android_kernel_asus_sm8350/crypto/Kconfig
Greg Kroah-Hartman 91a7552bea This is the 5.4.160 stable release
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAmGUwhUACgkQONu9yGCS
 aT4hlBAAjcjBBtJ7IuVRAbJhRSIW3H0viMdPTBvydSNwSF6mk9BL56CQ+OyAGLaB
 Fnb5DNxhIO9DAbwuvBW4wEJibSA1Q4191bRjZEKrf70LRdmA51vz0dBu2KRNV+IV
 HWtJYyXIyqqU/EXPsVmdmNFxr6YUCUmkyEaE18/rsg/cZmMg/Zot434cnSuzVzrW
 9yLQVQAs7CAKD7kICZ/S7P7V1IKQyuLj5meX2BBE24YwukvlA9N5ISXGQuW91683
 iqv0cfjwYtfrNMOE7K2AKrDgZ0AxuLrIiyppqHjHPB+zIvgm2ErQU+Hp76hVtWpW
 yP0cq6ReP3ktc9Hmxr49xU1l3D/6jo+OyqQh5eomP2veGpRh3dq+oe1VoN7Iw9Xg
 YBvjOuononlBoChsddlbxwQTZIXff9MvOK2zADmHM0740xTlqSIgw6ITdg/lyKG8
 7QbM6pSepXKVXDhHtbEQQGIJP/SvLyjGKX5pJjTKQ0cemkGJ/Sp/HNHMlf/CRLen
 LsS2kHCuBTWKQP0NJaAIp0J3lNfcCnB8Cv2BhmkHkVPx0jEvlZKDVJqdH7tbpIdy
 hdR9vwq9neBIjAiTFMEAuV1/+zGR4zNqiocUXhkIC9BAzrBKinyct78kV2trVOc2
 J4lFhpOv1I9/HwaqP6kYnJW+nNoMzN3sD0uT8fk8dlYo5GBvbVk=
 =YkOP
 -----END PGP SIGNATURE-----

Merge 5.4.160 into android11-5.4-lts

Changes in 5.4.160
	xhci: Fix USB 3.1 enumeration issues by increasing roothub power-on-good delay
	usb: xhci: Enable runtime-pm by default on AMD Yellow Carp platform
	binder: use euid from cred instead of using task
	binder: use cred instead of task for selinux checks
	binder: use cred instead of task for getsecid
	Input: iforce - fix control-message timeout
	Input: elantench - fix misreporting trackpoint coordinates
	Input: i8042 - Add quirk for Fujitsu Lifebook T725
	libata: fix read log timeout value
	ocfs2: fix data corruption on truncate
	scsi: qla2xxx: Fix kernel crash when accessing port_speed sysfs file
	scsi: qla2xxx: Fix use after free in eh_abort path
	mmc: dw_mmc: Dont wait for DRTO on Write RSP error
	parisc: Fix ptrace check on syscall return
	tpm: Check for integer overflow in tpm2_map_response_body()
	firmware/psci: fix application of sizeof to pointer
	crypto: s5p-sss - Add error handling in s5p_aes_probe()
	media: ite-cir: IR receiver stop working after receive overflow
	media: ir-kbd-i2c: improve responsiveness of hauppauge zilog receivers
	media: v4l2-ioctl: Fix check_ext_ctrls
	ALSA: hda/realtek: Add quirk for Clevo PC70HS
	ALSA: hda/realtek: Add a quirk for Acer Spin SP513-54N
	ALSA: hda/realtek: Add quirk for ASUS UX550VE
	ALSA: hda/realtek: Add quirk for HP EliteBook 840 G7 mute LED
	ALSA: ua101: fix division by zero at probe
	ALSA: 6fire: fix control and bulk message timeouts
	ALSA: line6: fix control and interrupt message timeouts
	ALSA: usb-audio: Add registration quirk for JBL Quantum 400
	ALSA: synth: missing check for possible NULL after the call to kstrdup
	ALSA: timer: Fix use-after-free problem
	ALSA: timer: Unconditionally unlink slave instances, too
	fuse: fix page stealing
	x86/sme: Use #define USE_EARLY_PGTABLE_L5 in mem_encrypt_identity.c
	x86/cpu: Fix migration safety with X86_BUG_NULL_SEL
	x86/irq: Ensure PI wakeup handler is unregistered before module unload
	cavium: Return negative value when pci_alloc_irq_vectors() fails
	scsi: qla2xxx: Return -ENOMEM if kzalloc() fails
	scsi: qla2xxx: Fix unmap of already freed sgl
	cavium: Fix return values of the probe function
	sfc: Don't use netif_info before net_device setup
	hyperv/vmbus: include linux/bitops.h
	ARM: dts: sun7i: A20-olinuxino-lime2: Fix ethernet phy-mode
	reset: socfpga: add empty driver allowing consumers to probe
	mmc: winbond: don't build on M68K
	drm: panel-orientation-quirks: Add quirk for Aya Neo 2021
	bpf: Define bpf_jit_alloc_exec_limit for arm64 JIT
	bpf: Prevent increasing bpf_jit_limit above max
	xen/netfront: stop tx queues during live migration
	nvmet-tcp: fix a memory leak when releasing a queue
	spi: spl022: fix Microwire full duplex mode
	net: multicast: calculate csum of looped-back and forwarded packets
	watchdog: Fix OMAP watchdog early handling
	drm: panel-orientation-quirks: Add quirk for GPD Win3
	nvmet-tcp: fix header digest verification
	r8169: Add device 10ec:8162 to driver r8169
	vmxnet3: do not stop tx queues after netif_device_detach()
	nfp: bpf: relax prog rejection for mtu check through max_pkt_offset
	net/smc: Correct spelling mistake to TCPF_SYN_RECV
	btrfs: clear MISSING device status bit in btrfs_close_one_device
	btrfs: fix lost error handling when replaying directory deletes
	btrfs: call btrfs_check_rw_degradable only if there is a missing device
	ia64: kprobes: Fix to pass correct trampoline address to the handler
	hwmon: (pmbus/lm25066) Add offset coefficients
	regulator: s5m8767: do not use reset value as DVS voltage if GPIO DVS is disabled
	regulator: dt-bindings: samsung,s5m8767: correct s5m8767,pmic-buck-default-dvs-idx property
	EDAC/sb_edac: Fix top-of-high-memory value for Broadwell/Haswell
	mwifiex: fix division by zero in fw download path
	ath6kl: fix division by zero in send path
	ath6kl: fix control-message timeout
	ath10k: fix control-message timeout
	ath10k: fix division by zero in send path
	PCI: Mark Atheros QCA6174 to avoid bus reset
	rtl8187: fix control-message timeouts
	evm: mark evm_fixmode as __ro_after_init
	wcn36xx: Fix HT40 capability for 2Ghz band
	mwifiex: Read a PCI register after writing the TX ring write pointer
	libata: fix checking of DMA state
	wcn36xx: handle connection loss indication
	rsi: fix occasional initialisation failure with BT coex
	rsi: fix key enabled check causing unwanted encryption for vap_id > 0
	rsi: fix rate mask set leading to P2P failure
	rsi: Fix module dev_oper_mode parameter description
	RDMA/qedr: Fix NULL deref for query_qp on the GSI QP
	signal: Remove the bogus sigkill_pending in ptrace_stop
	signal/mips: Update (_save|_restore)_fp_context to fail with -EFAULT
	power: supply: max17042_battery: Prevent int underflow in set_soc_threshold
	power: supply: max17042_battery: use VFSOC for capacity when no rsns
	KVM: nVMX: Query current VMCS when determining if MSR bitmaps are in use
	can: j1939: j1939_tp_cmd_recv(): ignore abort message in the BAM transport
	can: j1939: j1939_can_recv(): ignore messages with invalid source address
	powerpc/85xx: Fix oops when mpc85xx_smp_guts_ids node cannot be found
	serial: core: Fix initializing and restoring termios speed
	ALSA: mixer: oss: Fix racy access to slots
	ALSA: mixer: fix deadlock in snd_mixer_oss_set_volume
	xen/balloon: add late_initcall_sync() for initial ballooning done
	PCI: pci-bridge-emul: Fix emulation of W1C bits
	PCI: aardvark: Do not clear status bits of masked interrupts
	PCI: aardvark: Fix checking for link up via LTSSM state
	PCI: aardvark: Do not unmask unused interrupts
	PCI: aardvark: Fix reporting Data Link Layer Link Active
	PCI: aardvark: Fix return value of MSI domain .alloc() method
	PCI: aardvark: Read all 16-bits from PCIE_MSI_PAYLOAD_REG
	quota: check block number when reading the block in quota file
	quota: correct error number in free_dqentry()
	pinctrl: core: fix possible memory leak in pinctrl_enable()
	iio: dac: ad5446: Fix ad5622_write() return value
	USB: serial: keyspan: fix memleak on probe errors
	USB: iowarrior: fix control-message timeouts
	USB: chipidea: fix interrupt deadlock
	dma-buf: WARN on dmabuf release with pending attachments
	drm: panel-orientation-quirks: Update the Lenovo Ideapad D330 quirk (v2)
	drm: panel-orientation-quirks: Add quirk for KD Kurio Smart C15200 2-in-1
	drm: panel-orientation-quirks: Add quirk for the Samsung Galaxy Book 10.6
	Bluetooth: sco: Fix lock_sock() blockage by memcpy_from_msg()
	Bluetooth: fix use-after-free error in lock_sock_nested()
	drm/panel-orientation-quirks: add Valve Steam Deck
	platform/x86: wmi: do not fail if disabling fails
	MIPS: lantiq: dma: add small delay after reset
	MIPS: lantiq: dma: reset correct number of channel
	locking/lockdep: Avoid RCU-induced noinstr fail
	net: sched: update default qdisc visibility after Tx queue cnt changes
	smackfs: Fix use-after-free in netlbl_catmap_walk()
	x86: Increase exception stack sizes
	mwifiex: Run SET_BSS_MODE when changing from P2P to STATION vif-type
	mwifiex: Properly initialize private structure on interface type changes
	ath10k: high latency fixes for beacon buffer
	media: mt9p031: Fix corrupted frame after restarting stream
	media: netup_unidvb: handle interrupt properly according to the firmware
	media: stm32: Potential NULL pointer dereference in dcmi_irq_thread()
	media: uvcvideo: Set capability in s_param
	media: uvcvideo: Return -EIO for control errors
	media: uvcvideo: Set unique vdev name based in type
	media: s5p-mfc: fix possible null-pointer dereference in s5p_mfc_probe()
	media: s5p-mfc: Add checking to s5p_mfc_probe().
	media: imx: set a media_device bus_info string
	media: mceusb: return without resubmitting URB in case of -EPROTO error.
	ia64: don't do IA64_CMPXCHG_DEBUG without CONFIG_PRINTK
	brcmfmac: Add DMI nvram filename quirk for Cyberbook T116 tablet
	media: rcar-csi2: Add checking to rcsi2_start_receiver()
	ipmi: Disable some operations during a panic
	ACPICA: Avoid evaluating methods too early during system resume
	media: ipu3-imgu: imgu_fmt: Handle properly try
	media: ipu3-imgu: VIDIOC_QUERYCAP: Fix bus_info
	media: usb: dvd-usb: fix uninit-value bug in dibusb_read_eeprom_byte()
	net-sysfs: try not to restart the syscall if it will fail eventually
	tracefs: Have tracefs directories not set OTH permission bits by default
	ath: dfs_pattern_detector: Fix possible null-pointer dereference in channel_detector_create()
	iov_iter: Fix iov_iter_get_pages{,_alloc} page fault return value
	ACPI: battery: Accept charges over the design capacity as full
	leaking_addresses: Always print a trailing newline
	memstick: r592: Fix a UAF bug when removing the driver
	lib/xz: Avoid overlapping memcpy() with invalid input with in-place decompression
	lib/xz: Validate the value before assigning it to an enum variable
	workqueue: make sysfs of unbound kworker cpumask more clever
	tracing/cfi: Fix cmp_entries_* functions signature mismatch
	mwl8k: Fix use-after-free in mwl8k_fw_state_machine()
	block: remove inaccurate requeue check
	nvmet: fix use-after-free when a port is removed
	nvmet-tcp: fix use-after-free when a port is removed
	nvme: drop scan_lock and always kick requeue list when removing namespaces
	PM: hibernate: Get block device exclusively in swsusp_check()
	selftests: kvm: fix mismatched fclose() after popen()
	iwlwifi: mvm: disable RX-diversity in powersave
	smackfs: use __GFP_NOFAIL for smk_cipso_doi()
	ARM: clang: Do not rely on lr register for stacktrace
	gre/sit: Don't generate link-local addr if addr_gen_mode is IN6_ADDR_GEN_MODE_NONE
	ARM: 9136/1: ARMv7-M uses BE-8, not BE-32
	vrf: run conntrack only in context of lower/physdev for locally generated packets
	net: annotate data-race in neigh_output()
	btrfs: do not take the uuid_mutex in btrfs_rm_device
	spi: bcm-qspi: Fix missing clk_disable_unprepare() on error in bcm_qspi_probe()
	x86/hyperv: Protect set_hv_tscchange_cb() against getting preempted
	parisc: fix warning in flush_tlb_all
	task_stack: Fix end_of_stack() for architectures with upwards-growing stack
	parisc/unwind: fix unwinder when CONFIG_64BIT is enabled
	parisc/kgdb: add kgdb_roundup() to make kgdb work with idle polling
	netfilter: conntrack: set on IPS_ASSURED if flows enters internal stream state
	selftests/bpf: Fix strobemeta selftest regression
	Bluetooth: fix init and cleanup of sco_conn.timeout_work
	rcu: Fix existing exp request check in sync_sched_exp_online_cleanup()
	drm/v3d: fix wait for TMU write combiner flush
	virtio-gpu: fix possible memory allocation failure
	net: net_namespace: Fix undefined member in key_remove_domain()
	cgroup: Make rebind_subsystems() disable v2 controllers all at once
	wilc1000: fix possible memory leak in cfg_scan_result()
	Bluetooth: btmtkuart: fix a memleak in mtk_hci_wmt_sync
	crypto: caam - disable pkc for non-E SoCs
	rxrpc: Fix _usecs_to_jiffies() by using usecs_to_jiffies()
	net: dsa: rtl8366rb: Fix off-by-one bug
	ath10k: Fix missing frame timestamp for beacon/probe-resp
	drm/amdgpu: fix warning for overflow check
	media: em28xx: add missing em28xx_close_extension
	media: cxd2880-spi: Fix a null pointer dereference on error handling path
	media: dvb-usb: fix ununit-value in az6027_rc_query
	media: TDA1997x: handle short reads of hdmi info frame.
	media: mtk-vpu: Fix a resource leak in the error handling path of 'mtk_vpu_probe()'
	media: radio-wl1273: Avoid card name truncation
	media: si470x: Avoid card name truncation
	media: tm6000: Avoid card name truncation
	media: cx23885: Fix snd_card_free call on null card pointer
	kprobes: Do not use local variable when creating debugfs file
	crypto: ecc - fix CRYPTO_DEFAULT_RNG dependency
	cpuidle: Fix kobject memory leaks in error paths
	media: em28xx: Don't use ops->suspend if it is NULL
	ath9k: Fix potential interrupt storm on queue reset
	EDAC/amd64: Handle three rank interleaving mode
	netfilter: nft_dynset: relax superfluous check on set updates
	media: dvb-frontends: mn88443x: Handle errors of clk_prepare_enable()
	crypto: qat - detect PFVF collision after ACK
	crypto: qat - disregard spurious PFVF interrupts
	hwrng: mtk - Force runtime pm ops for sleep ops
	b43legacy: fix a lower bounds test
	b43: fix a lower bounds test
	mmc: sdhci-omap: Fix NULL pointer exception if regulator is not configured
	memstick: avoid out-of-range warning
	memstick: jmb38x_ms: use appropriate free function in jmb38x_ms_alloc_host()
	net, neigh: Fix NTF_EXT_LEARNED in combination with NTF_USE
	hwmon: Fix possible memleak in __hwmon_device_register()
	hwmon: (pmbus/lm25066) Let compiler determine outer dimension of lm25066_coeff
	ath10k: fix max antenna gain unit
	drm/msm: uninitialized variable in msm_gem_import()
	net: stream: don't purge sk_error_queue in sk_stream_kill_queues()
	mmc: mxs-mmc: disable regulator on error and in the remove function
	block: ataflop: fix breakage introduced at blk-mq refactoring
	platform/x86: thinkpad_acpi: Fix bitwise vs. logical warning
	mt76: mt76x02: fix endianness warnings in mt76x02_mac.c
	rsi: stop thread firstly in rsi_91x_init() error handling
	mwifiex: Send DELBA requests according to spec
	phy: micrel: ksz8041nl: do not use power down mode
	nvme-rdma: fix error code in nvme_rdma_setup_ctrl
	PM: hibernate: fix sparse warnings
	clocksource/drivers/timer-ti-dm: Select TIMER_OF
	drm/msm: Fix potential NULL dereference in DPU SSPP
	smackfs: use netlbl_cfg_cipsov4_del() for deleting cipso_v4_doi
	libbpf: Fix BTF data layout checks and allow empty BTF
	s390/gmap: don't unconditionally call pte_unmap_unlock() in __gmap_zap()
	irq: mips: avoid nested irq_enter()
	tcp: don't free a FIN sk_buff in tcp_remove_empty_skb()
	samples/kretprobes: Fix return value if register_kretprobe() failed
	KVM: s390: Fix handle_sske page fault handling
	libertas_tf: Fix possible memory leak in probe and disconnect
	libertas: Fix possible memory leak in probe and disconnect
	wcn36xx: add proper DMA memory barriers in rx path
	drm/amdgpu/gmc6: fix DMA mask from 44 to 40 bits
	net: amd-xgbe: Toggle PLL settings during rate change
	net: phylink: avoid mvneta warning when setting pause parameters
	crypto: pcrypt - Delay write to padata->info
	selftests/bpf: Fix fclose/pclose mismatch in test_progs
	udp6: allow SO_MARK ctrl msg to affect routing
	ibmvnic: don't stop queue in xmit
	ibmvnic: Process crqs after enabling interrupts
	RDMA/rxe: Fix wrong port_cap_flags
	clk: mvebu: ap-cpu-clk: Fix a memory leak in error handling paths
	ARM: s3c: irq-s3c24xx: Fix return value check for s3c24xx_init_intc()
	arm64: dts: rockchip: Fix GPU register width for RK3328
	ARM: dts: qcom: msm8974: Add xo_board reference clock to DSI0 PHY
	RDMA/bnxt_re: Fix query SRQ failure
	arm64: dts: meson-g12a: Fix the pwm regulator supply properties
	ARM: dts: at91: tse850: the emac<->phy interface is rmii
	scsi: dc395: Fix error case unwinding
	MIPS: loongson64: make CPU_LOONGSON64 depends on MIPS_FP_SUPPORT
	JFS: fix memleak in jfs_mount
	ALSA: hda: Reduce udelay() at SKL+ position reporting
	arm: dts: omap3-gta04a4: accelerometer irq fix
	soc/tegra: Fix an error handling path in tegra_powergate_power_up()
	memory: fsl_ifc: fix leak of irq and nand_irq in fsl_ifc_ctrl_probe
	clk: at91: check pmc node status before registering syscore ops
	video: fbdev: chipsfb: use memset_io() instead of memset()
	serial: 8250_dw: Drop wrong use of ACPI_PTR()
	usb: gadget: hid: fix error code in do_config()
	power: supply: rt5033_battery: Change voltage values to µV
	scsi: csiostor: Uninitialized data in csio_ln_vnp_read_cbfn()
	RDMA/mlx4: Return missed an error if device doesn't support steering
	staging: ks7010: select CRYPTO_HASH/CRYPTO_MICHAEL_MIC
	ARM: dts: stm32: fix SAI sub nodes register range
	ASoC: cs42l42: Correct some register default values
	ASoC: cs42l42: Defer probe if request_threaded_irq() returns EPROBE_DEFER
	phy: qcom-qusb2: Fix a memory leak on probe
	serial: xilinx_uartps: Fix race condition causing stuck TX
	HID: u2fzero: clarify error check and length calculations
	HID: u2fzero: properly handle timeouts in usb_submit_urb
	powerpc/44x/fsp2: add missing of_node_put
	mips: cm: Convert to bitfield API to fix out-of-bounds access
	power: supply: bq27xxx: Fix kernel crash on IRQ handler register error
	apparmor: fix error check
	rpmsg: Fix rpmsg_create_ept return when RPMSG config is not defined
	pnfs/flexfiles: Fix misplaced barrier in nfs4_ff_layout_prepare_ds
	drm/plane-helper: fix uninitialized variable reference
	PCI: aardvark: Don't spam about PIO Response Status
	PCI: aardvark: Fix preserving PCI_EXP_RTCTL_CRSSVE flag on emulated bridge
	opp: Fix return in _opp_add_static_v2()
	NFS: Fix deadlocks in nfs_scan_commit_list()
	fs: orangefs: fix error return code of orangefs_revalidate_lookup()
	mtd: spi-nor: hisi-sfc: Remove excessive clk_disable_unprepare()
	mtd: core: don't remove debugfs directory if device is in use
	dmaengine: at_xdmac: fix AT_XDMAC_CC_PERID() macro
	auxdisplay: img-ascii-lcd: Fix lock-up when displaying empty string
	auxdisplay: ht16k33: Connect backlight to fbdev
	auxdisplay: ht16k33: Fix frame buffer device blanking
	soc: fsl: dpaa2-console: free buffer before returning from dpaa2_console_read
	netfilter: nfnetlink_queue: fix OOB when mac header was cleared
	dmaengine: dmaengine_desc_callback_valid(): Check for `callback_result`
	signal/sh: Use force_sig(SIGKILL) instead of do_group_exit(SIGKILL)
	m68k: set a default value for MEMORY_RESERVE
	watchdog: f71808e_wdt: fix inaccurate report in WDIOC_GETTIMEOUT
	ar7: fix kernel builds for compiler test
	scsi: qla2xxx: Fix gnl list corruption
	scsi: qla2xxx: Turn off target reset during issue_lip
	NFSv4: Fix a regression in nfs_set_open_stateid_locked()
	i2c: xlr: Fix a resource leak in the error handling path of 'xlr_i2c_probe()'
	xen-pciback: Fix return in pm_ctrl_init()
	net: davinci_emac: Fix interrupt pacing disable
	net: vlan: fix a UAF in vlan_dev_real_dev()
	ACPI: PMIC: Fix intel_pmic_regs_handler() read accesses
	bonding: Fix a use-after-free problem when bond_sysfs_slave_add() failed
	mm/zsmalloc.c: close race window between zs_pool_dec_isolated() and zs_unregister_migration()
	zram: off by one in read_block_state()
	perf bpf: Add missing free to bpf_event__print_bpf_prog_info()
	llc: fix out-of-bound array index in llc_sk_dev_hash()
	nfc: pn533: Fix double free when pn533_fill_fragment_skbs() fails
	arm64: pgtable: make __pte_to_phys/__phys_to_pte_val inline functions
	bpf: sockmap, strparser, and tls are reusing qdisc_skb_cb and colliding
	net/sched: sch_taprio: fix undefined behavior in ktime_mono_to_any
	net: hns3: allow configure ETS bandwidth of all TCs
	vsock: prevent unnecessary refcnt inc for nonblocking connect
	net/smc: fix sk_refcnt underflow on linkdown and fallback
	cxgb4: fix eeprom len when diagnostics not implemented
	selftests/net: udpgso_bench_rx: fix port argument
	ARM: 9155/1: fix early early_iounmap()
	ARM: 9156/1: drop cc-option fallbacks for architecture selection
	parisc: Fix backtrace to always include init funtion names
	parisc: Fix set_fixmap() on PA1.x CPUs
	irqchip/sifive-plic: Fixup EOI failed when masked
	f2fs: should use GFP_NOFS for directory inodes
	net, neigh: Enable state migration between NUD_PERMANENT and NTF_USE
	9p/net: fix missing error check in p9_check_errors
	ovl: fix deadlock in splice write
	powerpc/lib: Add helper to check if offset is within conditional branch range
	powerpc/bpf: Validate branch ranges
	powerpc/bpf: Fix BPF_SUB when imm == 0x80000000
	powerpc/security: Add a helper to query stf_barrier type
	powerpc/bpf: Emit stf barrier instruction sequences for BPF_NOSPEC
	mm, oom: pagefault_out_of_memory: don't force global OOM for dying tasks
	mm, oom: do not trigger out_of_memory from the #PF
	video: backlight: Drop maximum brightness override for brightness zero
	s390/cio: check the subchannel validity for dev_busid
	s390/tape: fix timer initialization in tape_std_assign()
	s390/cio: make ccw_device_dma_* more robust
	powerpc/powernv/prd: Unregister OPAL_MSG_PRD2 notifier during module unload
	PCI: Add PCI_EXP_DEVCTL_PAYLOAD_* macros
	SUNRPC: Partial revert of commit 6f9f17287e78
	ath10k: fix invalid dma_addr_t token assignment
	selftests/bpf: Fix also no-alu32 strobemeta selftest
	Linux 5.4.160

Note, binder* patches were manually reverted as part of this merge, they
are not present in this merge point at all.

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I1fb759dd89408adbe9b9ac1527af51bfdc4059de
2021-11-17 10:19:21 +01:00

1883 lines
54 KiB
Plaintext

# SPDX-License-Identifier: GPL-2.0
#
# Generic algorithms support
#
config XOR_BLOCKS
tristate
#
# async_tx api: hardware offloaded memory transfer/transform support
#
source "crypto/async_tx/Kconfig"
#
# Cryptographic API Configuration
#
menuconfig CRYPTO
tristate "Cryptographic API"
help
This option provides the core Cryptographic API.
if CRYPTO
comment "Crypto core or helper"
config CRYPTO_FIPS
bool "FIPS 200 compliance"
depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
depends on (MODULE_SIG || !MODULES)
help
This option enables the fips boot option which is
required if you want the system to operate in a FIPS 200
certification. You should say no unless you know what
this is.
config CRYPTO_ALGAPI
tristate
select CRYPTO_ALGAPI2
help
This option provides the API for cryptographic algorithms.
config CRYPTO_ALGAPI2
tristate
config CRYPTO_AEAD
tristate
select CRYPTO_AEAD2
select CRYPTO_ALGAPI
config CRYPTO_AEAD2
tristate
select CRYPTO_ALGAPI2
select CRYPTO_NULL2
select CRYPTO_RNG2
config CRYPTO_BLKCIPHER
tristate
select CRYPTO_BLKCIPHER2
select CRYPTO_ALGAPI
config CRYPTO_BLKCIPHER2
tristate
select CRYPTO_ALGAPI2
select CRYPTO_RNG2
config CRYPTO_HASH
tristate
select CRYPTO_HASH2
select CRYPTO_ALGAPI
config CRYPTO_HASH2
tristate
select CRYPTO_ALGAPI2
config CRYPTO_RNG
tristate
select CRYPTO_RNG2
select CRYPTO_ALGAPI
config CRYPTO_RNG2
tristate
select CRYPTO_ALGAPI2
config CRYPTO_RNG_DEFAULT
tristate
select CRYPTO_DRBG_MENU
config CRYPTO_AKCIPHER2
tristate
select CRYPTO_ALGAPI2
config CRYPTO_AKCIPHER
tristate
select CRYPTO_AKCIPHER2
select CRYPTO_ALGAPI
config CRYPTO_KPP2
tristate
select CRYPTO_ALGAPI2
config CRYPTO_KPP
tristate
select CRYPTO_ALGAPI
select CRYPTO_KPP2
config CRYPTO_ACOMP2
tristate
select CRYPTO_ALGAPI2
select SGL_ALLOC
config CRYPTO_ACOMP
tristate
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
config CRYPTO_MANAGER
tristate "Cryptographic algorithm manager"
select CRYPTO_MANAGER2
help
Create default cryptographic template instantiations such as
cbc(aes).
config CRYPTO_MANAGER2
def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
select CRYPTO_AEAD2
select CRYPTO_HASH2
select CRYPTO_BLKCIPHER2
select CRYPTO_AKCIPHER2
select CRYPTO_KPP2
select CRYPTO_ACOMP2
config CRYPTO_USER
tristate "Userspace cryptographic algorithm configuration"
depends on NET
select CRYPTO_MANAGER
help
Userspace configuration for cryptographic instantiations such as
cbc(aes).
if CRYPTO_MANAGER2
config CRYPTO_MANAGER_DISABLE_TESTS
bool "Disable run-time self tests"
default y
help
Disable run-time self tests that normally take place at
algorithm registration.
config CRYPTO_MANAGER_EXTRA_TESTS
bool "Enable extra run-time crypto self tests"
depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
help
Enable extra run-time self tests of registered crypto algorithms,
including randomized fuzz tests.
This is intended for developer use only, as these tests take much
longer to run than the normal self tests.
endif # if CRYPTO_MANAGER2
config CRYPTO_GF128MUL
tristate
config CRYPTO_NULL
tristate "Null algorithms"
select CRYPTO_NULL2
help
These are 'Null' algorithms, used by IPsec, which do nothing.
config CRYPTO_NULL2
tristate
select CRYPTO_ALGAPI2
select CRYPTO_BLKCIPHER2
select CRYPTO_HASH2
config CRYPTO_PCRYPT
tristate "Parallel crypto engine"
depends on SMP
select PADATA
select CRYPTO_MANAGER
select CRYPTO_AEAD
help
This converts an arbitrary crypto algorithm into a parallel
algorithm that executes in kernel threads.
config CRYPTO_CRYPTD
tristate "Software async crypto daemon"
select CRYPTO_BLKCIPHER
select CRYPTO_HASH
select CRYPTO_MANAGER
help
This is a generic software asynchronous crypto daemon that
converts an arbitrary synchronous software crypto algorithm
into an asynchronous algorithm that executes in a kernel thread.
config CRYPTO_AUTHENC
tristate "Authenc support"
select CRYPTO_AEAD
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
select CRYPTO_HASH
select CRYPTO_NULL
help
Authenc: Combined mode wrapper for IPsec.
This is required for IPSec.
config CRYPTO_TEST
tristate "Testing module"
depends on m
select CRYPTO_MANAGER
help
Quick & dirty crypto test module.
config CRYPTO_SIMD
tristate
select CRYPTO_CRYPTD
config CRYPTO_GLUE_HELPER_X86
tristate
depends on X86
select CRYPTO_BLKCIPHER
config CRYPTO_ENGINE
tristate
comment "Public-key cryptography"
config CRYPTO_RSA
tristate "RSA algorithm"
select CRYPTO_AKCIPHER
select CRYPTO_MANAGER
select MPILIB
select ASN1
help
Generic implementation of the RSA public key algorithm.
config CRYPTO_DH
tristate "Diffie-Hellman algorithm"
select CRYPTO_KPP
select MPILIB
help
Generic implementation of the Diffie-Hellman algorithm.
config CRYPTO_ECC
tristate
select CRYPTO_RNG_DEFAULT
config CRYPTO_ECDH
tristate "ECDH algorithm"
select CRYPTO_ECC
select CRYPTO_KPP
help
Generic implementation of the ECDH algorithm
config CRYPTO_ECRDSA
tristate "EC-RDSA (GOST 34.10) algorithm"
select CRYPTO_ECC
select CRYPTO_AKCIPHER
select CRYPTO_STREEBOG
select OID_REGISTRY
select ASN1
help
Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
standard algorithms (called GOST algorithms). Only signature verification
is implemented.
comment "Authenticated Encryption with Associated Data"
config CRYPTO_CCM
tristate "CCM support"
select CRYPTO_CTR
select CRYPTO_HASH
select CRYPTO_AEAD
select CRYPTO_MANAGER
help
Support for Counter with CBC MAC. Required for IPsec.
config CRYPTO_GCM
tristate "GCM/GMAC support"
select CRYPTO_CTR
select CRYPTO_AEAD
select CRYPTO_GHASH
select CRYPTO_NULL
select CRYPTO_MANAGER
help
Support for Galois/Counter Mode (GCM) and Galois Message
Authentication Code (GMAC). Required for IPSec.
config CRYPTO_CHACHA20POLY1305
tristate "ChaCha20-Poly1305 AEAD support"
select CRYPTO_CHACHA20
select CRYPTO_POLY1305
select CRYPTO_AEAD
select CRYPTO_MANAGER
help
ChaCha20-Poly1305 AEAD support, RFC7539.
Support for the AEAD wrapper using the ChaCha20 stream cipher combined
with the Poly1305 authenticator. It is defined in RFC7539 for use in
IETF protocols.
config CRYPTO_AEGIS128
tristate "AEGIS-128 AEAD algorithm"
select CRYPTO_AEAD
select CRYPTO_AES # for AES S-box tables
help
Support for the AEGIS-128 dedicated AEAD algorithm.
config CRYPTO_AEGIS128_SIMD
bool "Support SIMD acceleration for AEGIS-128"
depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800
default y
config CRYPTO_AEGIS128_AESNI_SSE2
tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
depends on X86 && 64BIT
select CRYPTO_AEAD
select CRYPTO_SIMD
help
AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
config CRYPTO_SEQIV
tristate "Sequence Number IV Generator"
select CRYPTO_AEAD
select CRYPTO_BLKCIPHER
select CRYPTO_NULL
select CRYPTO_RNG_DEFAULT
select CRYPTO_MANAGER
help
This IV generator generates an IV based on a sequence number by
xoring it with a salt. This algorithm is mainly useful for CTR
config CRYPTO_ECHAINIV
tristate "Encrypted Chain IV Generator"
select CRYPTO_AEAD
select CRYPTO_NULL
select CRYPTO_RNG_DEFAULT
select CRYPTO_MANAGER
help
This IV generator generates an IV based on the encryption of
a sequence number xored with a salt. This is the default
algorithm for CBC.
comment "Block modes"
config CRYPTO_CBC
tristate "CBC support"
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
help
CBC: Cipher Block Chaining mode
This block cipher algorithm is required for IPSec.
config CRYPTO_CFB
tristate "CFB support"
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
help
CFB: Cipher FeedBack mode
This block cipher algorithm is required for TPM2 Cryptography.
config CRYPTO_CTR
tristate "CTR support"
select CRYPTO_BLKCIPHER
select CRYPTO_SEQIV
select CRYPTO_MANAGER
help
CTR: Counter mode
This block cipher algorithm is required for IPSec.
config CRYPTO_CTS
tristate "CTS support"
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
help
CTS: Cipher Text Stealing
This is the Cipher Text Stealing mode as described by
Section 8 of rfc2040 and referenced by rfc3962
(rfc3962 includes errata information in its Appendix A) or
CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
This mode is required for Kerberos gss mechanism support
for AES encryption.
See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
config CRYPTO_ECB
tristate "ECB support"
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
help
ECB: Electronic CodeBook mode
This is the simplest block cipher algorithm. It simply encrypts
the input block by block.
config CRYPTO_LRW
tristate "LRW support"
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
select CRYPTO_GF128MUL
help
LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
narrow block cipher mode for dm-crypt. Use it with cipher
specification string aes-lrw-benbi, the key must be 256, 320 or 384.
The first 128, 192 or 256 bits in the key are used for AES and the
rest is used to tie each cipher block to its logical position.
config CRYPTO_OFB
tristate "OFB support"
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
help
OFB: the Output Feedback mode makes a block cipher into a synchronous
stream cipher. It generates keystream blocks, which are then XORed
with the plaintext blocks to get the ciphertext. Flipping a bit in the
ciphertext produces a flipped bit in the plaintext at the same
location. This property allows many error correcting codes to function
normally even when applied before encryption.
config CRYPTO_PCBC
tristate "PCBC support"
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
help
PCBC: Propagating Cipher Block Chaining mode
This block cipher algorithm is required for RxRPC.
config CRYPTO_XTS
tristate "XTS support"
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
select CRYPTO_ECB
help
XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
key size 256, 384 or 512 bits. This implementation currently
can't handle a sectorsize which is not a multiple of 16 bytes.
config CRYPTO_KEYWRAP
tristate "Key wrapping support"
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
help
Support for key wrapping (NIST SP800-38F / RFC3394) without
padding.
config CRYPTO_NHPOLY1305
tristate
select CRYPTO_HASH
select CRYPTO_POLY1305
config CRYPTO_NHPOLY1305_SSE2
tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
depends on X86 && 64BIT
select CRYPTO_NHPOLY1305
help
SSE2 optimized implementation of the hash function used by the
Adiantum encryption mode.
config CRYPTO_NHPOLY1305_AVX2
tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
depends on X86 && 64BIT
select CRYPTO_NHPOLY1305
help
AVX2 optimized implementation of the hash function used by the
Adiantum encryption mode.
config CRYPTO_ADIANTUM
tristate "Adiantum support"
select CRYPTO_CHACHA20
select CRYPTO_POLY1305
select CRYPTO_NHPOLY1305
select CRYPTO_MANAGER
help
Adiantum is a tweakable, length-preserving encryption mode
designed for fast and secure disk encryption, especially on
CPUs without dedicated crypto instructions. It encrypts
each sector using the XChaCha12 stream cipher, two passes of
an ε-almost-∆-universal hash function, and an invocation of
the AES-256 block cipher on a single 16-byte block. On CPUs
without AES instructions, Adiantum is much faster than
AES-XTS.
Adiantum's security is provably reducible to that of its
underlying stream and block ciphers, subject to a security
bound. Unlike XTS, Adiantum is a true wide-block encryption
mode, so it actually provides an even stronger notion of
security than XTS, subject to the security bound.
If unsure, say N.
config CRYPTO_ESSIV
tristate "ESSIV support for block encryption"
select CRYPTO_AUTHENC
help
Encrypted salt-sector initialization vector (ESSIV) is an IV
generation method that is used in some cases by fscrypt and/or
dm-crypt. It uses the hash of the block encryption key as the
symmetric key for a block encryption pass applied to the input
IV, making low entropy IV sources more suitable for block
encryption.
This driver implements a crypto API template that can be
instantiated either as an skcipher or as an AEAD (depending on the
type of the first template argument), and which defers encryption
and decryption requests to the encapsulated cipher after applying
ESSIV to the input IV. Note that in the AEAD case, it is assumed
that the keys are presented in the same format used by the authenc
template, and that the IV appears at the end of the authenticated
associated data (AAD) region (which is how dm-crypt uses it.)
Note that the use of ESSIV is not recommended for new deployments,
and so this only needs to be enabled when interoperability with
existing encrypted volumes of filesystems is required, or when
building for a particular system that requires it (e.g., when
the SoC in question has accelerated CBC but not XTS, making CBC
combined with ESSIV the only feasible mode for h/w accelerated
block encryption)
comment "Hash modes"
config CRYPTO_CMAC
tristate "CMAC support"
select CRYPTO_HASH
select CRYPTO_MANAGER
help
Cipher-based Message Authentication Code (CMAC) specified by
The National Institute of Standards and Technology (NIST).
https://tools.ietf.org/html/rfc4493
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
config CRYPTO_HMAC
tristate "HMAC support"
select CRYPTO_HASH
select CRYPTO_MANAGER
help
HMAC: Keyed-Hashing for Message Authentication (RFC2104).
This is required for IPSec.
config CRYPTO_XCBC
tristate "XCBC support"
select CRYPTO_HASH
select CRYPTO_MANAGER
help
XCBC: Keyed-Hashing with encryption algorithm
http://www.ietf.org/rfc/rfc3566.txt
http://csrc.nist.gov/encryption/modes/proposedmodes/
xcbc-mac/xcbc-mac-spec.pdf
config CRYPTO_VMAC
tristate "VMAC support"
select CRYPTO_HASH
select CRYPTO_MANAGER
help
VMAC is a message authentication algorithm designed for
very high speed on 64-bit architectures.
See also:
<http://fastcrypto.org/vmac>
comment "Digest"
config CRYPTO_CRC32C
tristate "CRC32c CRC algorithm"
select CRYPTO_HASH
select CRC32
help
Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
by iSCSI for header and data digests and by others.
See Castagnoli93. Module will be crc32c.
config CRYPTO_CRC32C_INTEL
tristate "CRC32c INTEL hardware acceleration"
depends on X86
select CRYPTO_HASH
help
In Intel processor with SSE4.2 supported, the processor will
support CRC32C implementation using hardware accelerated CRC32
instruction. This option will create 'crc32c-intel' module,
which will enable any routine to use the CRC32 instruction to
gain performance compared with software implementation.
Module will be crc32c-intel.
config CRYPTO_CRC32C_VPMSUM
tristate "CRC32c CRC algorithm (powerpc64)"
depends on PPC64 && ALTIVEC
select CRYPTO_HASH
select CRC32
help
CRC32c algorithm implemented using vector polynomial multiply-sum
(vpmsum) instructions, introduced in POWER8. Enable on POWER8
and newer processors for improved performance.
config CRYPTO_CRC32C_SPARC64
tristate "CRC32c CRC algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_HASH
select CRC32
help
CRC32c CRC algorithm implemented using sparc64 crypto instructions,
when available.
config CRYPTO_CRC32
tristate "CRC32 CRC algorithm"
select CRYPTO_HASH
select CRC32
help
CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
Shash crypto api wrappers to crc32_le function.
config CRYPTO_CRC32_PCLMUL
tristate "CRC32 PCLMULQDQ hardware acceleration"
depends on X86
select CRYPTO_HASH
select CRC32
help
From Intel Westmere and AMD Bulldozer processor with SSE4.2
and PCLMULQDQ supported, the processor will support
CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
instruction. This option will create 'crc32-pclmul' module,
which will enable any routine to use the CRC-32-IEEE 802.3 checksum
and gain better performance as compared with the table implementation.
config CRYPTO_CRC32_MIPS
tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
depends on MIPS_CRC_SUPPORT
select CRYPTO_HASH
help
CRC32c and CRC32 CRC algorithms implemented using mips crypto
instructions, when available.
config CRYPTO_XXHASH
tristate "xxHash hash algorithm"
select CRYPTO_HASH
select XXHASH
help
xxHash non-cryptographic hash algorithm. Extremely fast, working at
speeds close to RAM limits.
config CRYPTO_BLAKE2S
tristate "BLAKE2s digest algorithm"
select CRYPTO_LIB_BLAKE2S_GENERIC
select CRYPTO_HASH
help
Implementation of cryptographic hash function BLAKE2s
optimized for 8-32bit platforms and can produce digests of any size
between 1 to 32. The keyed hash is also implemented.
This module provides the following algorithms:
- blake2s-128
- blake2s-160
- blake2s-224
- blake2s-256
See https://blake2.net for further information.
config CRYPTO_BLAKE2S_X86
tristate "BLAKE2s digest algorithm (x86 accelerated version)"
depends on X86 && 64BIT
select CRYPTO_LIB_BLAKE2S_GENERIC
select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
config CRYPTO_BLAKE2B
tristate "BLAKE2b digest algorithm"
select CRYPTO_HASH
help
Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
optimized for 64bit platforms and can produce digests of any size
between 1 to 64. The keyed hash is also implemented.
This module provides the following algorithms:
- blake2b-160
- blake2b-256
- blake2b-384
- blake2b-512
See https://blake2.net for further information.
config CRYPTO_CRCT10DIF
tristate "CRCT10DIF algorithm"
select CRYPTO_HASH
help
CRC T10 Data Integrity Field computation is being cast as
a crypto transform. This allows for faster crc t10 diff
transforms to be used if they are available.
config CRYPTO_CRCT10DIF_PCLMUL
tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
depends on X86 && 64BIT && CRC_T10DIF
select CRYPTO_HASH
help
For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
CRC T10 DIF PCLMULQDQ computation can be hardware
accelerated PCLMULQDQ instruction. This option will create
'crct10dif-pclmul' module, which is faster when computing the
crct10dif checksum as compared with the generic table implementation.
config CRYPTO_CRCT10DIF_VPMSUM
tristate "CRC32T10DIF powerpc64 hardware acceleration"
depends on PPC64 && ALTIVEC && CRC_T10DIF
select CRYPTO_HASH
help
CRC10T10DIF algorithm implemented using vector polynomial
multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
POWER8 and newer processors for improved performance.
config CRYPTO_VPMSUM_TESTER
tristate "Powerpc64 vpmsum hardware acceleration tester"
depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
help
Stress test for CRC32c and CRC-T10DIF algorithms implemented with
POWER8 vpmsum instructions.
Unless you are testing these algorithms, you don't need this.
config CRYPTO_GHASH
tristate "GHASH hash function"
select CRYPTO_GF128MUL
select CRYPTO_HASH
help
GHASH is the hash function used in GCM (Galois/Counter Mode).
It is not a general-purpose cryptographic hash function.
config CRYPTO_POLY1305
tristate "Poly1305 authenticator algorithm"
select CRYPTO_HASH
help
Poly1305 authenticator algorithm, RFC7539.
Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
in IETF protocols. This is the portable C implementation of Poly1305.
config CRYPTO_POLY1305_X86_64
tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
depends on X86 && 64BIT
select CRYPTO_POLY1305
help
Poly1305 authenticator algorithm, RFC7539.
Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
in IETF protocols. This is the x86_64 assembler implementation using SIMD
instructions.
config CRYPTO_MD4
tristate "MD4 digest algorithm"
select CRYPTO_HASH
help
MD4 message digest algorithm (RFC1320).
config CRYPTO_MD5
tristate "MD5 digest algorithm"
select CRYPTO_HASH
help
MD5 message digest algorithm (RFC1321).
config CRYPTO_MD5_OCTEON
tristate "MD5 digest algorithm (OCTEON)"
depends on CPU_CAVIUM_OCTEON
select CRYPTO_MD5
select CRYPTO_HASH
help
MD5 message digest algorithm (RFC1321) implemented
using OCTEON crypto instructions, when available.
config CRYPTO_MD5_PPC
tristate "MD5 digest algorithm (PPC)"
depends on PPC
select CRYPTO_HASH
help
MD5 message digest algorithm (RFC1321) implemented
in PPC assembler.
config CRYPTO_MD5_SPARC64
tristate "MD5 digest algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_MD5
select CRYPTO_HASH
help
MD5 message digest algorithm (RFC1321) implemented
using sparc64 crypto instructions, when available.
config CRYPTO_MICHAEL_MIC
tristate "Michael MIC keyed digest algorithm"
select CRYPTO_HASH
help
Michael MIC is used for message integrity protection in TKIP
(IEEE 802.11i). This algorithm is required for TKIP, but it
should not be used for other purposes because of the weakness
of the algorithm.
config CRYPTO_RMD128
tristate "RIPEMD-128 digest algorithm"
select CRYPTO_HASH
help
RIPEMD-128 (ISO/IEC 10118-3:2004).
RIPEMD-128 is a 128-bit cryptographic hash function. It should only
be used as a secure replacement for RIPEMD. For other use cases,
RIPEMD-160 should be used.
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
config CRYPTO_RMD160
tristate "RIPEMD-160 digest algorithm"
select CRYPTO_HASH
help
RIPEMD-160 (ISO/IEC 10118-3:2004).
RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
to be used as a secure replacement for the 128-bit hash functions
MD4, MD5 and it's predecessor RIPEMD
(not to be confused with RIPEMD-128).
It's speed is comparable to SHA1 and there are no known attacks
against RIPEMD-160.
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
config CRYPTO_RMD256
tristate "RIPEMD-256 digest algorithm"
select CRYPTO_HASH
help
RIPEMD-256 is an optional extension of RIPEMD-128 with a
256 bit hash. It is intended for applications that require
longer hash-results, without needing a larger security level
(than RIPEMD-128).
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
config CRYPTO_RMD320
tristate "RIPEMD-320 digest algorithm"
select CRYPTO_HASH
help
RIPEMD-320 is an optional extension of RIPEMD-160 with a
320 bit hash. It is intended for applications that require
longer hash-results, without needing a larger security level
(than RIPEMD-160).
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
config CRYPTO_SHA1
tristate "SHA1 digest algorithm"
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
config CRYPTO_SHA1_SSSE3
tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
depends on X86 && 64BIT
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
when available.
config CRYPTO_SHA256_SSSE3
tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
depends on X86 && 64BIT
select CRYPTO_SHA256
select CRYPTO_HASH
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
Extensions version 1 (AVX1), or Advanced Vector Extensions
version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
Instructions) when available.
config CRYPTO_SHA512_SSSE3
tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
depends on X86 && 64BIT
select CRYPTO_SHA512
select CRYPTO_HASH
help
SHA-512 secure hash standard (DFIPS 180-2) implemented
using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
Extensions version 1 (AVX1), or Advanced Vector Extensions
version 2 (AVX2) instructions, when available.
config CRYPTO_SHA1_OCTEON
tristate "SHA1 digest algorithm (OCTEON)"
depends on CPU_CAVIUM_OCTEON
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using OCTEON crypto instructions, when available.
config CRYPTO_SHA1_SPARC64
tristate "SHA1 digest algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using sparc64 crypto instructions, when available.
config CRYPTO_SHA1_PPC
tristate "SHA1 digest algorithm (powerpc)"
depends on PPC
help
This is the powerpc hardware accelerated implementation of the
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
config CRYPTO_SHA1_PPC_SPE
tristate "SHA1 digest algorithm (PPC SPE)"
depends on PPC && SPE
help
SHA-1 secure hash standard (DFIPS 180-4) implemented
using powerpc SPE SIMD instruction set.
config CRYPTO_SHA256
tristate "SHA224 and SHA256 digest algorithm"
select CRYPTO_HASH
select CRYPTO_LIB_SHA256
help
SHA256 secure hash standard (DFIPS 180-2).
This version of SHA implements a 256 bit hash with 128 bits of
security against collision attacks.
This code also includes SHA-224, a 224 bit hash with 112 bits
of security against collision attacks.
config CRYPTO_SHA256_PPC_SPE
tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
depends on PPC && SPE
select CRYPTO_SHA256
select CRYPTO_HASH
help
SHA224 and SHA256 secure hash standard (DFIPS 180-2)
implemented using powerpc SPE SIMD instruction set.
config CRYPTO_SHA256_OCTEON
tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
depends on CPU_CAVIUM_OCTEON
select CRYPTO_SHA256
select CRYPTO_HASH
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using OCTEON crypto instructions, when available.
config CRYPTO_SHA256_SPARC64
tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_SHA256
select CRYPTO_HASH
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using sparc64 crypto instructions, when available.
config CRYPTO_SHA512
tristate "SHA384 and SHA512 digest algorithms"
select CRYPTO_HASH
help
SHA512 secure hash standard (DFIPS 180-2).
This version of SHA implements a 512 bit hash with 256 bits of
security against collision attacks.
This code also includes SHA-384, a 384 bit hash with 192 bits
of security against collision attacks.
config CRYPTO_SHA512_OCTEON
tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
depends on CPU_CAVIUM_OCTEON
select CRYPTO_SHA512
select CRYPTO_HASH
help
SHA-512 secure hash standard (DFIPS 180-2) implemented
using OCTEON crypto instructions, when available.
config CRYPTO_SHA512_SPARC64
tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_SHA512
select CRYPTO_HASH
help
SHA-512 secure hash standard (DFIPS 180-2) implemented
using sparc64 crypto instructions, when available.
config CRYPTO_SHA3
tristate "SHA3 digest algorithm"
select CRYPTO_HASH
help
SHA-3 secure hash standard (DFIPS 202). It's based on
cryptographic sponge function family called Keccak.
References:
http://keccak.noekeon.org/
config CRYPTO_SM3
tristate "SM3 digest algorithm"
select CRYPTO_HASH
help
SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
It is part of the Chinese Commercial Cryptography suite.
References:
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
config CRYPTO_STREEBOG
tristate "Streebog Hash Function"
select CRYPTO_HASH
help
Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
cryptographic standard algorithms (called GOST algorithms).
This setting enables two hash algorithms with 256 and 512 bits output.
References:
https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
https://tools.ietf.org/html/rfc6986
config CRYPTO_TGR192
tristate "Tiger digest algorithms"
select CRYPTO_HASH
help
Tiger hash algorithm 192, 160 and 128-bit hashes
Tiger is a hash function optimized for 64-bit processors while
still having decent performance on 32-bit processors.
Tiger was developed by Ross Anderson and Eli Biham.
See also:
<http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
config CRYPTO_WP512
tristate "Whirlpool digest algorithms"
select CRYPTO_HASH
help
Whirlpool hash algorithm 512, 384 and 256-bit hashes
Whirlpool-512 is part of the NESSIE cryptographic primitives.
Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
See also:
<http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
config CRYPTO_GHASH_CLMUL_NI_INTEL
tristate "GHASH hash function (CLMUL-NI accelerated)"
depends on X86 && 64BIT
select CRYPTO_CRYPTD
help
This is the x86_64 CLMUL-NI accelerated implementation of
GHASH, the hash function used in GCM (Galois/Counter mode).
comment "Ciphers"
config CRYPTO_AES
tristate "AES cipher algorithms"
select CRYPTO_ALGAPI
select CRYPTO_LIB_AES
help
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
config CRYPTO_AES_TI
tristate "Fixed time AES cipher"
select CRYPTO_ALGAPI
select CRYPTO_LIB_AES
help
This is a generic implementation of AES that attempts to eliminate
data dependent latencies as much as possible without affecting
performance too much. It is intended for use by the generic CCM
and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
solely on encryption (although decryption is supported as well, but
with a more dramatic performance hit)
Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
8 for decryption), this implementation only uses just two S-boxes of
256 bytes each, and attempts to eliminate data dependent latencies by
prefetching the entire table into the cache at the start of each
block. Interrupts are also disabled to avoid races where cachelines
are evicted when the CPU is interrupted to do something else.
config CRYPTO_AES_NI_INTEL
tristate "AES cipher algorithms (AES-NI)"
depends on X86
select CRYPTO_AEAD
select CRYPTO_LIB_AES
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
select CRYPTO_GLUE_HELPER_X86 if 64BIT
select CRYPTO_SIMD
help
Use Intel AES-NI instructions for AES algorithm.
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/encryption/aes/> for more information.
In addition to AES cipher algorithm support, the acceleration
for some popular block cipher mode is supported too, including
ECB, CBC, LRW, XTS. The 64 bit version has additional
acceleration for CTR.
config CRYPTO_AES_SPARC64
tristate "AES cipher algorithms (SPARC64)"
depends on SPARC64
select CRYPTO_CRYPTD
select CRYPTO_ALGAPI
help
Use SPARC64 crypto opcodes for AES algorithm.
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/encryption/aes/> for more information.
In addition to AES cipher algorithm support, the acceleration
for some popular block cipher mode is supported too, including
ECB and CBC.
config CRYPTO_AES_PPC_SPE
tristate "AES cipher algorithms (PPC SPE)"
depends on PPC && SPE
help
AES cipher algorithms (FIPS-197). Additionally the acceleration
for popular block cipher modes ECB, CBC, CTR and XTS is supported.
This module should only be used for low power (router) devices
without hardware AES acceleration (e.g. caam crypto). It reduces the
size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
timining attacks. Nevertheless it might be not as secure as other
architecture specific assembler implementations that work on 1KB
tables or 256 bytes S-boxes.
config CRYPTO_ANUBIS
tristate "Anubis cipher algorithm"
select CRYPTO_ALGAPI
help
Anubis cipher algorithm.
Anubis is a variable key length cipher which can use keys from
128 bits to 320 bits in length. It was evaluated as a entrant
in the NESSIE competition.
See also:
<https://www.cosic.esat.kuleuven.be/nessie/reports/>
<http://www.larc.usp.br/~pbarreto/AnubisPage.html>
config CRYPTO_ARC4
tristate "ARC4 cipher algorithm"
select CRYPTO_BLKCIPHER
select CRYPTO_LIB_ARC4
help
ARC4 cipher algorithm.
ARC4 is a stream cipher using keys ranging from 8 bits to 2048
bits in length. This algorithm is required for driver-based
WEP, but it should not be for other purposes because of the
weakness of the algorithm.
config CRYPTO_BLOWFISH
tristate "Blowfish cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_BLOWFISH_COMMON
help
Blowfish cipher algorithm, by Bruce Schneier.
This is a variable key length cipher which can use keys from 32
bits to 448 bits in length. It's fast, simple and specifically
designed for use on "large microprocessors".
See also:
<http://www.schneier.com/blowfish.html>
config CRYPTO_BLOWFISH_COMMON
tristate
help
Common parts of the Blowfish cipher algorithm shared by the
generic c and the assembler implementations.
See also:
<http://www.schneier.com/blowfish.html>
config CRYPTO_BLOWFISH_X86_64
tristate "Blowfish cipher algorithm (x86_64)"
depends on X86 && 64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_BLOWFISH_COMMON
help
Blowfish cipher algorithm (x86_64), by Bruce Schneier.
This is a variable key length cipher which can use keys from 32
bits to 448 bits in length. It's fast, simple and specifically
designed for use on "large microprocessors".
See also:
<http://www.schneier.com/blowfish.html>
config CRYPTO_CAMELLIA
tristate "Camellia cipher algorithms"
depends on CRYPTO
select CRYPTO_ALGAPI
help
Camellia cipher algorithms module.
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAMELLIA_X86_64
tristate "Camellia cipher algorithm (x86_64)"
depends on X86 && 64BIT
depends on CRYPTO
select CRYPTO_BLKCIPHER
select CRYPTO_GLUE_HELPER_X86
help
Camellia cipher algorithm module (x86_64).
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
depends on X86 && 64BIT
depends on CRYPTO
select CRYPTO_BLKCIPHER
select CRYPTO_CAMELLIA_X86_64
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SIMD
select CRYPTO_XTS
help
Camellia cipher algorithm module (x86_64/AES-NI/AVX).
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
depends on X86 && 64BIT
depends on CRYPTO
select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
help
Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAMELLIA_SPARC64
tristate "Camellia cipher algorithm (SPARC64)"
depends on SPARC64
depends on CRYPTO
select CRYPTO_ALGAPI
help
Camellia cipher algorithm module (SPARC64).
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAST_COMMON
tristate
help
Common parts of the CAST cipher algorithms shared by the
generic c and the assembler implementations.
config CRYPTO_CAST5
tristate "CAST5 (CAST-128) cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_CAST_COMMON
help
The CAST5 encryption algorithm (synonymous with CAST-128) is
described in RFC2144.
config CRYPTO_CAST5_AVX_X86_64
tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
depends on X86 && 64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_CAST5
select CRYPTO_CAST_COMMON
select CRYPTO_SIMD
help
The CAST5 encryption algorithm (synonymous with CAST-128) is
described in RFC2144.
This module provides the Cast5 cipher algorithm that processes
sixteen blocks parallel using the AVX instruction set.
config CRYPTO_CAST6
tristate "CAST6 (CAST-256) cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_CAST_COMMON
help
The CAST6 encryption algorithm (synonymous with CAST-256) is
described in RFC2612.
config CRYPTO_CAST6_AVX_X86_64
tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
depends on X86 && 64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_CAST6
select CRYPTO_CAST_COMMON
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SIMD
select CRYPTO_XTS
help
The CAST6 encryption algorithm (synonymous with CAST-256) is
described in RFC2612.
This module provides the Cast6 cipher algorithm that processes
eight blocks parallel using the AVX instruction set.
config CRYPTO_DES
tristate "DES and Triple DES EDE cipher algorithms"
select CRYPTO_ALGAPI
select CRYPTO_LIB_DES
help
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
config CRYPTO_DES_SPARC64
tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
depends on SPARC64
select CRYPTO_ALGAPI
select CRYPTO_LIB_DES
help
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
optimized using SPARC64 crypto opcodes.
config CRYPTO_DES3_EDE_X86_64
tristate "Triple DES EDE cipher algorithm (x86-64)"
depends on X86 && 64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_LIB_DES
help
Triple DES EDE (FIPS 46-3) algorithm.
This module provides implementation of the Triple DES EDE cipher
algorithm that is optimized for x86-64 processors. Two versions of
algorithm are provided; regular processing one input block and
one that processes three blocks parallel.
config CRYPTO_FCRYPT
tristate "FCrypt cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
help
FCrypt algorithm used by RxRPC.
config CRYPTO_KHAZAD
tristate "Khazad cipher algorithm"
select CRYPTO_ALGAPI
help
Khazad cipher algorithm.
Khazad was a finalist in the initial NESSIE competition. It is
an algorithm optimized for 64-bit processors with good performance
on 32-bit processors. Khazad uses an 128 bit key size.
See also:
<http://www.larc.usp.br/~pbarreto/KhazadPage.html>
config CRYPTO_SALSA20
tristate "Salsa20 stream cipher algorithm"
select CRYPTO_BLKCIPHER
help
Salsa20 stream cipher algorithm.
Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
The Salsa20 stream cipher algorithm is designed by Daniel J.
Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
config CRYPTO_CHACHA20
tristate "ChaCha stream cipher algorithms"
select CRYPTO_BLKCIPHER
help
The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
Bernstein and further specified in RFC7539 for use in IETF protocols.
This is the portable C implementation of ChaCha20. See also:
<http://cr.yp.to/chacha/chacha-20080128.pdf>
XChaCha20 is the application of the XSalsa20 construction to ChaCha20
rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
while provably retaining ChaCha20's security. See also:
<https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
reduced security margin but increased performance. It can be needed
in some performance-sensitive scenarios.
config CRYPTO_CHACHA20_X86_64
tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
depends on X86 && 64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_CHACHA20
help
SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
XChaCha20, and XChaCha12 stream ciphers.
config CRYPTO_SEED
tristate "SEED cipher algorithm"
select CRYPTO_ALGAPI
help
SEED cipher algorithm (RFC4269).
SEED is a 128-bit symmetric key block cipher that has been
developed by KISA (Korea Information Security Agency) as a
national standard encryption algorithm of the Republic of Korea.
It is a 16 round block cipher with the key size of 128 bit.
See also:
<http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
config CRYPTO_SERPENT
tristate "Serpent cipher algorithm"
select CRYPTO_ALGAPI
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
variant of Serpent for compatibility with old kerneli.org code.
See also:
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SERPENT_SSE2_X86_64
tristate "Serpent cipher algorithm (x86_64/SSE2)"
depends on X86 && 64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SERPENT
select CRYPTO_SIMD
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits.
This module provides Serpent cipher algorithm that processes eight
blocks parallel using SSE2 instruction set.
See also:
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SERPENT_SSE2_586
tristate "Serpent cipher algorithm (i586/SSE2)"
depends on X86 && !64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SERPENT
select CRYPTO_SIMD
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits.
This module provides Serpent cipher algorithm that processes four
blocks parallel using SSE2 instruction set.
See also:
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SERPENT_AVX_X86_64
tristate "Serpent cipher algorithm (x86_64/AVX)"
depends on X86 && 64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SERPENT
select CRYPTO_SIMD
select CRYPTO_XTS
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits.
This module provides the Serpent cipher algorithm that processes
eight blocks parallel using the AVX instruction set.
See also:
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SERPENT_AVX2_X86_64
tristate "Serpent cipher algorithm (x86_64/AVX2)"
depends on X86 && 64BIT
select CRYPTO_SERPENT_AVX_X86_64
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits.
This module provides Serpent cipher algorithm that processes 16
blocks parallel using AVX2 instruction set.
See also:
<http://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SM4
tristate "SM4 cipher algorithm"
select CRYPTO_ALGAPI
help
SM4 cipher algorithms (OSCCA GB/T 32907-2016).
SM4 (GBT.32907-2016) is a cryptographic standard issued by the
Organization of State Commercial Administration of China (OSCCA)
as an authorized cryptographic algorithms for the use within China.
SMS4 was originally created for use in protecting wireless
networks, and is mandated in the Chinese National Standard for
Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
(GB.15629.11-2003).
The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
standardized through TC 260 of the Standardization Administration
of the People's Republic of China (SAC).
The input, output, and key of SMS4 are each 128 bits.
See also: <https://eprint.iacr.org/2008/329.pdf>
If unsure, say N.
config CRYPTO_TEA
tristate "TEA, XTEA and XETA cipher algorithms"
select CRYPTO_ALGAPI
help
TEA cipher algorithm.
Tiny Encryption Algorithm is a simple cipher that uses
many rounds for security. It is very fast and uses
little memory.
Xtendend Tiny Encryption Algorithm is a modification to
the TEA algorithm to address a potential key weakness
in the TEA algorithm.
Xtendend Encryption Tiny Algorithm is a mis-implementation
of the XTEA algorithm for compatibility purposes.
config CRYPTO_TWOFISH
tristate "Twofish cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_TWOFISH_COMMON
help
Twofish cipher algorithm.
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
See also:
<http://www.schneier.com/twofish.html>
config CRYPTO_TWOFISH_COMMON
tristate
help
Common parts of the Twofish cipher algorithm shared by the
generic c and the assembler implementations.
config CRYPTO_TWOFISH_586
tristate "Twofish cipher algorithms (i586)"
depends on (X86 || UML_X86) && !64BIT
select CRYPTO_ALGAPI
select CRYPTO_TWOFISH_COMMON
help
Twofish cipher algorithm.
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
See also:
<http://www.schneier.com/twofish.html>
config CRYPTO_TWOFISH_X86_64
tristate "Twofish cipher algorithm (x86_64)"
depends on (X86 || UML_X86) && 64BIT
select CRYPTO_ALGAPI
select CRYPTO_TWOFISH_COMMON
help
Twofish cipher algorithm (x86_64).
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
See also:
<http://www.schneier.com/twofish.html>
config CRYPTO_TWOFISH_X86_64_3WAY
tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
depends on X86 && 64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_TWOFISH_COMMON
select CRYPTO_TWOFISH_X86_64
select CRYPTO_GLUE_HELPER_X86
help
Twofish cipher algorithm (x86_64, 3-way parallel).
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
This module provides Twofish cipher algorithm that processes three
blocks parallel, utilizing resources of out-of-order CPUs better.
See also:
<http://www.schneier.com/twofish.html>
config CRYPTO_TWOFISH_AVX_X86_64
tristate "Twofish cipher algorithm (x86_64/AVX)"
depends on X86 && 64BIT
select CRYPTO_BLKCIPHER
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SIMD
select CRYPTO_TWOFISH_COMMON
select CRYPTO_TWOFISH_X86_64
select CRYPTO_TWOFISH_X86_64_3WAY
help
Twofish cipher algorithm (x86_64/AVX).
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
This module provides the Twofish cipher algorithm that processes
eight blocks parallel using the AVX Instruction Set.
See also:
<http://www.schneier.com/twofish.html>
comment "Compression"
config CRYPTO_DEFLATE
tristate "Deflate compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select ZLIB_INFLATE
select ZLIB_DEFLATE
help
This is the Deflate algorithm (RFC1951), specified for use in
IPSec with the IPCOMP protocol (RFC3173, RFC2394).
You will most probably want this if using IPSec.
config CRYPTO_LZO
tristate "LZO compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select LZO_COMPRESS
select LZO_DECOMPRESS
help
This is the LZO algorithm.
config CRYPTO_842
tristate "842 compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select 842_COMPRESS
select 842_DECOMPRESS
help
This is the 842 algorithm.
config CRYPTO_LZ4
tristate "LZ4 compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select LZ4_COMPRESS
select LZ4_DECOMPRESS
help
This is the LZ4 algorithm.
config CRYPTO_LZ4HC
tristate "LZ4HC compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select LZ4HC_COMPRESS
select LZ4_DECOMPRESS
help
This is the LZ4 high compression mode algorithm.
config CRYPTO_ZSTD
tristate "Zstd compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select ZSTD_COMPRESS
select ZSTD_DECOMPRESS
help
This is the zstd algorithm.
comment "Random Number Generation"
config CRYPTO_ANSI_CPRNG
tristate "Pseudo Random Number Generation for Cryptographic modules"
select CRYPTO_AES
select CRYPTO_RNG
help
This option enables the generic pseudo random number generator
for cryptographic modules. Uses the Algorithm specified in
ANSI X9.31 A.2.4. Note that this option must be enabled if
CRYPTO_FIPS is selected
menuconfig CRYPTO_DRBG_MENU
tristate "NIST SP800-90A DRBG"
help
NIST SP800-90A compliant DRBG. In the following submenu, one or
more of the DRBG types must be selected.
if CRYPTO_DRBG_MENU
config CRYPTO_DRBG_HMAC
bool
default y
select CRYPTO_HMAC
select CRYPTO_SHA256
config CRYPTO_DRBG_HASH
bool "Enable Hash DRBG"
select CRYPTO_SHA256
help
Enable the Hash DRBG variant as defined in NIST SP800-90A.
config CRYPTO_DRBG_CTR
bool "Enable CTR DRBG"
select CRYPTO_AES
depends on CRYPTO_CTR
help
Enable the CTR DRBG variant as defined in NIST SP800-90A.
config CRYPTO_DRBG
tristate
default CRYPTO_DRBG_MENU
select CRYPTO_RNG
select CRYPTO_JITTERENTROPY
endif # if CRYPTO_DRBG_MENU
config CRYPTO_JITTERENTROPY
tristate "Jitterentropy Non-Deterministic Random Number Generator"
select CRYPTO_RNG
help
The Jitterentropy RNG is a noise that is intended
to provide seed to another RNG. The RNG does not
perform any cryptographic whitening of the generated
random numbers. This Jitterentropy RNG registers with
the kernel crypto API and can be used by any caller.
config CRYPTO_USER_API
tristate
config CRYPTO_USER_API_HASH
tristate "User-space interface for hash algorithms"
depends on NET
select CRYPTO_HASH
select CRYPTO_USER_API
help
This option enables the user-spaces interface for hash
algorithms.
config CRYPTO_USER_API_SKCIPHER
tristate "User-space interface for symmetric key cipher algorithms"
depends on NET
select CRYPTO_BLKCIPHER
select CRYPTO_USER_API
help
This option enables the user-spaces interface for symmetric
key cipher algorithms.
config CRYPTO_USER_API_RNG
tristate "User-space interface for random number generator algorithms"
depends on NET
select CRYPTO_RNG
select CRYPTO_USER_API
help
This option enables the user-spaces interface for random
number generator algorithms.
config CRYPTO_USER_API_AEAD
tristate "User-space interface for AEAD cipher algorithms"
depends on NET
select CRYPTO_AEAD
select CRYPTO_BLKCIPHER
select CRYPTO_NULL
select CRYPTO_USER_API
help
This option enables the user-spaces interface for AEAD
cipher algorithms.
config CRYPTO_STATS
bool "Crypto usage statistics for User-space"
depends on CRYPTO_USER
help
This option enables the gathering of crypto stats.
This will collect:
- encrypt/decrypt size and numbers of symmeric operations
- compress/decompress size and numbers of compress operations
- size and numbers of hash operations
- encrypt/decrypt/sign/verify numbers for asymmetric operations
- generate/seed numbers for rng operations
config CRYPTO_HASH_INFO
bool
source "lib/crypto/Kconfig"
source "drivers/crypto/Kconfig"
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
endif # if CRYPTO