[ Upstream commit cee8f4f6fcabfdf229542926128e9874d19016d5 ]
RHBZ: 1933527
Under SMB1 + POSIX, if an inode is reused on a server after we have read and
cached a part of a file, when we then open the new file with the
re-cycled inode there is a chance that we may serve the old data out of cache
to the application.
This only happens for SMB1 (deprecated) and when posix are used.
The simplest solution to avoid this race is to force a revalidate
on smb1-posix open.
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 5e46d1b78a03d52306f21f77a4e4a144b6d31486 upstream.
syzbot is reporting NULL pointer dereference at reiserfs_security_init()
[1], for commit ab17c4f02156c4f7 ("reiserfs: fixup xattr_root caching")
is assuming that REISERFS_SB(s)->xattr_root != NULL in
reiserfs_xattr_jcreate_nblocks() despite that commit made
REISERFS_SB(sb)->priv_root != NULL && REISERFS_SB(s)->xattr_root == NULL
case possible.
I guess that commit 6cb4aff0a77cc0e6 ("reiserfs: fix oops while creating
privroot with selinux enabled") wanted to check xattr_root != NULL
before reiserfs_xattr_jcreate_nblocks(), for the changelog is talking
about the xattr root.
The issue is that while creating the privroot during mount
reiserfs_security_init calls reiserfs_xattr_jcreate_nblocks which
dereferences the xattr root. The xattr root doesn't exist, so we get
an oops.
Therefore, update reiserfs_xattrs_initialized() to check both the
privroot and the xattr root.
Link: https://syzkaller.appspot.com/bug?id=8abaedbdeb32c861dc5340544284167dd0e46cde # [1]
Reported-and-tested-by: syzbot <syzbot+690cb1e51970435f9775@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: 6cb4aff0a77c ("reiserfs: fix oops while creating privroot with selinux enabled")
Acked-by: Jeff Mahoney <jeffm@suse.com>
Acked-by: Jan Kara <jack@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5dccdc5a1916d4266edd251f20bbbb113a5c495f ]
In ext4_rename(), when RENAME_WHITEOUT failed to add new entry into
directory, it ends up dropping new created whiteout inode under the
running transaction. After commit <9b88f9fb0d2> ("ext4: Do not iput inode
under running transaction"), we follow the assumptions that evict() does
not get called from a transaction context but in ext4_rename() it breaks
this suggestion. Although it's not a real problem, better to obey it, so
this patch add inode to orphan list and stop transaction before final
iput().
Signed-off-by: zhangyi (F) <yi.zhang@huawei.com>
Link: https://lore.kernel.org/r/20210303131703.330415-2-yi.zhang@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b4250dd868d1b42c0a65de11ef3afbee67ba5d2f ]
When the server tries to do a callback and a client fails it due to
authentication problems, we need the server to set callback down
flag in RENEW so that client can recover.
Suggested-by: Bruce Fields <bfields@redhat.com>
Signed-off-by: Olga Kornievskaia <kolga@netapp.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Benjamin Coddington <bcodding@redhat.com>
Link: https://lore.kernel.org/linux-nfs/FB84E90A-1A03-48B3-8BF7-D9D10AC2C9FE@oracle.com/T/#t
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5808fecc572391867fcd929662b29c12e6d08d81 ]
In case if isi.nr_pages is 0, we are making sis->pages (which is
unsigned int) a huge value in iomap_swapfile_activate() by assigning -1.
This could cause a kernel crash in kernel v4.18 (with below signature).
Or could lead to unknown issues on latest kernel if the fake big swap gets
used.
Fix this issue by returning -EINVAL in case of nr_pages is 0, since it
is anyway a invalid swapfile. Looks like this issue will be hit when
we have pagesize < blocksize type of configuration.
I was able to hit the issue in case of a tiny swap file with below
test script.
https://raw.githubusercontent.com/riteshharjani/LinuxStudy/master/scripts/swap-issue.sh
kernel crash analysis on v4.18
==============================
On v4.18 kernel, it causes a kernel panic, since sis->pages becomes
a huge value and isi.nr_extents is 0. When 0 is returned it is
considered as a swapfile over NFS and SWP_FILE is set (sis->flags |= SWP_FILE).
Then when swapoff was getting called it was calling a_ops->swap_deactivate()
if (sis->flags & SWP_FILE) is true. Since a_ops->swap_deactivate() is
NULL in case of XFS, it causes below panic.
Panic signature on v4.18 kernel:
=======================================
root@qemu:/home/qemu# [ 8291.723351] XFS (loop2): Unmounting Filesystem
[ 8292.123104] XFS (loop2): Mounting V5 Filesystem
[ 8292.132451] XFS (loop2): Ending clean mount
[ 8292.263362] Adding 4294967232k swap on /mnt1/test/swapfile. Priority:-2 extents:1 across:274877906880k
[ 8292.277834] Unable to handle kernel paging request for instruction fetch
[ 8292.278677] Faulting instruction address: 0x00000000
cpu 0x19: Vector: 400 (Instruction Access) at [c0000009dd5b7ad0]
pc: 0000000000000000
lr: c0000000003eb9dc: destroy_swap_extents+0xfc/0x120
sp: c0000009dd5b7d50
msr: 8000000040009033
current = 0xc0000009b6710080
paca = 0xc00000003ffcb280 irqmask: 0x03 irq_happened: 0x01
pid = 5604, comm = swapoff
Linux version 4.18.0 (riteshh@xxxxxxx) (gcc version 8.4.0 (Ubuntu 8.4.0-1ubuntu1~18.04)) #57 SMP Wed Mar 3 01:33:04 CST 2021
enter ? for help
[link register ] c0000000003eb9dc destroy_swap_extents+0xfc/0x120
[c0000009dd5b7d50] c0000000025a7058 proc_poll_event+0x0/0x4 (unreliable)
[c0000009dd5b7da0] c0000000003f0498 sys_swapoff+0x3f8/0x910
[c0000009dd5b7e30] c00000000000bbe4 system_call+0x5c/0x70
Exception: c01 (System Call) at 00007ffff7d208d8
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
[djwong: rework the comment to provide more details]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7005227369079963d25fb2d5d736d0feb2c44cf6 ]
When NFSD_V4 is enabled and CRYPTO is disabled,
Kbuild gives the following warning:
WARNING: unmet direct dependencies detected for CRYPTO_SHA256
Depends on [n]: CRYPTO [=n]
Selected by [y]:
- NFSD_V4 [=y] && NETWORK_FILESYSTEMS [=y] && NFSD [=y] && PROC_FS [=y]
WARNING: unmet direct dependencies detected for CRYPTO_MD5
Depends on [n]: CRYPTO [=n]
Selected by [y]:
- NFSD_V4 [=y] && NETWORK_FILESYSTEMS [=y] && NFSD [=y] && PROC_FS [=y]
This is because NFSD_V4 selects CRYPTO_MD5 and CRYPTO_SHA256,
without depending on or selecting CRYPTO, despite those config options
being subordinate to CRYPTO.
Signed-off-by: Julian Braha <julianbraha@gmail.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit efc61345274d6c7a46a0570efbc916fcbe3e927b ]
When generic/371 is run on kvm-xfstests using 5.10 and 5.11 kernels, it
fails at significant rates on the two test scenarios that disable
delayed allocation (ext3conv and data_journal) and force actual block
allocation for the fallocate and pwrite functions in the test. The
failure rate on 5.10 for both ext3conv and data_journal on one test
system typically runs about 85%. On 5.11, the failure rate on ext3conv
sometimes drops to as low as 1% while the rate on data_journal
increases to nearly 100%.
The observed failures are largely due to ext4_should_retry_alloc()
cutting off block allocation retries when s_mb_free_pending (used to
indicate that a transaction in progress will free blocks) is 0.
However, free space is usually available when this occurs during runs
of generic/371. It appears that a thread attempting to allocate
blocks is just missing transaction commits in other threads that
increase the free cluster count and reset s_mb_free_pending while
the allocating thread isn't running. Explicitly testing for free space
availability avoids this race.
The current code uses a post-increment operator in the conditional
expression that determines whether the retry limit has been exceeded.
This means that the conditional expression uses the value of the
retry counter before it's increased, resulting in an extra retry cycle.
The current code actually retries twice before hitting its retry limit
rather than once.
Increasing the retry limit to 3 from the current actual maximum retry
count of 2 in combination with the change described above reduces the
observed failure rate to less that 0.1% on both ext3conv and
data_journal with what should be limited impact on users sensitive to
the overhead caused by retries.
A per filesystem percpu counter exported via sysfs is added to allow
users or developers to track the number of times the retry limit is
exceeded without resorting to debugging methods. This should provide
some insight into worst case retry behavior.
Signed-off-by: Eric Whitney <enwlinux@gmail.com>
Link: https://lore.kernel.org/r/20210218151132.19678-1-enwlinux@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 163f0ec1df33cf468509ff38cbcbb5eb0d7fac60 upstream.
Syzbot is reporting that ext4 can enter fs reclaim from kvmalloc() while
the transaction is started like:
fs_reclaim_acquire+0x117/0x150 mm/page_alloc.c:4340
might_alloc include/linux/sched/mm.h:193 [inline]
slab_pre_alloc_hook mm/slab.h:493 [inline]
slab_alloc_node mm/slub.c:2817 [inline]
__kmalloc_node+0x5f/0x430 mm/slub.c:4015
kmalloc_node include/linux/slab.h:575 [inline]
kvmalloc_node+0x61/0xf0 mm/util.c:587
kvmalloc include/linux/mm.h:781 [inline]
ext4_xattr_inode_cache_find fs/ext4/xattr.c:1465 [inline]
ext4_xattr_inode_lookup_create fs/ext4/xattr.c:1508 [inline]
ext4_xattr_set_entry+0x1ce6/0x3780 fs/ext4/xattr.c:1649
ext4_xattr_ibody_set+0x78/0x2b0 fs/ext4/xattr.c:2224
ext4_xattr_set_handle+0x8f4/0x13e0 fs/ext4/xattr.c:2380
ext4_xattr_set+0x13a/0x340 fs/ext4/xattr.c:2493
This should be impossible since transaction start sets PF_MEMALLOC_NOFS.
Add some assertions to the code to catch if something isn't working as
expected early.
Link: https://lore.kernel.org/linux-ext4/000000000000563a0205bafb7970@google.com/
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20210222171626.21884-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8b44ca2b634527151af07447a8090a5f3a043321 upstream.
The checks for maximum metadata block size is missing
SQUASHFS_BLOCK_OFFSET (the two byte length count).
Link: https://lkml.kernel.org/r/2069685113.2081245.1614583677427@webmail.123-reg.co.uk
Fixes: f37aa4c7366e23f ("squashfs: add more sanity checks in id lookup")
Signed-off-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Sean Nyekjaer <sean@geanix.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c1b2028315c6b15e8d6725e0d5884b15887d3daa upstream.
When mouting a squashfs image created without inode compression it fails
with: "unable to read inode lookup table"
It turns out that the BLOCK_OFFSET is missing when checking the
SQUASHFS_METADATA_SIZE agaist the actual size.
Link: https://lkml.kernel.org/r/20210226092903.1473545-1-sean@geanix.com
Fixes: eabac19e40c0 ("squashfs: add more sanity checks in inode lookup")
Signed-off-by: Sean Nyekjaer <sean@geanix.com>
Acked-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4f8be1f53bf615102d103c0509ffa9596f65b718 ]
The NFSv4 protocol doesn't have any notion of reomoving an attribute, so
removexattr(path,"system.nfs4_acl") doesn't make sense.
There's no documented return value. Arguably it could be EOPNOTSUPP but
I'm a little worried an application might take that to mean that we
don't support ACLs or xattrs. How about EINVAL?
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e3d100eae44b42f309c1366efb8397368f1cf8ed ]
A customer has reported that their dmesg were being flooded by
CIFS: VFS: \\server Cancelling wait for mid xxx cmd: a
CIFS: VFS: \\server Cancelling wait for mid yyy cmd: b
CIFS: VFS: \\server Cancelling wait for mid zzz cmd: c
because some processes that were performing statfs(2) on the share had
been interrupted due to their automount setup when certain users
logged in and out.
Change it to FYI as they should be mostly informative rather than
error messages.
Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Reviewed-by: Aurelien Aptel <aaptel@suse.com>
Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ad3dbe35c833c2d4d0bbf3f04c785d32f931e7c9 ]
CREATE requests return a post_op_fh3, rather than nfs_fh3. The
post_op_fh3 includes an extra word to indicate 'handle_follows'.
Without that additional word, create fails when full 64-byte
filehandles are in use.
Add NFS3_post_op_fh_sz, and correct the size calculation for
NFS3_createres_sz.
Signed-off-by: Frank Sorenson <sorenson@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a0590473c5e6c4ef17c3132ad08fbad170f72d55 ]
This follows what was done in 8c2fabc6542d9d0f8b16bd1045c2eda59bdcde13.
With the default being m, it's impossible to build the module into the
kernel.
Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 88fd98a2306755b965e4f4567f84e73db3b6738c ]
When doing a large read or write workload we only
very gradually increase the number of credits
which can cause problems with parallelizing large i/o
(I/O ramps up more slowly than it should for large
read/write workloads) especially with multichannel
when the number of credits on the secondary channels
starts out low (e.g. less than about 130) or when
recovering after server throttled back the number
of credit.
Signed-off-by: Aurelien Aptel <aaptel@suse.com>
Reviewed-by: Shyam Prasad N <sprasad@microsoft.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 552546366a30d88bd1d6f5efe848b2ab50fd57e5 upstream.
A new clang diagnostic (-Wsizeof-array-div) warns about the calculation
to determine the number of u32's in an array of unsigned longs.
Suppress warning by adding parentheses.
While looking at the above issue, noticed that the 'address' parameter
to hugetlb_fault_mutex_hash is no longer used. So, remove it from the
definition and all callers.
No functional change.
Link: http://lkml.kernel.org/r/20190919011847.18400-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Ilie Halip <ilie.halip@gmail.com>
Cc: David Bolvansky <david.bolvansky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 05946d4b7a7349ae58bfa2d51ae832e64a394c2d upstream.
smb311_update_preauth_hash() uses the shash in server->secmech without
appropriate locking, and this can lead to sessions corrupting each
other's preauth hashes.
The following script can easily trigger the problem:
#!/bin/sh -e
NMOUNTS=10
for i in $(seq $NMOUNTS);
mkdir -p /tmp/mnt$i
umount /tmp/mnt$i 2>/dev/null || :
done
while :; do
for i in $(seq $NMOUNTS); do
mount -t cifs //192.168.0.1/test /tmp/mnt$i -o ... &
done
wait
for i in $(seq $NMOUNTS); do
umount /tmp/mnt$i
done
done
Usually within seconds this leads to one or more of the mounts failing
with the following errors, and a "Bad SMB2 signature for message" is
seen in the server logs:
CIFS: VFS: \\192.168.0.1 failed to connect to IPC (rc=-13)
CIFS: VFS: cifs_mount failed w/return code = -13
Fix it by holding the server mutex just like in the other places where
the shashes are used.
Fixes: 8bd68c6e47abff34e4 ("CIFS: implement v3.11 preauth integrity")
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
CC: <stable@vger.kernel.org>
Reviewed-by: Aurelien Aptel <aaptel@suse.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
[aaptel: backport to kernel without CIFS_SESS_OP]
Signed-off-by: Aurelien Aptel <aaptel@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7d8bd3c76da1d94b85e6c9b7007e20e980bfcfe6 upstream.
If set_large_file = 1 and errors occur in ext4_handle_dirty_metadata(),
the error code will be overridden, go to out_brelse to avoid this
situation.
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Link: https://lore.kernel.org/r/20210312065051.36314-1-luoshijie1@huawei.com
Cc: stable@kernel.org
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6b22489911b726eebbf169caee52fea52013fbdd upstream.
Syzbot report a warning that ext4 may create an empty ea_inode if set
an empty extent attribute to a file on the file system which is no free
blocks left.
WARNING: CPU: 6 PID: 10667 at fs/ext4/xattr.c:1640 ext4_xattr_set_entry+0x10f8/0x1114 fs/ext4/xattr.c:1640
...
Call trace:
ext4_xattr_set_entry+0x10f8/0x1114 fs/ext4/xattr.c:1640
ext4_xattr_block_set+0x1d0/0x1b1c fs/ext4/xattr.c:1942
ext4_xattr_set_handle+0x8a0/0xf1c fs/ext4/xattr.c:2390
ext4_xattr_set+0x120/0x1f0 fs/ext4/xattr.c:2491
ext4_xattr_trusted_set+0x48/0x5c fs/ext4/xattr_trusted.c:37
__vfs_setxattr+0x208/0x23c fs/xattr.c:177
...
Now, ext4 try to store extent attribute into an external inode if
ext4_xattr_block_set() return -ENOSPC, but for the case of store an
empty extent attribute, store the extent entry into the extent
attribute block is enough. A simple reproduce below.
fallocate test.img -l 1M
mkfs.ext4 -F -b 2048 -O ea_inode test.img
mount test.img /mnt
dd if=/dev/zero of=/mnt/foo bs=2048 count=500
setfattr -n "user.test" /mnt/foo
Reported-by: syzbot+98b881fdd8ebf45ab4ae@syzkaller.appspotmail.com
Fixes: 9c6e7853c531 ("ext4: reserve space for xattr entries/names")
Cc: stable@kernel.org
Signed-off-by: zhangyi (F) <yi.zhang@huawei.com>
Link: https://lore.kernel.org/r/20210305120508.298465-1-yi.zhang@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b7ff91fd030dc9d72ed91b1aab36e445a003af4f upstream.
If we failed to add new entry on rename whiteout, we cannot reset the
old->de entry directly, because the old->de could have moved from under
us during make indexed dir. So find the old entry again before reset is
needed, otherwise it may corrupt the filesystem as below.
/dev/sda: Entry '00000001' in ??? (12) has deleted/unused inode 15. CLEARED.
/dev/sda: Unattached inode 75
/dev/sda: UNEXPECTED INCONSISTENCY; RUN fsck MANUALLY.
Fixes: 6b4b8e6b4ad ("ext4: fix bug for rename with RENAME_WHITEOUT")
Cc: stable@vger.kernel.org
Signed-off-by: zhangyi (F) <yi.zhang@huawei.com>
Link: https://lore.kernel.org/r/20210303131703.330415-1-yi.zhang@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5abbe51a526253b9f003e9a0a195638dc882d660 upstream.
Preparation for fixing get_nr_restart_syscall() on X86 for COMPAT.
Add a new helper which sets restart_block->fn and calls a dummy
arch_set_restart_data() helper.
Fixes: 609c19a385c8 ("x86/ptrace: Stop setting TS_COMPAT in ptrace code")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210201174641.GA17871@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d30881f573e565ebb5dbb50b31ed6106b5c81328 upstream.
If a file is unhashed, then we're going to reject it anyway and retry,
so make sure we skip it when we're doing the RCU lockless lookup.
This avoids a number of unnecessary nfserr_jukebox returns from
nfsd_file_acquire()
Fixes: 65294c1f2c5e ("nfsd: add a new struct file caching facility to nfsd")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a7889c6320b9200e3fe415238f546db677310fa9 upstream.
afs_listxattr() lists all the available special afs xattrs (i.e. those in
the "afs.*" space), no matter what type of server we're dealing with. But
OpenAFS servers, for example, cannot deal with some of the extra-capable
attributes that AuriStor (YFS) servers provide. Unfortunately, the
presence of the afs.yfs.* attributes causes errors[1] for anything that
tries to read them if the server is of the wrong type.
Fix the problem by removing afs_listxattr() so that none of the special
xattrs are listed (AFS doesn't support xattrs). It does mean, however,
that getfattr won't list them, though they can still be accessed with
getxattr() and setxattr().
This can be tested with something like:
getfattr -d -m ".*" /afs/example.com/path/to/file
With this change, none of the afs.* attributes should be visible.
Changes:
ver #2:
- Hide all of the afs.* xattrs, not just the ACL ones.
Fixes: ae46578b963f ("afs: Get YFS ACLs and information through xattrs")
Reported-by: Gaja Sophie Peters <gaja.peters@math.uni-hamburg.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Gaja Sophie Peters <gaja.peters@math.uni-hamburg.de>
Reviewed-by: Jeffrey Altman <jaltman@auristor.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: http://lists.infradead.org/pipermail/linux-afs/2021-March/003502.html [1]
Link: http://lists.infradead.org/pipermail/linux-afs/2021-March/003567.html # v1
Link: http://lists.infradead.org/pipermail/linux-afs/2021-March/003573.html # v2
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 34e49994d0dcdb2d31d4d2908d04f4e9ce57e4d7 upstream.
The free space tree bitmap slab cache is created with SLAB_RED_ZONE but
that's a debugging flag and not always enabled. Also the other slabs are
created with at least SLAB_MEM_SPREAD that we want as well to average
the memory placement cost.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 3acd48507dc4 ("btrfs: fix allocation of free space cache v1 bitmap pages")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dbcc7d57bffc0c8cac9dac11bec548597d59a6a5 upstream.
While resolving backreferences, as part of a logical ino ioctl call or
fiemap, we can end up hitting a BUG_ON() when replaying tree mod log
operations of a root, triggering a stack trace like the following:
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:1210!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 1 PID: 19054 Comm: crawl_335 Tainted: G W 5.11.0-2d11c0084b02-misc-next+ #89
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:__tree_mod_log_rewind+0x3b1/0x3c0
Code: 05 48 8d 74 10 (...)
RSP: 0018:ffffc90001eb70b8 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffff88812344e400 RCX: ffffffffb28933b6
RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff88812344e42c
RBP: ffffc90001eb7108 R08: 1ffff11020b60a20 R09: ffffed1020b60a20
R10: ffff888105b050f9 R11: ffffed1020b60a1f R12: 00000000000000ee
R13: ffff8880195520c0 R14: ffff8881bc958500 R15: ffff88812344e42c
FS: 00007fd1955e8700(0000) GS:ffff8881f5600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007efdb7928718 CR3: 000000010103a006 CR4: 0000000000170ee0
Call Trace:
btrfs_search_old_slot+0x265/0x10d0
? lock_acquired+0xbb/0x600
? btrfs_search_slot+0x1090/0x1090
? free_extent_buffer.part.61+0xd7/0x140
? free_extent_buffer+0x13/0x20
resolve_indirect_refs+0x3e9/0xfc0
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? add_prelim_ref.part.11+0x150/0x150
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x600
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? rb_insert_color+0x30/0x360
? prelim_ref_insert+0x12d/0x430
find_parent_nodes+0x5c3/0x1830
? resolve_indirect_refs+0xfc0/0xfc0
? lock_release+0xc8/0x620
? fs_reclaim_acquire+0x67/0xf0
? lock_acquire+0xc7/0x510
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x160/0x210
? lock_release+0xc8/0x620
? fs_reclaim_acquire+0x67/0xf0
? lock_acquire+0xc7/0x510
? poison_range+0x38/0x40
? unpoison_range+0x14/0x40
? trace_hardirqs_on+0x55/0x120
btrfs_find_all_roots_safe+0x142/0x1e0
? find_parent_nodes+0x1830/0x1830
? btrfs_inode_flags_to_xflags+0x50/0x50
iterate_extent_inodes+0x20e/0x580
? tree_backref_for_extent+0x230/0x230
? lock_downgrade+0x3d0/0x3d0
? read_extent_buffer+0xdd/0x110
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x600
? __kasan_check_write+0x14/0x20
? _raw_spin_unlock+0x22/0x30
? __kasan_check_write+0x14/0x20
iterate_inodes_from_logical+0x129/0x170
? iterate_inodes_from_logical+0x129/0x170
? btrfs_inode_flags_to_xflags+0x50/0x50
? iterate_extent_inodes+0x580/0x580
? __vmalloc_node+0x92/0xb0
? init_data_container+0x34/0xb0
? init_data_container+0x34/0xb0
? kvmalloc_node+0x60/0x80
btrfs_ioctl_logical_to_ino+0x158/0x230
btrfs_ioctl+0x205e/0x4040
? __might_sleep+0x71/0xe0
? btrfs_ioctl_get_supported_features+0x30/0x30
? getrusage+0x4b6/0x9c0
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x620
? __might_fault+0x64/0xd0
? lock_acquire+0xc7/0x510
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x210/0x210
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x620
? __task_pid_nr_ns+0xd3/0x250
? lock_acquire+0xc7/0x510
? __fget_files+0x160/0x230
? __fget_light+0xf2/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fd1976e2427
Code: 00 00 90 48 8b 05 (...)
RSP: 002b:00007fd1955e5cf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fd1955e5f40 RCX: 00007fd1976e2427
RDX: 00007fd1955e5f48 RSI: 00000000c038943b RDI: 0000000000000004
RBP: 0000000001000000 R08: 0000000000000000 R09: 00007fd1955e6120
R10: 0000557835366b00 R11: 0000000000000246 R12: 0000000000000004
R13: 00007fd1955e5f48 R14: 00007fd1955e5f40 R15: 00007fd1955e5ef8
Modules linked in:
---[ end trace ec8931a1c36e57be ]---
(gdb) l *(__tree_mod_log_rewind+0x3b1)
0xffffffff81893521 is in __tree_mod_log_rewind (fs/btrfs/ctree.c:1210).
1205 * the modification. as we're going backwards, we do the
1206 * opposite of each operation here.
1207 */
1208 switch (tm->op) {
1209 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1210 BUG_ON(tm->slot < n);
1211 fallthrough;
1212 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1213 case MOD_LOG_KEY_REMOVE:
1214 btrfs_set_node_key(eb, &tm->key, tm->slot);
Here's what happens to hit that BUG_ON():
1) We have one tree mod log user (through fiemap or the logical ino ioctl),
with a sequence number of 1, so we have fs_info->tree_mod_seq == 1;
2) Another task is at ctree.c:balance_level() and we have eb X currently as
the root of the tree, and we promote its single child, eb Y, as the new
root.
Then, at ctree.c:balance_level(), we call:
tree_mod_log_insert_root(eb X, eb Y, 1);
3) At tree_mod_log_insert_root() we create tree mod log elements for each
slot of eb X, of operation type MOD_LOG_KEY_REMOVE_WHILE_FREEING each
with a ->logical pointing to ebX->start. These are placed in an array
named tm_list.
Lets assume there are N elements (N pointers in eb X);
4) Then, still at tree_mod_log_insert_root(), we create a tree mod log
element of operation type MOD_LOG_ROOT_REPLACE, ->logical set to
ebY->start, ->old_root.logical set to ebX->start, ->old_root.level set
to the level of eb X and ->generation set to the generation of eb X;
5) Then tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
tm_list as argument. After that, tree_mod_log_free_eb() calls
__tree_mod_log_insert() for each member of tm_list in reverse order,
from highest slot in eb X, slot N - 1, to slot 0 of eb X;
6) __tree_mod_log_insert() sets the sequence number of each given tree mod
log operation - it increments fs_info->tree_mod_seq and sets
fs_info->tree_mod_seq as the sequence number of the given tree mod log
operation.
This means that for the tm_list created at tree_mod_log_insert_root(),
the element corresponding to slot 0 of eb X has the highest sequence
number (1 + N), and the element corresponding to the last slot has the
lowest sequence number (2);
7) Then, after inserting tm_list's elements into the tree mod log rbtree,
the MOD_LOG_ROOT_REPLACE element is inserted, which gets the highest
sequence number, which is N + 2;
8) Back to ctree.c:balance_level(), we free eb X by calling
btrfs_free_tree_block() on it. Because eb X was created in the current
transaction, has no other references and writeback did not happen for
it, we add it back to the free space cache/tree;
9) Later some other task T allocates the metadata extent from eb X, since
it is marked as free space in the space cache/tree, and uses it as a
node for some other btree;
10) The tree mod log user task calls btrfs_search_old_slot(), which calls
get_old_root(), and finally that calls __tree_mod_log_oldest_root()
with time_seq == 1 and eb_root == eb Y;
11) First iteration of the while loop finds the tree mod log element with
sequence number N + 2, for the logical address of eb Y and of type
MOD_LOG_ROOT_REPLACE;
12) Because the operation type is MOD_LOG_ROOT_REPLACE, we don't break out
of the loop, and set root_logical to point to tm->old_root.logical
which corresponds to the logical address of eb X;
13) On the next iteration of the while loop, the call to
tree_mod_log_search_oldest() returns the smallest tree mod log element
for the logical address of eb X, which has a sequence number of 2, an
operation type of MOD_LOG_KEY_REMOVE_WHILE_FREEING and corresponds to
the old slot N - 1 of eb X (eb X had N items in it before being freed);
14) We then break out of the while loop and return the tree mod log operation
of type MOD_LOG_ROOT_REPLACE (eb Y), and not the one for slot N - 1 of
eb X, to get_old_root();
15) At get_old_root(), we process the MOD_LOG_ROOT_REPLACE operation
and set "logical" to the logical address of eb X, which was the old
root. We then call tree_mod_log_search() passing it the logical
address of eb X and time_seq == 1;
16) Then before calling tree_mod_log_search(), task T adds a key to eb X,
which results in adding a tree mod log operation of type
MOD_LOG_KEY_ADD to the tree mod log - this is done at
ctree.c:insert_ptr() - but after adding the tree mod log operation
and before updating the number of items in eb X from 0 to 1...
17) The task at get_old_root() calls tree_mod_log_search() and gets the
tree mod log operation of type MOD_LOG_KEY_ADD just added by task T.
Then it enters the following if branch:
if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
(...)
} (...)
Calls read_tree_block() for eb X, which gets a reference on eb X but
does not lock it - task T has it locked.
Then it clones eb X while it has nritems set to 0 in its header, before
task T sets nritems to 1 in eb X's header. From hereupon we use the
clone of eb X which no other task has access to;
18) Then we call __tree_mod_log_rewind(), passing it the MOD_LOG_KEY_ADD
mod log operation we just got from tree_mod_log_search() in the
previous step and the cloned version of eb X;
19) At __tree_mod_log_rewind(), we set the local variable "n" to the number
of items set in eb X's clone, which is 0. Then we enter the while loop,
and in its first iteration we process the MOD_LOG_KEY_ADD operation,
which just decrements "n" from 0 to (u32)-1, since "n" is declared with
a type of u32. At the end of this iteration we call rb_next() to find the
next tree mod log operation for eb X, that gives us the mod log operation
of type MOD_LOG_KEY_REMOVE_WHILE_FREEING, for slot 0, with a sequence
number of N + 1 (steps 3 to 6);
20) Then we go back to the top of the while loop and trigger the following
BUG_ON():
(...)
switch (tm->op) {
case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
BUG_ON(tm->slot < n);
fallthrough;
(...)
Because "n" has a value of (u32)-1 (4294967295) and tm->slot is 0.
Fix this by taking a read lock on the extent buffer before cloning it at
ctree.c:get_old_root(). This should be done regardless of the extent
buffer having been freed and reused, as a concurrent task might be
modifying it (while holding a write lock on it).
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210227155037.GN28049@hungrycats.org/
Fixes: 834328a8493079 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b12de52896c0e8213f70e3a168fde9e6eee95909 upstream.
[BUG]
When running btrfs/072 with only one online CPU, it has a pretty high
chance to fail:
# btrfs/072 12s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//btrfs/072.dmesg)
# - output mismatch (see xfstests-dev/results//btrfs/072.out.bad)
# --- tests/btrfs/072.out 2019-10-22 15:18:14.008965340 +0800
# +++ /xfstests-dev/results//btrfs/072.out.bad 2019-11-14 15:56:45.877152240 +0800
# @@ -1,2 +1,3 @@
# QA output created by 072
# Silence is golden
# +Scrub find errors in "-m dup -d single" test
# ...
And with the following call trace:
BTRFS info (device dm-5): scrub: started on devid 1
------------[ cut here ]------------
BTRFS: Transaction aborted (error -27)
WARNING: CPU: 0 PID: 55087 at fs/btrfs/block-group.c:1890 btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs]
CPU: 0 PID: 55087 Comm: btrfs Tainted: G W O 5.4.0-rc1-custom+ #13
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs]
Call Trace:
__btrfs_end_transaction+0xdb/0x310 [btrfs]
btrfs_end_transaction+0x10/0x20 [btrfs]
btrfs_inc_block_group_ro+0x1c9/0x210 [btrfs]
scrub_enumerate_chunks+0x264/0x940 [btrfs]
btrfs_scrub_dev+0x45c/0x8f0 [btrfs]
btrfs_ioctl+0x31a1/0x3fb0 [btrfs]
do_vfs_ioctl+0x636/0xaa0
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x43/0x50
do_syscall_64+0x79/0xe0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
---[ end trace 166c865cec7688e7 ]---
[CAUSE]
The error number -27 is -EFBIG, returned from the following call chain:
btrfs_end_transaction()
|- __btrfs_end_transaction()
|- btrfs_create_pending_block_groups()
|- btrfs_finish_chunk_alloc()
|- btrfs_add_system_chunk()
This happens because we have used up all space of
btrfs_super_block::sys_chunk_array.
The root cause is, we have the following bad loop of creating tons of
system chunks:
1. The only SYSTEM chunk is being scrubbed
It's very common to have only one SYSTEM chunk.
2. New SYSTEM bg will be allocated
As btrfs_inc_block_group_ro() will check if we have enough space
after marking current bg RO. If not, then allocate a new chunk.
3. New SYSTEM bg is still empty, will be reclaimed
During the reclaim, we will mark it RO again.
4. That newly allocated empty SYSTEM bg get scrubbed
We go back to step 2, as the bg is already mark RO but still not
cleaned up yet.
If the cleaner kthread doesn't get executed fast enough (e.g. only one
CPU), then we will get more and more empty SYSTEM chunks, using up all
the space of btrfs_super_block::sys_chunk_array.
[FIX]
Since scrub/dev-replace doesn't always need to allocate new extent,
especially chunk tree extent, so we don't really need to do chunk
pre-allocation.
To break above spiral, here we introduce a new parameter to
btrfs_inc_block_group(), @do_chunk_alloc, which indicates whether we
need extra chunk pre-allocation.
For relocation, we pass @do_chunk_alloc=true, while for scrub, we pass
@do_chunk_alloc=false.
This should keep unnecessary empty chunks from popping up for scrub.
Also, since there are two parameters for btrfs_inc_block_group_ro(),
add more comment for it.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e7850f4d844e0acfac7e570af611d89deade3146 upstream.
There is a deadlock in bm_register_write:
First, in the begining of the function, a lock is taken on the binfmt_misc
root inode with inode_lock(d_inode(root)).
Then, if the user used the MISC_FMT_OPEN_FILE flag, the function will call
open_exec on the user-provided interpreter.
open_exec will call a path lookup, and if the path lookup process includes
the root of binfmt_misc, it will try to take a shared lock on its inode
again, but it is already locked, and the code will get stuck in a deadlock
To reproduce the bug:
$ echo ":iiiii:E::ii::/proc/sys/fs/binfmt_misc/bla:F" > /proc/sys/fs/binfmt_misc/register
backtrace of where the lock occurs (#5):
0 schedule () at ./arch/x86/include/asm/current.h:15
1 0xffffffff81b51237 in rwsem_down_read_slowpath (sem=0xffff888003b202e0, count=<optimized out>, state=state@entry=2) at kernel/locking/rwsem.c:992
2 0xffffffff81b5150a in __down_read_common (state=2, sem=<optimized out>) at kernel/locking/rwsem.c:1213
3 __down_read (sem=<optimized out>) at kernel/locking/rwsem.c:1222
4 down_read (sem=<optimized out>) at kernel/locking/rwsem.c:1355
5 0xffffffff811ee22a in inode_lock_shared (inode=<optimized out>) at ./include/linux/fs.h:783
6 open_last_lookups (op=0xffffc9000022fe34, file=0xffff888004098600, nd=0xffffc9000022fd10) at fs/namei.c:3177
7 path_openat (nd=nd@entry=0xffffc9000022fd10, op=op@entry=0xffffc9000022fe34, flags=flags@entry=65) at fs/namei.c:3366
8 0xffffffff811efe1c in do_filp_open (dfd=<optimized out>, pathname=pathname@entry=0xffff8880031b9000, op=op@entry=0xffffc9000022fe34) at fs/namei.c:3396
9 0xffffffff811e493f in do_open_execat (fd=fd@entry=-100, name=name@entry=0xffff8880031b9000, flags=<optimized out>, flags@entry=0) at fs/exec.c:913
10 0xffffffff811e4a92 in open_exec (name=<optimized out>) at fs/exec.c:948
11 0xffffffff8124aa84 in bm_register_write (file=<optimized out>, buffer=<optimized out>, count=19, ppos=<optimized out>) at fs/binfmt_misc.c:682
12 0xffffffff811decd2 in vfs_write (file=file@entry=0xffff888004098500, buf=buf@entry=0xa758d0 ":iiiii:E::ii::i:CF
", count=count@entry=19, pos=pos@entry=0xffffc9000022ff10) at fs/read_write.c:603
13 0xffffffff811defda in ksys_write (fd=<optimized out>, buf=0xa758d0 ":iiiii:E::ii::i:CF
", count=19) at fs/read_write.c:658
14 0xffffffff81b49813 in do_syscall_64 (nr=<optimized out>, regs=0xffffc9000022ff58) at arch/x86/entry/common.c:46
15 0xffffffff81c0007c in entry_SYSCALL_64 () at arch/x86/entry/entry_64.S:120
To solve the issue, the open_exec call is moved to before the write
lock is taken by bm_register_write
Link: https://lkml.kernel.org/r/20210228224414.95962-1-liorribak@gmail.com
Fixes: 948b701a607f1 ("binfmt_misc: add persistent opened binary handler for containers")
Signed-off-by: Lior Ribak <liorribak@gmail.com>
Acked-by: Helge Deller <deller@gmx.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 14fbbc8297728e880070f7b077b3301a8c698ef9 ]
Commit b0841eefd969 ("configfs: provide exclusion between IO and removals")
uses ->frag_dead to mark the fragment state, thus no bothering with extra
refcount on config_item when opening a file. The configfs_get_config_item
was removed in __configfs_open_file, but not with config_item_put. So the
refcount on config_item will lost its balance, causing use-after-free
issues in some occasions like this:
Test:
1. Mount configfs on /config with read-only items:
drwxrwx--- 289 root root 0 2021-04-01 11:55 /config
drwxr-xr-x 2 root root 0 2021-04-01 11:54 /config/a
--w--w--w- 1 root root 4096 2021-04-01 11:53 /config/a/1.txt
......
2. Then run:
for file in /config
do
echo $file
grep -R 'key' $file
done
3. __configfs_open_file will be called in parallel, the first one
got called will do:
if (file->f_mode & FMODE_READ) {
if (!(inode->i_mode & S_IRUGO))
goto out_put_module;
config_item_put(buffer->item);
kref_put()
package_details_release()
kfree()
the other one will run into use-after-free issues like this:
BUG: KASAN: use-after-free in __configfs_open_file+0x1bc/0x3b0
Read of size 8 at addr fffffff155f02480 by task grep/13096
CPU: 0 PID: 13096 Comm: grep VIP: 00 Tainted: G W 4.14.116-kasan #1
TGID: 13096 Comm: grep
Call trace:
dump_stack+0x118/0x160
kasan_report+0x22c/0x294
__asan_load8+0x80/0x88
__configfs_open_file+0x1bc/0x3b0
configfs_open_file+0x28/0x34
do_dentry_open+0x2cc/0x5c0
vfs_open+0x80/0xe0
path_openat+0xd8c/0x2988
do_filp_open+0x1c4/0x2fc
do_sys_open+0x23c/0x404
SyS_openat+0x38/0x48
Allocated by task 2138:
kasan_kmalloc+0xe0/0x1ac
kmem_cache_alloc_trace+0x334/0x394
packages_make_item+0x4c/0x180
configfs_mkdir+0x358/0x740
vfs_mkdir2+0x1bc/0x2e8
SyS_mkdirat+0x154/0x23c
el0_svc_naked+0x34/0x38
Freed by task 13096:
kasan_slab_free+0xb8/0x194
kfree+0x13c/0x910
package_details_release+0x524/0x56c
kref_put+0xc4/0x104
config_item_put+0x24/0x34
__configfs_open_file+0x35c/0x3b0
configfs_open_file+0x28/0x34
do_dentry_open+0x2cc/0x5c0
vfs_open+0x80/0xe0
path_openat+0xd8c/0x2988
do_filp_open+0x1c4/0x2fc
do_sys_open+0x23c/0x404
SyS_openat+0x38/0x48
el0_svc_naked+0x34/0x38
To fix this issue, remove the config_item_put in
__configfs_open_file to balance the refcount of config_item.
Fixes: b0841eefd969 ("configfs: provide exclusion between IO and removals")
Signed-off-by: Daiyue Zhang <zhangdaiyue1@huawei.com>
Signed-off-by: Yi Chen <chenyi77@huawei.com>
Signed-off-by: Ge Qiu <qiuge@huawei.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 53cb245454df5b13d7063162afd7a785aed6ebf2 ]
An xattr 'get' handler is expected to return the length of the value on
success, yet _nfs4_get_security_label() (and consequently also
nfs4_xattr_get_nfs4_label(), which is used as an xattr handler) returns
just 0 on success.
Fix this by returning label.len instead, which contains the length of
the result.
Fixes: aa9c2669626c ("NFS: Client implementation of Labeled-NFS")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Reviewed-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 47397915ede0192235474b145ebcd81b37b03624 ]
The fact that the lookup revalidation failed, does not mean that the
inode contents have changed.
Fixes: 5ceb9d7fdaaf ("NFS: Refactor nfs_lookup_revalidate()")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 82e7ca1334ab16e2e04fafded1cab9dfcdc11b40 ]
There should be no reason to expect the directory permissions to change
just because the directory contents changed or a negative lookup timed
out. So let's avoid doing a full call to nfs_mark_for_revalidate() in
that case.
Furthermore, if this is a negative dentry, and we haven't actually done
a new lookup, then we have no reason yet to believe the directory has
changed at all. So let's remove the gratuitous directory inode
invalidation altogether when called from
nfs_lookup_revalidate_negative().
Reported-by: Geert Jansen <gerardu@amazon.com>
Fixes: 5ceb9d7fdaaf ("NFS: Refactor nfs_lookup_revalidate()")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 63c9e47a1642fc817654a1bc18a6ec4bbcc0f056 ]
When extending a file, udf_do_extend_file() may enter following empty
indirect extent. At the end of udf_do_extend_file() we revert prev_epos
to point to the last written extent. However if we end up not adding any
further extent in udf_do_extend_file(), the reverting points prev_epos
into the header area of the AED and following updates of the extents
(in udf_update_extents()) will corrupt the header.
Make sure that we do not follow indirect extent if we are not going to
add any more extents so that returning back to the last written extent
works correctly.
Link: https://lore.kernel.org/r/20210107234116.6190-2-magnani@ieee.org
Signed-off-by: Steven J. Magnani <magnani@ieee.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 14302ee3301b3a77b331cc14efb95bf7184c73cc upstream.
In cifs_statfs(), if server->ops->queryfs is not NULL, then we should
use its return value rather than always returning 0. Instead, use rc
variable as it is properly set to 0 in case there is no
server->ops->queryfs.
Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Reviewed-by: Aurelien Aptel <aaptel@suse.com>
Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com>
CC: <stable@vger.kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ee2e3f50629f17b0752b55b2566c15ce8dafb557 upstream.
Creating a series of detached mounts, attaching them to the filesystem,
and unmounting them can be used to trigger an integer overflow in
ns->mounts causing the kernel to block any new mounts in count_mounts()
and returning ENOSPC because it falsely assumes that the maximum number
of mounts in the mount namespace has been reached, i.e. it thinks it
can't fit the new mounts into the mount namespace anymore.
Depending on the number of mounts in your system, this can be reproduced
on any kernel that supportes open_tree() and move_mount() by compiling
and running the following program:
/* SPDX-License-Identifier: LGPL-2.1+ */
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <limits.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
/* open_tree() */
#ifndef OPEN_TREE_CLONE
#define OPEN_TREE_CLONE 1
#endif
#ifndef OPEN_TREE_CLOEXEC
#define OPEN_TREE_CLOEXEC O_CLOEXEC
#endif
#ifndef __NR_open_tree
#if defined __alpha__
#define __NR_open_tree 538
#elif defined _MIPS_SIM
#if _MIPS_SIM == _MIPS_SIM_ABI32 /* o32 */
#define __NR_open_tree 4428
#endif
#if _MIPS_SIM == _MIPS_SIM_NABI32 /* n32 */
#define __NR_open_tree 6428
#endif
#if _MIPS_SIM == _MIPS_SIM_ABI64 /* n64 */
#define __NR_open_tree 5428
#endif
#elif defined __ia64__
#define __NR_open_tree (428 + 1024)
#else
#define __NR_open_tree 428
#endif
#endif
/* move_mount() */
#ifndef MOVE_MOUNT_F_EMPTY_PATH
#define MOVE_MOUNT_F_EMPTY_PATH 0x00000004 /* Empty from path permitted */
#endif
#ifndef __NR_move_mount
#if defined __alpha__
#define __NR_move_mount 539
#elif defined _MIPS_SIM
#if _MIPS_SIM == _MIPS_SIM_ABI32 /* o32 */
#define __NR_move_mount 4429
#endif
#if _MIPS_SIM == _MIPS_SIM_NABI32 /* n32 */
#define __NR_move_mount 6429
#endif
#if _MIPS_SIM == _MIPS_SIM_ABI64 /* n64 */
#define __NR_move_mount 5429
#endif
#elif defined __ia64__
#define __NR_move_mount (428 + 1024)
#else
#define __NR_move_mount 429
#endif
#endif
static inline int sys_open_tree(int dfd, const char *filename, unsigned int flags)
{
return syscall(__NR_open_tree, dfd, filename, flags);
}
static inline int sys_move_mount(int from_dfd, const char *from_pathname, int to_dfd,
const char *to_pathname, unsigned int flags)
{
return syscall(__NR_move_mount, from_dfd, from_pathname, to_dfd, to_pathname, flags);
}
static bool is_shared_mountpoint(const char *path)
{
bool shared = false;
FILE *f = NULL;
char *line = NULL;
int i;
size_t len = 0;
f = fopen("/proc/self/mountinfo", "re");
if (!f)
return 0;
while (getline(&line, &len, f) > 0) {
char *slider1, *slider2;
for (slider1 = line, i = 0; slider1 && i < 4; i++)
slider1 = strchr(slider1 + 1, ' ');
if (!slider1)
continue;
slider2 = strchr(slider1 + 1, ' ');
if (!slider2)
continue;
*slider2 = '\0';
if (strcmp(slider1 + 1, path) == 0) {
/* This is the path. Is it shared? */
slider1 = strchr(slider2 + 1, ' ');
if (slider1 && strstr(slider1, "shared:")) {
shared = true;
break;
}
}
}
fclose(f);
free(line);
return shared;
}
static void usage(void)
{
const char *text = "mount-new [--recursive] <base-dir>\n";
fprintf(stderr, "%s", text);
_exit(EXIT_SUCCESS);
}
#define exit_usage(format, ...) \
({ \
fprintf(stderr, format "\n", ##__VA_ARGS__); \
usage(); \
})
#define exit_log(format, ...) \
({ \
fprintf(stderr, format "\n", ##__VA_ARGS__); \
exit(EXIT_FAILURE); \
})
static const struct option longopts[] = {
{"help", no_argument, 0, 'a'},
{ NULL, no_argument, 0, 0 },
};
int main(int argc, char *argv[])
{
int exit_code = EXIT_SUCCESS, index = 0;
int dfd, fd_tree, new_argc, ret;
char *base_dir;
char *const *new_argv;
char target[PATH_MAX];
while ((ret = getopt_long_only(argc, argv, "", longopts, &index)) != -1) {
switch (ret) {
case 'a':
/* fallthrough */
default:
usage();
}
}
new_argv = &argv[optind];
new_argc = argc - optind;
if (new_argc < 1)
exit_usage("Missing base directory\n");
base_dir = new_argv[0];
if (*base_dir != '/')
exit_log("Please specify an absolute path");
/* Ensure that target is a shared mountpoint. */
if (!is_shared_mountpoint(base_dir))
exit_log("Please ensure that \"%s\" is a shared mountpoint", base_dir);
dfd = open(base_dir, O_RDONLY | O_DIRECTORY | O_CLOEXEC);
if (dfd < 0)
exit_log("%m - Failed to open base directory \"%s\"", base_dir);
ret = mkdirat(dfd, "detached-move-mount", 0755);
if (ret < 0)
exit_log("%m - Failed to create required temporary directories");
ret = snprintf(target, sizeof(target), "%s/detached-move-mount", base_dir);
if (ret < 0 || (size_t)ret >= sizeof(target))
exit_log("%m - Failed to assemble target path");
/*
* Having a mount table with 10000 mounts is already quite excessive
* and shoult account even for weird test systems.
*/
for (size_t i = 0; i < 10000; i++) {
fd_tree = sys_open_tree(dfd, "detached-move-mount",
OPEN_TREE_CLONE |
OPEN_TREE_CLOEXEC |
AT_EMPTY_PATH);
if (fd_tree < 0) {
fprintf(stderr, "%m - Failed to open %d(detached-move-mount)", dfd);
exit_code = EXIT_FAILURE;
break;
}
ret = sys_move_mount(fd_tree, "", dfd, "detached-move-mount", MOVE_MOUNT_F_EMPTY_PATH);
if (ret < 0) {
if (errno == ENOSPC)
fprintf(stderr, "%m - Buggy mount counting");
else
fprintf(stderr, "%m - Failed to attach mount to %d(detached-move-mount)", dfd);
exit_code = EXIT_FAILURE;
break;
}
close(fd_tree);
ret = umount2(target, MNT_DETACH);
if (ret < 0) {
fprintf(stderr, "%m - Failed to unmount %s", target);
exit_code = EXIT_FAILURE;
break;
}
}
(void)unlinkat(dfd, "detached-move-mount", AT_REMOVEDIR);
close(dfd);
exit(exit_code);
}
and wait for the kernel to refuse any new mounts by returning ENOSPC.
How many iterations are needed depends on the number of mounts in your
system. Assuming you have something like 50 mounts on a standard system
it should be almost instantaneous.
The root cause of this is that detached mounts aren't handled correctly
when source and target mount are identical and reside on a shared mount
causing a broken mount tree where the detached source itself is
propagated which propagation prevents for regular bind-mounts and new
mounts. This ultimately leads to a miscalculation of the number of
mounts in the mount namespace.
Detached mounts created via
open_tree(fd, path, OPEN_TREE_CLONE)
are essentially like an unattached new mount, or an unattached
bind-mount. They can then later on be attached to the filesystem via
move_mount() which calls into attach_recursive_mount(). Part of
attaching it to the filesystem is making sure that mounts get correctly
propagated in case the destination mountpoint is MS_SHARED, i.e. is a
shared mountpoint. This is done by calling into propagate_mnt() which
walks the list of peers calling propagate_one() on each mount in this
list making sure it receives the propagation event.
The propagate_one() functions thereby skips both new mounts and bind
mounts to not propagate them "into themselves". Both are identified by
checking whether the mount is already attached to any mount namespace in
mnt->mnt_ns. The is what the IS_MNT_NEW() helper is responsible for.
However, detached mounts have an anonymous mount namespace attached to
them stashed in mnt->mnt_ns which means that IS_MNT_NEW() doesn't
realize they need to be skipped causing the mount to propagate "into
itself" breaking the mount table and causing a disconnect between the
number of mounts recorded as being beneath or reachable from the target
mountpoint and the number of mounts actually recorded/counted in
ns->mounts ultimately causing an overflow which in turn prevents any new
mounts via the ENOSPC issue.
So teach propagation to handle detached mounts by making it aware of
them. I've been tracking this issue down for the last couple of days and
then verifying that the fix is correct by
unmounting everything in my current mount table leaving only /proc and
/sys mounted and running the reproducer above overnight verifying the
number of mounts counted in ns->mounts. With this fix the counts are
correct and the ENOSPC issue can't be reproduced.
This change will only have an effect on mounts created with the new
mount API since detached mounts cannot be created with the old mount API
so regressions are extremely unlikely.
Link: https://lore.kernel.org/r/20210306101010.243666-1-christian.brauner@ubuntu.com
Fixes: 2db154b3ea8e ("vfs: syscall: Add move_mount(2) to move mounts around")
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: <stable@vger.kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fd57a98d6f0c98fa295813087f13afb26c224e73 upstream.
When we have smack enabled, during the creation of a directory smack may
attempt to add a "smack transmute" xattr on the inode, which results in
the following warning and trace:
WARNING: CPU: 3 PID: 2548 at fs/btrfs/transaction.c:537 start_transaction+0x489/0x4f0
Modules linked in: nft_objref nf_conntrack_netbios_ns (...)
CPU: 3 PID: 2548 Comm: mkdir Not tainted 5.9.0-rc2smack+ #81
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
RIP: 0010:start_transaction+0x489/0x4f0
Code: e9 be fc ff ff (...)
RSP: 0018:ffffc90001887d10 EFLAGS: 00010202
RAX: ffff88816f1e0000 RBX: 0000000000000201 RCX: 0000000000000003
RDX: 0000000000000201 RSI: 0000000000000002 RDI: ffff888177849000
RBP: ffff888177849000 R08: 0000000000000001 R09: 0000000000000004
R10: ffffffff825e8f7a R11: 0000000000000003 R12: ffffffffffffffe2
R13: 0000000000000000 R14: ffff88803d884270 R15: ffff8881680d8000
FS: 00007f67317b8440(0000) GS:ffff88817bcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f67247a22a8 CR3: 000000004bfbc002 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? slab_free_freelist_hook+0xea/0x1b0
? trace_hardirqs_on+0x1c/0xe0
btrfs_setxattr_trans+0x3c/0xf0
__vfs_setxattr+0x63/0x80
smack_d_instantiate+0x2d3/0x360
security_d_instantiate+0x29/0x40
d_instantiate_new+0x38/0x90
btrfs_mkdir+0x1cf/0x1e0
vfs_mkdir+0x14f/0x200
do_mkdirat+0x6d/0x110
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f673196ae6b
Code: 8b 05 11 (...)
RSP: 002b:00007ffc3c679b18 EFLAGS: 00000246 ORIG_RAX: 0000000000000053
RAX: ffffffffffffffda RBX: 00000000000001ff RCX: 00007f673196ae6b
RDX: 0000000000000000 RSI: 00000000000001ff RDI: 00007ffc3c67a30d
RBP: 00007ffc3c67a30d R08: 00000000000001ff R09: 0000000000000000
R10: 000055d3e39fe930 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffc3c679cd8 R14: 00007ffc3c67a30d R15: 00007ffc3c679ce0
irq event stamp: 11029
hardirqs last enabled at (11037): [<ffffffff81153fe6>] console_unlock+0x486/0x670
hardirqs last disabled at (11044): [<ffffffff81153c01>] console_unlock+0xa1/0x670
softirqs last enabled at (8864): [<ffffffff81e0102f>] asm_call_on_stack+0xf/0x20
softirqs last disabled at (8851): [<ffffffff81e0102f>] asm_call_on_stack+0xf/0x20
This happens because at btrfs_mkdir() we call d_instantiate_new() while
holding a transaction handle, which results in the following call chain:
btrfs_mkdir()
trans = btrfs_start_transaction(root, 5);
d_instantiate_new()
smack_d_instantiate()
__vfs_setxattr()
btrfs_setxattr_trans()
btrfs_start_transaction()
start_transaction()
WARN_ON()
--> a tansaction start has TRANS_EXTWRITERS
set in its type
h->orig_rsv = h->block_rsv
h->block_rsv = NULL
btrfs_end_transaction(trans)
Besides the warning triggered at start_transaction, we set the handle's
block_rsv to NULL which may cause some surprises later on.
So fix this by making btrfs_setxattr_trans() not start a transaction when
we already have a handle on one, stored in current->journal_info, and use
that handle. We are good to use the handle because at btrfs_mkdir() we did
reserve space for the xattr and the inode item.
Reported-by: Casey Schaufler <casey@schaufler-ca.com>
CC: stable@vger.kernel.org # 5.4+
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Tested-by: Casey Schaufler <casey@schaufler-ca.com>
Link: https://lore.kernel.org/linux-btrfs/434d856f-bd7b-4889-a6ec-e81aaebfa735@schaufler-ca.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4f6a49de64fd1b1dba5229c02047376da7cf24fd upstream.
If btrfs_qgroup_reserve_data returns an error (i.e quota limit reached)
the handling logic directly goes to the 'out' label without first
unlocking the extent range between lockstart, lockend. This results in
deadlocks as other processes try to lock the same extent.
Fixes: a7f8b1c2ac21 ("btrfs: file: reserve qgroup space after the hole punch range is locked")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0f9c03d824f6f522d3bc43629635c9765546ebc5 upstream.
Following commit f218ea6c4792 ("btrfs: delayed-inode: Remove wrong
qgroup meta reservation calls") this function now reserves num_bytes,
rather than the fixed amount of nodesize. As such this requires the
same amount to be freed in case of failure. Fix this by adjusting
the amount we are freeing.
Fixes: f218ea6c4792 ("btrfs: delayed-inode: Remove wrong qgroup meta reservation calls")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5011c5a663b9c6d6aff3d394f11049b371199627 upstream.
The problem is we're copying "inherit" from user space but we don't
necessarily know that we're copying enough data for a 64 byte
struct. Then the next problem is that 'inherit' has a variable size
array at the end, and we have to verify that array is the size we
expected.
Fixes: 6f72c7e20dba ("Btrfs: add qgroup inheritance")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d70cef0d46729808dc53f145372c02b145c92604 upstream.
When a qstripe is required an extra page is allocated and mapped. There
were 3 problems:
1) There is no corresponding call of kunmap() for the qstripe page.
2) There is no reason to map the qstripe page more than once if the
number of bits set in rbio->dbitmap is greater than one.
3) There is no reason to map the parity page and unmap it each time
through the loop.
The page memory can continue to be reused with a single mapping on each
iteration by raid6_call.gen_syndrome() without remapping. So map the
page for the duration of the loop.
Similarly, improve the algorithm by mapping the parity page just 1 time.
Fixes: 5a6ac9eacb49 ("Btrfs, raid56: support parity scrub on raid56")
CC: stable@vger.kernel.org # 4.4.x: c17af96554a8: btrfs: raid56: simplify tracking of Q stripe presence
CC: stable@vger.kernel.org # 4.4.x
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c17af96554a8a8777cbb0fd53b8497250e548b43 upstream.
There are temporary variables tracking the index of P and Q stripes, but
none of them is really used as such, merely for determining if the Q
stripe is present. This leads to compiler warnings with
-Wunused-but-set-variable and has been reported several times.
fs/btrfs/raid56.c: In function ‘finish_rmw’:
fs/btrfs/raid56.c:1199:6: warning: variable ‘p_stripe’ set but not used [-Wunused-but-set-variable]
1199 | int p_stripe = -1;
| ^~~~~~~~
fs/btrfs/raid56.c: In function ‘finish_parity_scrub’:
fs/btrfs/raid56.c:2356:6: warning: variable ‘p_stripe’ set but not used [-Wunused-but-set-variable]
2356 | int p_stripe = -1;
| ^~~~~~~~
Replace the two variables with one that has a clear meaning and also get
rid of the warnings. The logic that verifies that there are only 2
valid cases is unchanged.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2efc459d06f1630001e3984854848a5647086232 upstream.
Output defects can exist in sysfs content using sprintf and snprintf.
sprintf does not know the PAGE_SIZE maximum of the temporary buffer
used for outputting sysfs content and it's possible to overrun the
PAGE_SIZE buffer length.
Add a generic sysfs_emit function that knows that the size of the
temporary buffer and ensures that no overrun is done.
Add a generic sysfs_emit_at function that can be used in multiple
call situations that also ensures that no overrun is done.
Validate the output buffer argument to be page aligned.
Validate the offset len argument to be within the PAGE_SIZE buf.
Signed-off-by: Joe Perches <joe@perches.com>
Link: https://lore.kernel.org/r/884235202216d464d61ee975f7465332c86f76b2.1600285923.git.joe@perches.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4f4317c13a40194940acf4a71670179c4faca2b5 ]
While doing error injection I would sometimes get a corrupt file system.
This is because I was injecting errors at btrfs_search_slot, but would
only do it one time per stack. This uncovered a problem in
commit_fs_roots, where if we get an error we would just break. However
we're in a nested loop, the first loop being a loop to find all the
dirty fs roots, and then subsequent root updates would succeed clearing
the error value.
This isn't likely to happen in real scenarios, however we could
potentially get a random ENOMEM once and then not again, and we'd end up
with a corrupted file system. Fix this by moving the error checking
around a bit to the main loop, as this is the only place where something
will fail, and return the error as soon as it occurs.
With this patch my reproducer no longer corrupts the file system.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 88a9e03beef22cc5fabea344f54b9a0dfe63de08 upstream.
An assert failure is triggered by syzkaller test due to
ATTR_KILL_PRIV is not cleared before xfs_setattr_size.
As ATTR_KILL_PRIV is not checked/used by xfs_setattr_size,
just remove it from the assert.
Signed-off-by: Yumei Huang <yuhuang@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3bef198f1b17d1bb89260bad947ef084c0a2d1a6 upstream.
syzbot is feeding invalid superblock data to JFS for mount testing.
JFS does not check several of the fields -- just assumes that they
are good since the JFS_MAGIC and version fields are good.
In this case (syzbot reproducer), we have s_l2bsize == 0xda0c,
pad == 0xf045, and s_state == 0x50, all of which are invalid IMO.
Having s_l2bsize == 0xda0c causes this UBSAN warning:
UBSAN: shift-out-of-bounds in fs/jfs/jfs_mount.c:373:25
shift exponent -9716 is negative
s_l2bsize can be tested for correctness. pad can be tested for non-0
and punted. s_state can be tested for its valid values and punted.
Do those 3 tests and if any of them fails, report the superblock as
invalid/corrupt and let fsck handle it.
With this patch, chkSuper() says this when JFS_DEBUG is enabled:
jfs_mount: Mount Failure: superblock is corrupt!
Mount JFS Failure: -22
jfs_mount failed w/return code = -22
The obvious problem with this method is that next week there could
be another syzbot test that uses different fields for invalid values,
this making this like a game of whack-a-mole.
syzkaller link: https://syzkaller.appspot.com/bug?extid=36315852ece4132ec193
Reported-by: syzbot+36315852ece4132ec193@syzkaller.appspotmail.com
Reported-by: kernel test robot <lkp@intel.com> # v2
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: jfs-discussion@lists.sourceforge.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7009fa9cd9a5262944b30eb7efb1f0561d074b68 upstream.
When starting an iomap write, gfs2_quota_lock_check -> gfs2_quota_lock
-> gfs2_quota_hold is called from gfs2_iomap_begin. At the end of the
write, before unlocking the quotas, punch_hole -> gfs2_quota_hold can be
called again in gfs2_iomap_end, which is incorrect and leads to a failed
assertion. Instead, move the call to gfs2_quota_unlock before the call
to punch_hole to fix that.
Fixes: 64bc06bb32ee ("gfs2: iomap buffered write support")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>