_IPC_LOG_PAGES,
dev_name(nfc_dev->nfc_device), 0);
nfc_dev->kbuflen = MAX_NCI_BUFFER_SIZE;
nfc_dev->kbuf = kzalloc(MAX_NCI_BUFFER_SIZE, GFP_KERNEL | GFP_DMA);
if (!nfc_dev->kbuf) {
nfc_misc_unregister(nfc_dev, count);
return -ENOMEM;
}
nfc_dev->cold_reset.rsp_pending = false;
nfc_dev->cold_reset.is_nfc_enabled = false;
nfc_dev->cold_reset.is_crp_en = false;
nfc_dev->cold_reset.last_src_ese_prot = ESE_COLD_RESET_ORIGIN_NONE;
init_waitqueue_head(&nfc_dev->cold_reset.read_wq);
return 0;
}
/**
* nfc_gpio_info() - gets the status of nfc gpio pins and encodes into a byte.
* @nfc_dev: nfc device data structure
* @arg: userspace buffer
*
* Encoding can be done in following manner
* 1) map the gpio value into INVALID(-2), SET(1), RESET(0).
* 2) mask the first 2 bits of gpio.
* 3) left shift the 2 bits as multiple of 2.
* 4) multiply factor can be defined as position of gpio pin in struct platform_gpio
*
* Return: -EFAULT, if unable to copy the data from kernel space to userspace, 0
* if Success(or no issue)
*/
static int nfc_gpio_info(struct nfc_dev *nfc_dev, unsigned long arg)
{
unsigned int gpios_status = 0;
int value = 0;
int gpio_no = 0;
int i;
int ret = 0;
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
for (i = 0; i < sizeof(struct platform_gpio) / sizeof(unsigned int);
i++) {
gpio_no = *((unsigned int *)nfc_gpio + i);
value = get_valid_gpio(gpio_no);
if (value < 0)
value = -2;
gpios_status |= (value & GPIO_STATUS_MASK_BITS)<<(GPIO_POS_SHIFT_VAL*i);
}
ret = copy_to_user((uint32_t *) arg, &gpios_status, sizeof(value));
if (ret < 0) {
pr_err("NxpDrv: %s : Unable to copy data from kernel space to user space", __func__);
return -EFAULT;
}
return 0;
}
/**
* nfc_ioctl_power_states() - power control
* @nfc_dev: nfc device data structure
* @arg: mode that we want to move to
*
* Device power control. Depending on the arg value, device moves to
* different states, refer common.h for args
*
* Return: -ENOIOCTLCMD if arg is not supported, 0 if Success(or no issue)
* and error ret code otherwise
*/
static int nfc_ioctl_power_states(struct nfc_dev *nfc_dev, unsigned long arg)
{
int ret = 0;
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
if (arg == NFC_POWER_OFF) {
/*
* We are attempting a hardware reset so let us disable
* interrupts to avoid spurious notifications to upper
* layers.
*/
nfc_dev->nfc_disable_intr(nfc_dev);
set_valid_gpio(nfc_gpio->dwl_req, 0);
gpio_set_ven(nfc_dev, 0);
nfc_dev->nfc_ven_enabled = false;
nfc_dev->nfc_state = NFC_STATE_NCI;
} else if (arg == NFC_POWER_ON) {
nfc_dev->nfc_enable_intr(nfc_dev);
set_valid_gpio(nfc_gpio->dwl_req, 0);
gpio_set_ven(nfc_dev, 1);
nfc_dev->nfc_ven_enabled = true;
nfc_dev->nfc_state = NFC_STATE_NCI;
} else if (arg == NFC_FW_DWL_VEN_TOGGLE) {
/*
* We are switching to download Mode, toggle the enable pin
* in order to set the NFCC in the new mode
*/
nfc_dev->nfc_disable_intr(nfc_dev);
set_valid_gpio(nfc_gpio->dwl_req, 1);
nfc_dev->nfc_state = NFC_STATE_FW_DWL;
gpio_set_ven(nfc_dev, 0);
gpio_set_ven(nfc_dev, 1);
nfc_dev->nfc_enable_intr(nfc_dev);
} else if (arg == NFC_FW_DWL_HIGH) {
/*
* Setting firmware download gpio to HIGH
* before FW download start
*/
pr_debug("NxpDrv: set fw gpio high\n");
set_valid_gpio(nfc_gpio->dwl_req, 1);
nfc_dev->nfc_state = NFC_STATE_FW_DWL;
} else if (arg == NFC_VEN_FORCED_HARD_RESET) {
nfc_dev->nfc_disable_intr(nfc_dev);
gpio_set_ven(nfc_dev, 0);
gpio_set_ven(nfc_dev, 1);
nfc_dev->nfc_enable_intr(nfc_dev);
pr_info("NxpDrv: %s VEN forced reset done\n", __func__);
} else if (arg == NFC_FW_DWL_LOW) {
/*
* Setting firmware download gpio to LOW
* FW download finished
*/
pr_debug("NxpDrv: set fw gpio LOW\n");
set_valid_gpio(nfc_gpio->dwl_req, 0);
nfc_dev->nfc_state = NFC_STATE_NCI;
} else if (arg == NFC_ENABLE) {
if (nfc_dev->configs.clk_pin_voting) {
/* Enabling nfc clock */
ret = nfc_clock_select(nfc_dev);
if (ret)
pr_err("%s unable to select clock\n", __func__);
}
/* Setting flag true when NFC is enabled */
nfc_dev->cold_reset.is_nfc_enabled = true;
} else if (arg == NFC_DISABLE) {
if (nfc_dev->configs.clk_pin_voting) {
/* Disabling nfc clock */
ret = nfc_clock_deselect(nfc_dev);
if (ret)
pr_err("%s unable to disable clock\n", __func__);
}
/* Setting flag true when NFC is disabled */
nfc_dev->cold_reset.is_nfc_enabled = false;
} else {
pr_err("NxpDrv: %s: bad arg %lu\n", __func__, arg);
ret = -ENOIOCTLCMD;
}
return ret;
}
#ifdef CONFIG_COMPAT
/**
* nfc_dev_compat_ioctl - used to set or get data from upper layer.
* @pfile file node for opened device.
* @cmd ioctl type from upper layer.
* @arg ioctl arg from upper layer.
*
* NFC and ESE Device power control, based on the argument value
*
* Return: -ENOIOCTLCMD if arg is not supported
* 0 if Success(or no issue)
* 0 or 1 in case of arg is ESE_GET_PWR/ESE_POWER_STATE
* and error ret code otherwise
*/
long nfc_dev_compat_ioctl(struct file *pfile, unsigned int cmd,
unsigned long arg)
{
int ret = 0;
arg = (compat_u64) arg;
pr_debug("NxpDrv: %s: cmd = %x arg = %zx\n", __func__, cmd, arg);
ret = nfc_dev_ioctl(pfile, cmd, arg);
return ret;
}
#endif
/**
* nfc_post_init() - Configuraing Ven GPIO and hardware check
* @nfc_dev: nfc device data structure
*
* Configure GPIOs post notification from TZ, ensuring it's a non-secure zone.
*
* Return: 0 if Success(or no issue) and error ret code otherwise
*/
int nfc_post_init(struct nfc_dev *nfc_dev)
{
int ret=0;
unsigned int clkreq_gpio = 0;
static int post_init_success;
struct platform_configs nfc_configs;
struct platform_gpio *nfc_gpio;
if(post_init_success)
return 0;
if (!nfc_dev)
return -ENODEV;
memcpy(&nfc_configs, &nfc_dev->configs, sizeof(struct platform_configs));
nfc_gpio = &nfc_configs.gpio;
ret = configure_gpio(nfc_gpio->ven, GPIO_OUTPUT);
if (ret) {
pr_err("NxpDrv: %s: unable to request nfc reset gpio [%d]\n",
__func__, nfc_gpio->ven);
return ret;
}
ret = configure_gpio(nfc_gpio->dwl_req, GPIO_OUTPUT);
if (ret) {
pr_err("NxpDrv: %s: unable to request nfc firm downl gpio [%d]\n",
__func__, nfc_gpio->dwl_req);
}
ret = configure_gpio(nfc_gpio->clkreq, GPIO_INPUT);
if (ret) {
pr_err("NxpDrv: %s: unable to request nfc clkreq gpio [%d]\n",
__func__, nfc_gpio->clkreq);
}
/* Read clkreq GPIO number from device tree*/
ret = of_property_read_u32_index(nfc_dev->i2c_dev.client->dev.of_node,
DTS_CLKREQ_GPIO_STR, 1, &clkreq_gpio);
if (ret < 0) {
pr_err("NxpDrv: %s Failed to read clkreq gipo number, ret: %d\n",
__func__, ret);
return ret;
}
/* configure clkreq GPIO as wakeup capable */
ret = msm_gpio_mpm_wake_set(clkreq_gpio, true);
if (ret < 0) {
pr_err("NxpDrv: %s clkreq gpio %d as wakeup capable failed, ret: %d\n",
__func__, clkreq_gpio, ret);
return ret;
}
ret = nfcc_hw_check(nfc_dev);
if (ret || nfc_dev->nfc_state == NFC_STATE_UNKNOWN) {
pr_err("NxpDrv: nfc hw check failed ret %d\n", ret);
gpio_free(nfc_gpio->dwl_req);
gpio_free(nfc_gpio->ven);
return ret;
}
#ifdef NFC_SECURE_PERIPHERAL_ENABLED
/*Initialising sempahore to disbale NFC Ven GPIO only after eSE is power off flag is set */
if (nfc_dev->configs.CNSS_NFC_HW_SECURE_ENABLE == true) {
sema_init(&sem_eSE_pwr_off,0);
}
#endif
post_init_success = 1;
pr_info("NxpDrv: %s success\n", __func__);
return 0;
}
#ifdef NFC_SECURE_PERIPHERAL_ENABLED
/**
* nfc_hw_secure_check() - Checks the NFC secure zone status
*
* Queries the TZ secure libraries if NFC is in secure zone statue or not.
*
* Return: 0 if FEATURE_NOT_SUPPORTED or PERIPHERAL_NOT_FOUND or nfc_sec_state = 2(non-secure zone) and
* return 1 if nfc_sec_state = 1(secure zone) or error otherwise
*/
bool nfc_hw_secure_check(void)
{
struct Object client_env;
struct Object app_object;
u32 nfc_uid = HW_NFC_UID;
union ObjectArg obj_arg[2] = {{{0, 0}}};
int ret;
bool retstat = 1;
u8 nfc_sec_state = 0;
/* get rootObj */
ret = get_client_env_object(&client_env);
if (ret) {
pr_err("NxpDrv: Failed to get client_env_object, ret: %d\n", ret);
return retstat;
}
ret = IClientEnv_open(client_env, HW_STATE_UID, &app_object);
if (ret) {
pr_debug("NxpDrv: Failed to get app_object, ret: %d\n", ret);
if (ret == FEATURE_NOT_SUPPORTED) {
retstat = 0; /* Do not Assert */
pr_debug("NxpDrv: Secure HW feature not supported\n");
}
goto exit_release_clientenv;
}
obj_arg[0].b = (struct ObjectBuf) {&nfc_uid, sizeof(u32)};
obj_arg[1].b = (struct ObjectBuf) {&nfc_sec_state, sizeof(u8)};
ret = Object_invoke(app_object, HW_OP_GET_STATE, obj_arg,
ObjectCounts_pack(1, 1, 0, 0));
pr_info("NxpDrv: TZ ret: %d nfc_sec_state: %d\n", ret, nfc_sec_state);
if (ret) {
if (ret == PERIPHERAL_NOT_FOUND) {
retstat = 0; /* Do not Assert */
pr_debug("NxpDrv: Secure HW mode is not updated. Peripheral not found\n");
}
goto exit_release_app_obj;
}
secure_peripheral_not_found = false;
/* Refer peripheral state utilities for different states of NFC peripherals */
if (nfc_sec_state == 1) {
/*Secure Zone*/
retstat = 1;
} else {
/*Non-Secure Zone*/
retstat = 0;
}
exit_release_app_obj:
Object_release(app_object);
exit_release_clientenv:
Object_release(client_env);
return retstat;
}
/**
* nfc_dynamic_protection_ioctl() - dynamic protection control
* @nfc_dev: nfc device data structure
* @sec_zone_trans: mode that we want to move to
* If sec_zone_trans = 1; transition from non-secure zone to secure zone
* If sec_zone_trans = 0; transition from secure zone to non - secure zone
*
* nfc periheral dynamic protection control. Depending on the sec_zone_trans value, device moves to
* secure zone and non-secure zone
*
* Return: -ENOIOCTLCMD if sec_zone_trans val is not supported, 0 if Success(or no issue)
* and error ret code otherwise
*/
int nfc_dynamic_protection_ioctl(struct nfc_dev *nfc_dev, unsigned long sec_zone_trans)
{
int ret = 0;
static int init_flag=1;
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
if(sec_zone_trans == 1) {
/*check NFC is disabled, only then set Ven GPIO low*/
if(nfc_dev->cold_reset.is_nfc_enabled == false) {
pr_debug("NxpDrv: %s: value %d\n", __func__, gpio_get_value(nfc_gpio->ven));
chk_eSE_pwr_off = 1;
/*check if eSE is active, if yes, wait max of 1sec, until it's inactive */
if(nfc_dev->is_ese_session_active == true) {
if(down_timeout(&sem_eSE_pwr_off, msecs_to_jiffies(1000))) {
/*waited for 1sec yet eSE not turned off, so, ignoring eSE power off*/
pr_info("NxpDrv: Forcefull shutdown of eSE\n");
}
}
ret = nfc_ioctl_power_states(nfc_dev, 0);
/*set driver as secure zone, such that no ioctl calls are allowed*/
nfc_dev->secure_zone = true;
pr_info("NxpDrv: Driver Secure flag set successful\n");
} else {
ret = -1;
}
}
else if(sec_zone_trans == 0) {
chk_eSE_pwr_off = 0;
nfc_dev->secure_zone = false;
if(init_flag) {
/*Initialize once,only during the first non-secure entry*/
ret = nfc_post_init(nfc_dev);
if(ret == 0)
init_flag=0;
}
else {
if(!gpio_get_value(nfc_gpio->ven))
ret = nfc_ioctl_power_states(nfc_dev, 1);
}
pr_info("NxpDrv: Func Driver Secure flag clear successful\n");
} else {
pr_info("NxpDrv: INVALID ARG\n");
ret = -ENOIOCTLCMD;
}
return ret;
}
#endif
/**
* nfc_dev_ioctl - used to set or get data from upper layer.
* @pfile file node for opened device.
* @cmd ioctl type from upper layer.
* @arg ioctl arg from upper layer.
*
* NFC and ESE Device power control, based on the argument value
*
* Return: -ENOIOCTLCMD if arg is not supported
* 0 if Success(or no issue)
* 0 or 1 in case of arg is ESE_GET_PWR/ESE_POWER_STATE
* and error ret code otherwise
*/
long nfc_dev_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg)
{
int ret = 0;
struct nfc_dev *nfc_dev = pfile->private_data;
if (!nfc_dev)
return -ENODEV;
#ifdef NFC_SECURE_PERIPHERAL_ENABLED
if( nfc_dev->configs.CNSS_NFC_HW_SECURE_ENABLE == true) {
/*Avoiding ioctl call in secure zone*/
if(nfc_dev->secure_zone) {
if(cmd!=NFC_SECURE_ZONE) {
pr_debug("NxpDrv: nfc_dev_ioctl failed\n");
return -1;
}
}
}
#endif
pr_debug("NxpDrv: %s: cmd = %x arg = %zx\n", __func__, cmd, arg);
switch (cmd) {
case NFC_SET_PWR:
ret = nfc_ioctl_power_states(nfc_dev, arg);
break;
case NFC_SET_RESET_READ_PENDING:
if (arg == NFC_SET_READ_PENDING) {
nfc_dev->cold_reset.is_nfc_read_pending = true;
/* Set default NFC state as NCI for Nfc read pending request */
nfc_dev->nfc_state = NFC_STATE_NCI;
} else if (arg == NFC_RESET_READ_PENDING) {
nfc_dev->cold_reset.is_nfc_read_pending = false;
} else {
ret = -EINVAL;
}
break;
case ESE_SET_PWR:
ret = nfc_ese_pwr(nfc_dev, arg);
break;
case ESE_GET_PWR:
ret = nfc_ese_pwr(nfc_dev, ESE_POWER_STATE);
break;
case NFC_GET_GPIO_STATUS:
ret = nfc_gpio_info(nfc_dev, arg);
break;
case NFCC_GET_INFO:
ret = nfc_ioctl_nfcc_info(pfile, arg);
break;
case ESE_COLD_RESET:
pr_debug("NxpDrv: nfc ese cold reset ioctl\n");
ret = ese_cold_reset_ioctl(nfc_dev, arg);
break;
#ifdef NFC_SECURE_PERIPHERAL_ENABLED
case NFC_SECURE_ZONE:
if( nfc_dev->configs.CNSS_NFC_HW_SECURE_ENABLE == true) {
ret = nfc_dynamic_protection_ioctl(nfc_dev, arg);
}
break;
#endif
default:
pr_err("NxpDrv: %s: bad cmd %lu\n", __func__, arg);
ret = -ENOIOCTLCMD;
}
return ret;
}
int nfc_dev_open(struct inode *inode, struct file *filp)
{
struct nfc_dev *nfc_dev = NULL;
nfc_dev = container_of(inode->i_cdev, struct nfc_dev, c_dev);
if (!nfc_dev)
return -ENODEV;
pr_debug("NxpDrv: %s: %d, %d\n", __func__, imajor(inode), iminor(inode));
/* Set flag to block freezer fake signal if not set already.
* Without this Signal being set, Driver is trying to do a read
* which is causing the delay in moving to Hibernate Mode.
*/
if (!(current->flags & PF_NOFREEZE)) {
current->flags |= PF_NOFREEZE;
pr_debug("NxpDrv: %s: current->flags 0x%x. \n", __func__, current->flags);
}
mutex_lock(&nfc_dev->dev_ref_mutex);
filp->private_data = nfc_dev;
if (nfc_dev->dev_ref_count == 0) {
set_valid_gpio(nfc_dev->configs.gpio.dwl_req, 0);
nfc_dev->nfc_enable_intr(nfc_dev);
}
nfc_dev->dev_ref_count = nfc_dev->dev_ref_count + 1;
mutex_unlock(&nfc_dev->dev_ref_mutex);
return 0;
}
int nfc_dev_flush(struct file *pfile, fl_owner_t id)
{
struct nfc_dev *nfc_dev = pfile->private_data;
if (!nfc_dev)
return -ENODEV;
/*
* release blocked user thread waiting for pending read during close
*/
if (!mutex_trylock(&nfc_dev->read_mutex)) {
nfc_dev->release_read = true;
nfc_dev->nfc_disable_intr(nfc_dev);
wake_up(&nfc_dev->read_wq);
pr_debug("NxpDrv: %s: waiting for release of blocked read\n", __func__);
mutex_lock(&nfc_dev->read_mutex);
nfc_dev->release_read = false;
} else {
pr_debug("NxpDrv: %s: read thread already released\n", __func__);
}
mutex_unlock(&nfc_dev->read_mutex);
return 0;
}
int nfc_dev_close(struct inode *inode, struct file *filp)
{
struct nfc_dev *nfc_dev = NULL;
nfc_dev = container_of(inode->i_cdev, struct nfc_dev, c_dev);
if (!nfc_dev)
return -ENODEV;
pr_debug("NxpDrv: %s: %d, %d\n", __func__, imajor(inode), iminor(inode));
/* unset the flag to restore to previous state */
if (current->flags & PF_NOFREEZE) {
current->flags &= ~PF_NOFREEZE;
pr_debug("NxpDrv: %s: current->flags 0x%x. \n", __func__, current->flags);
}
mutex_lock(&nfc_dev->dev_ref_mutex);
if (nfc_dev->dev_ref_count == 1) {
nfc_dev->nfc_disable_intr(nfc_dev);
set_valid_gpio(nfc_dev->configs.gpio.dwl_req, 0);
}
if (nfc_dev->dev_ref_count > 0)
nfc_dev->dev_ref_count = nfc_dev->dev_ref_count - 1;
filp->private_data = NULL;
mutex_unlock(&nfc_dev->dev_ref_mutex);
return 0;
}
int validate_nfc_state_nci(struct nfc_dev *nfc_dev)
{
struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio;
if(!nfc_dev->secure_zone) {
if (!gpio_get_value(nfc_gpio->ven)) {
pr_err("NxpDrv: %s: ven low - nfcc powered off\n", __func__);
return -ENODEV;
}
}
if (get_valid_gpio(nfc_gpio->dwl_req) == 1) {
pr_err("NxpDrv: %s: fw download in-progress\n", __func__);
return -EBUSY;
}
if (nfc_dev->nfc_state != NFC_STATE_NCI) {
pr_err("NxpDrv: %s: fw download state\n", __func__);
return -EBUSY;
}
return 0;
}