sfc: Firmware-Assisted TSO version 2
Add support for FATSOv2 to the driver. FATSOv2 offloads far more of the task of TCP segmentation to the firmware, such that we now just pass a single super-packet to the NIC. This means TSO has a great deal in common with a normal DMA transmit, apart from adding a couple of option descriptors. NIC-specific checks have been moved off the fast path and in to initialisation where possible. This also moves FATSOv1/SWTSO to a new file (tx_tso.c). The end of transmit and some error handling is now outside TSO, since it is common with other code. Signed-off-by: Edward Cree <ecree@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
e17705c43b
commit
e9117e5099
@ -1,7 +1,7 @@
|
||||
sfc-y += efx.o nic.o farch.o falcon.o siena.o ef10.o tx.o \
|
||||
rx.o selftest.o ethtool.o qt202x_phy.o mdio_10g.o \
|
||||
tenxpress.o txc43128_phy.o falcon_boards.o \
|
||||
mcdi.o mcdi_port.o mcdi_mon.o ptp.o
|
||||
mcdi.o mcdi_port.o mcdi_mon.o ptp.o tx_tso.o
|
||||
sfc-$(CONFIG_SFC_MTD) += mtd.o
|
||||
sfc-$(CONFIG_SFC_SRIOV) += sriov.o siena_sriov.o ef10_sriov.o
|
||||
|
||||
|
@ -2086,6 +2086,78 @@ static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
|
||||
ER_DZ_TX_DESC_UPD, tx_queue->queue);
|
||||
}
|
||||
|
||||
/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
|
||||
*/
|
||||
static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
|
||||
struct sk_buff *skb,
|
||||
bool *data_mapped)
|
||||
{
|
||||
struct efx_tx_buffer *buffer;
|
||||
struct tcphdr *tcp;
|
||||
struct iphdr *ip;
|
||||
|
||||
u16 ipv4_id;
|
||||
u32 seqnum;
|
||||
u32 mss;
|
||||
|
||||
EFX_BUG_ON_PARANOID(tx_queue->tso_version != 2);
|
||||
|
||||
mss = skb_shinfo(skb)->gso_size;
|
||||
|
||||
if (unlikely(mss < 4)) {
|
||||
WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
ip = ip_hdr(skb);
|
||||
if (ip->version == 4) {
|
||||
/* Modify IPv4 header if needed. */
|
||||
ip->tot_len = 0;
|
||||
ip->check = 0;
|
||||
ipv4_id = ip->id;
|
||||
} else {
|
||||
/* Modify IPv6 header if needed. */
|
||||
struct ipv6hdr *ipv6 = ipv6_hdr(skb);
|
||||
|
||||
ipv6->payload_len = 0;
|
||||
ipv4_id = 0;
|
||||
}
|
||||
|
||||
tcp = tcp_hdr(skb);
|
||||
seqnum = ntohl(tcp->seq);
|
||||
|
||||
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
||||
|
||||
buffer->flags = EFX_TX_BUF_OPTION;
|
||||
buffer->len = 0;
|
||||
buffer->unmap_len = 0;
|
||||
EFX_POPULATE_QWORD_5(buffer->option,
|
||||
ESF_DZ_TX_DESC_IS_OPT, 1,
|
||||
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
|
||||
ESF_DZ_TX_TSO_OPTION_TYPE,
|
||||
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
|
||||
ESF_DZ_TX_TSO_IP_ID, ipv4_id,
|
||||
ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
|
||||
);
|
||||
++tx_queue->insert_count;
|
||||
|
||||
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
||||
|
||||
buffer->flags = EFX_TX_BUF_OPTION;
|
||||
buffer->len = 0;
|
||||
buffer->unmap_len = 0;
|
||||
EFX_POPULATE_QWORD_4(buffer->option,
|
||||
ESF_DZ_TX_DESC_IS_OPT, 1,
|
||||
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
|
||||
ESF_DZ_TX_TSO_OPTION_TYPE,
|
||||
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
|
||||
ESF_DZ_TX_TSO_TCP_MSS, mss
|
||||
);
|
||||
++tx_queue->insert_count;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
|
||||
@ -2095,6 +2167,7 @@ static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
|
||||
struct efx_channel *channel = tx_queue->channel;
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
||||
bool tso_v2 = false;
|
||||
size_t inlen;
|
||||
dma_addr_t dma_addr;
|
||||
efx_qword_t *txd;
|
||||
@ -2102,13 +2175,33 @@ static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
|
||||
int i;
|
||||
BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
|
||||
|
||||
/* TSOv2 is a limited resource that can only be configured on a limited
|
||||
* number of queues. TSO without checksum offload is not really a thing,
|
||||
* so we only enable it for those queues.
|
||||
*
|
||||
* TODO: handle failure to allocate this in the case where we've used
|
||||
* all the queues.
|
||||
*/
|
||||
if (csum_offload && (nic_data->datapath_caps2 &
|
||||
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) {
|
||||
tso_v2 = true;
|
||||
netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
|
||||
channel->channel);
|
||||
}
|
||||
|
||||
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
|
||||
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
|
||||
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
|
||||
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
|
||||
MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
|
||||
MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS,
|
||||
/* This flag was removed from mcdi_pcol.h for
|
||||
* the non-_EXT version of INIT_TXQ. However,
|
||||
* firmware still honours it.
|
||||
*/
|
||||
INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
|
||||
INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
|
||||
INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
|
||||
|
||||
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
|
||||
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
|
||||
|
||||
@ -2146,8 +2239,11 @@ static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
|
||||
ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
|
||||
tx_queue->write_count = 1;
|
||||
|
||||
if (nic_data->datapath_caps &
|
||||
(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
|
||||
if (tso_v2) {
|
||||
tx_queue->handle_tso = efx_ef10_tx_tso_desc;
|
||||
tx_queue->tso_version = 2;
|
||||
} else if (nic_data->datapath_caps &
|
||||
(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
|
||||
tx_queue->tso_version = 1;
|
||||
}
|
||||
|
||||
@ -2202,6 +2298,25 @@ static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
|
||||
ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
|
||||
}
|
||||
|
||||
#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
|
||||
|
||||
static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
|
||||
dma_addr_t dma_addr, unsigned int len)
|
||||
{
|
||||
if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
|
||||
/* If we need to break across multiple descriptors we should
|
||||
* stop at a page boundary. This assumes the length limit is
|
||||
* greater than the page size.
|
||||
*/
|
||||
dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
|
||||
|
||||
BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
|
||||
len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
|
||||
}
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
unsigned int old_write_count = tx_queue->write_count;
|
||||
@ -5469,6 +5584,7 @@ const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
|
||||
.tx_init = efx_ef10_tx_init,
|
||||
.tx_remove = efx_ef10_tx_remove,
|
||||
.tx_write = efx_ef10_tx_write,
|
||||
.tx_limit_len = efx_ef10_tx_limit_len,
|
||||
.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
|
||||
.rx_probe = efx_ef10_rx_probe,
|
||||
.rx_init = efx_ef10_rx_init,
|
||||
@ -5575,6 +5691,7 @@ const struct efx_nic_type efx_hunt_a0_nic_type = {
|
||||
.tx_init = efx_ef10_tx_init,
|
||||
.tx_remove = efx_ef10_tx_remove,
|
||||
.tx_write = efx_ef10_tx_write,
|
||||
.tx_limit_len = efx_ef10_tx_limit_len,
|
||||
.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
|
||||
.rx_probe = efx_ef10_rx_probe,
|
||||
.rx_init = efx_ef10_rx_init,
|
||||
|
@ -71,6 +71,7 @@ static const struct efx_sw_stat_desc efx_sw_stat_desc[] = {
|
||||
EFX_ETHTOOL_UINT_TXQ_STAT(tso_packets),
|
||||
EFX_ETHTOOL_UINT_TXQ_STAT(pushes),
|
||||
EFX_ETHTOOL_UINT_TXQ_STAT(pio_packets),
|
||||
EFX_ETHTOOL_UINT_TXQ_STAT(cb_packets),
|
||||
EFX_ETHTOOL_ATOMIC_NIC_ERROR_STAT(rx_reset),
|
||||
EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_tobe_disc),
|
||||
EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_ip_hdr_chksum_err),
|
||||
|
@ -2750,6 +2750,7 @@ const struct efx_nic_type falcon_a1_nic_type = {
|
||||
.tx_init = efx_farch_tx_init,
|
||||
.tx_remove = efx_farch_tx_remove,
|
||||
.tx_write = efx_farch_tx_write,
|
||||
.tx_limit_len = efx_farch_tx_limit_len,
|
||||
.rx_push_rss_config = dummy_rx_push_rss_config,
|
||||
.rx_probe = efx_farch_rx_probe,
|
||||
.rx_init = efx_farch_rx_init,
|
||||
@ -2849,6 +2850,7 @@ const struct efx_nic_type falcon_b0_nic_type = {
|
||||
.tx_init = efx_farch_tx_init,
|
||||
.tx_remove = efx_farch_tx_remove,
|
||||
.tx_write = efx_farch_tx_write,
|
||||
.tx_limit_len = efx_farch_tx_limit_len,
|
||||
.rx_push_rss_config = falcon_b0_rx_push_rss_config,
|
||||
.rx_probe = efx_farch_rx_probe,
|
||||
.rx_init = efx_farch_rx_init,
|
||||
|
@ -356,6 +356,21 @@ void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
|
||||
}
|
||||
}
|
||||
|
||||
unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
|
||||
dma_addr_t dma_addr, unsigned int len)
|
||||
{
|
||||
/* Don't cross 4K boundaries with descriptors. */
|
||||
unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
|
||||
|
||||
len = min(limit, len);
|
||||
|
||||
if (EFX_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
|
||||
len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
|
||||
/* Allocate hardware resources for a TX queue */
|
||||
int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
|
@ -189,13 +189,17 @@ struct efx_tx_buffer {
|
||||
* @channel: The associated channel
|
||||
* @core_txq: The networking core TX queue structure
|
||||
* @buffer: The software buffer ring
|
||||
* @tsoh_page: Array of pages of TSO header buffers
|
||||
* @cb_page: Array of pages of copy buffers. Carved up according to
|
||||
* %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
|
||||
* @txd: The hardware descriptor ring
|
||||
* @ptr_mask: The size of the ring minus 1.
|
||||
* @piobuf: PIO buffer region for this TX queue (shared with its partner).
|
||||
* Size of the region is efx_piobuf_size.
|
||||
* @piobuf_offset: Buffer offset to be specified in PIO descriptors
|
||||
* @initialised: Has hardware queue been initialised?
|
||||
* @tx_min_size: Minimum transmit size for this queue. Depends on HW.
|
||||
* @handle_tso: TSO xmit preparation handler. Sets up the TSO metadata and
|
||||
* may also map tx data, depending on the nature of the TSO implementation.
|
||||
* @read_count: Current read pointer.
|
||||
* This is the number of buffers that have been removed from both rings.
|
||||
* @old_write_count: The value of @write_count when last checked.
|
||||
@ -224,6 +228,7 @@ struct efx_tx_buffer {
|
||||
* @pushes: Number of times the TX push feature has been used
|
||||
* @pio_packets: Number of times the TX PIO feature has been used
|
||||
* @xmit_more_available: Are any packets waiting to be pushed to the NIC
|
||||
* @cb_packets: Number of times the TX copybreak feature has been used
|
||||
* @empty_read_count: If the completion path has seen the queue as empty
|
||||
* and the transmission path has not yet checked this, the value of
|
||||
* @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
|
||||
@ -236,12 +241,16 @@ struct efx_tx_queue {
|
||||
struct efx_channel *channel;
|
||||
struct netdev_queue *core_txq;
|
||||
struct efx_tx_buffer *buffer;
|
||||
struct efx_buffer *tsoh_page;
|
||||
struct efx_buffer *cb_page;
|
||||
struct efx_special_buffer txd;
|
||||
unsigned int ptr_mask;
|
||||
void __iomem *piobuf;
|
||||
unsigned int piobuf_offset;
|
||||
bool initialised;
|
||||
unsigned int tx_min_size;
|
||||
|
||||
/* Function pointers used in the fast path. */
|
||||
int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
|
||||
|
||||
/* Members used mainly on the completion path */
|
||||
unsigned int read_count ____cacheline_aligned_in_smp;
|
||||
@ -260,6 +269,7 @@ struct efx_tx_queue {
|
||||
unsigned int pushes;
|
||||
unsigned int pio_packets;
|
||||
bool xmit_more_available;
|
||||
unsigned int cb_packets;
|
||||
/* Statistics to supplement MAC stats */
|
||||
unsigned long tx_packets;
|
||||
|
||||
@ -269,6 +279,9 @@ struct efx_tx_queue {
|
||||
atomic_t flush_outstanding;
|
||||
};
|
||||
|
||||
#define EFX_TX_CB_ORDER 7
|
||||
#define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
|
||||
|
||||
/**
|
||||
* struct efx_rx_buffer - An Efx RX data buffer
|
||||
* @dma_addr: DMA base address of the buffer
|
||||
@ -1288,6 +1301,8 @@ struct efx_nic_type {
|
||||
void (*tx_init)(struct efx_tx_queue *tx_queue);
|
||||
void (*tx_remove)(struct efx_tx_queue *tx_queue);
|
||||
void (*tx_write)(struct efx_tx_queue *tx_queue);
|
||||
unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
|
||||
dma_addr_t dma_addr, unsigned int len);
|
||||
int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
|
||||
const u32 *rx_indir_table);
|
||||
int (*rx_probe)(struct efx_rx_queue *rx_queue);
|
||||
@ -1545,4 +1560,32 @@ static inline netdev_features_t efx_supported_features(const struct efx_nic *efx
|
||||
return net_dev->features | net_dev->hw_features;
|
||||
}
|
||||
|
||||
/* Get the current TX queue insert index. */
|
||||
static inline unsigned int
|
||||
efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
return tx_queue->insert_count & tx_queue->ptr_mask;
|
||||
}
|
||||
|
||||
/* Get a TX buffer. */
|
||||
static inline struct efx_tx_buffer *
|
||||
__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
|
||||
}
|
||||
|
||||
/* Get a TX buffer, checking it's not currently in use. */
|
||||
static inline struct efx_tx_buffer *
|
||||
efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_tx_buffer *buffer =
|
||||
__efx_tx_queue_get_insert_buffer(tx_queue);
|
||||
|
||||
EFX_BUG_ON_PARANOID(buffer->len);
|
||||
EFX_BUG_ON_PARANOID(buffer->flags);
|
||||
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
#endif /* EFX_NET_DRIVER_H */
|
||||
|
@ -681,6 +681,8 @@ void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
|
||||
void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
|
||||
void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
|
||||
void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
|
||||
unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
|
||||
dma_addr_t dma_addr, unsigned int len);
|
||||
int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
|
||||
void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
|
||||
void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
|
||||
|
@ -977,6 +977,7 @@ const struct efx_nic_type siena_a0_nic_type = {
|
||||
.tx_init = efx_farch_tx_init,
|
||||
.tx_remove = efx_farch_tx_remove,
|
||||
.tx_write = efx_farch_tx_write,
|
||||
.tx_limit_len = efx_farch_tx_limit_len,
|
||||
.rx_push_rss_config = siena_rx_push_rss_config,
|
||||
.rx_probe = efx_farch_rx_probe,
|
||||
.rx_init = efx_farch_rx_init,
|
||||
|
File diff suppressed because it is too large
Load Diff
27
drivers/net/ethernet/sfc/tx.h
Normal file
27
drivers/net/ethernet/sfc/tx.h
Normal file
@ -0,0 +1,27 @@
|
||||
/****************************************************************************
|
||||
* Driver for Solarflare network controllers and boards
|
||||
* Copyright 2005-2006 Fen Systems Ltd.
|
||||
* Copyright 2006-2015 Solarflare Communications Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 as published
|
||||
* by the Free Software Foundation, incorporated herein by reference.
|
||||
*/
|
||||
|
||||
#ifndef EFX_TX_H
|
||||
#define EFX_TX_H
|
||||
|
||||
#include <linux/types.h>
|
||||
|
||||
/* Driver internal tx-path related declarations. */
|
||||
|
||||
unsigned int efx_tx_limit_len(struct efx_tx_queue *tx_queue,
|
||||
dma_addr_t dma_addr, unsigned int len);
|
||||
|
||||
u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tx_buffer *buffer, size_t len);
|
||||
|
||||
int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
|
||||
bool *data_mapped);
|
||||
|
||||
#endif /* EFX_TX_H */
|
570
drivers/net/ethernet/sfc/tx_tso.c
Normal file
570
drivers/net/ethernet/sfc/tx_tso.c
Normal file
@ -0,0 +1,570 @@
|
||||
/****************************************************************************
|
||||
* Driver for Solarflare network controllers and boards
|
||||
* Copyright 2005-2006 Fen Systems Ltd.
|
||||
* Copyright 2005-2015 Solarflare Communications Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 as published
|
||||
* by the Free Software Foundation, incorporated herein by reference.
|
||||
*/
|
||||
|
||||
#include <linux/pci.h>
|
||||
#include <linux/tcp.h>
|
||||
#include <linux/ip.h>
|
||||
#include <linux/in.h>
|
||||
#include <linux/ipv6.h>
|
||||
#include <linux/slab.h>
|
||||
#include <net/ipv6.h>
|
||||
#include <linux/if_ether.h>
|
||||
#include <linux/highmem.h>
|
||||
#include <linux/moduleparam.h>
|
||||
#include <linux/cache.h>
|
||||
#include "net_driver.h"
|
||||
#include "efx.h"
|
||||
#include "io.h"
|
||||
#include "nic.h"
|
||||
#include "tx.h"
|
||||
#include "workarounds.h"
|
||||
#include "ef10_regs.h"
|
||||
|
||||
/* Efx legacy TCP segmentation acceleration.
|
||||
*
|
||||
* Why? Because by doing it here in the driver we can go significantly
|
||||
* faster than the GSO.
|
||||
*
|
||||
* Requires TX checksum offload support.
|
||||
*/
|
||||
|
||||
#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
|
||||
|
||||
/**
|
||||
* struct tso_state - TSO state for an SKB
|
||||
* @out_len: Remaining length in current segment
|
||||
* @seqnum: Current sequence number
|
||||
* @ipv4_id: Current IPv4 ID, host endian
|
||||
* @packet_space: Remaining space in current packet
|
||||
* @dma_addr: DMA address of current position
|
||||
* @in_len: Remaining length in current SKB fragment
|
||||
* @unmap_len: Length of SKB fragment
|
||||
* @unmap_addr: DMA address of SKB fragment
|
||||
* @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
|
||||
* @protocol: Network protocol (after any VLAN header)
|
||||
* @ip_off: Offset of IP header
|
||||
* @tcp_off: Offset of TCP header
|
||||
* @header_len: Number of bytes of header
|
||||
* @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
|
||||
* @header_dma_addr: Header DMA address, when using option descriptors
|
||||
* @header_unmap_len: Header DMA mapped length, or 0 if not using option
|
||||
* descriptors
|
||||
*
|
||||
* The state used during segmentation. It is put into this data structure
|
||||
* just to make it easy to pass into inline functions.
|
||||
*/
|
||||
struct tso_state {
|
||||
/* Output position */
|
||||
unsigned int out_len;
|
||||
unsigned int seqnum;
|
||||
u16 ipv4_id;
|
||||
unsigned int packet_space;
|
||||
|
||||
/* Input position */
|
||||
dma_addr_t dma_addr;
|
||||
unsigned int in_len;
|
||||
unsigned int unmap_len;
|
||||
dma_addr_t unmap_addr;
|
||||
unsigned short dma_flags;
|
||||
|
||||
__be16 protocol;
|
||||
unsigned int ip_off;
|
||||
unsigned int tcp_off;
|
||||
unsigned int header_len;
|
||||
unsigned int ip_base_len;
|
||||
dma_addr_t header_dma_addr;
|
||||
unsigned int header_unmap_len;
|
||||
};
|
||||
|
||||
static inline void prefetch_ptr(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue);
|
||||
char *ptr;
|
||||
|
||||
ptr = (char *) (tx_queue->buffer + insert_ptr);
|
||||
prefetch(ptr);
|
||||
prefetch(ptr + 0x80);
|
||||
|
||||
ptr = (char *) (((efx_qword_t *)tx_queue->txd.buf.addr) + insert_ptr);
|
||||
prefetch(ptr);
|
||||
prefetch(ptr + 0x80);
|
||||
}
|
||||
|
||||
/**
|
||||
* efx_tx_queue_insert - push descriptors onto the TX queue
|
||||
* @tx_queue: Efx TX queue
|
||||
* @dma_addr: DMA address of fragment
|
||||
* @len: Length of fragment
|
||||
* @final_buffer: The final buffer inserted into the queue
|
||||
*
|
||||
* Push descriptors onto the TX queue.
|
||||
*/
|
||||
static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
|
||||
dma_addr_t dma_addr, unsigned int len,
|
||||
struct efx_tx_buffer **final_buffer)
|
||||
{
|
||||
struct efx_tx_buffer *buffer;
|
||||
unsigned int dma_len;
|
||||
|
||||
EFX_BUG_ON_PARANOID(len <= 0);
|
||||
|
||||
while (1) {
|
||||
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
||||
++tx_queue->insert_count;
|
||||
|
||||
EFX_BUG_ON_PARANOID(tx_queue->insert_count -
|
||||
tx_queue->read_count >=
|
||||
tx_queue->efx->txq_entries);
|
||||
|
||||
buffer->dma_addr = dma_addr;
|
||||
|
||||
dma_len = tx_queue->efx->type->tx_limit_len(tx_queue,
|
||||
dma_addr, len);
|
||||
|
||||
/* If there's space for everything this is our last buffer. */
|
||||
if (dma_len >= len)
|
||||
break;
|
||||
|
||||
buffer->len = dma_len;
|
||||
buffer->flags = EFX_TX_BUF_CONT;
|
||||
dma_addr += dma_len;
|
||||
len -= dma_len;
|
||||
}
|
||||
|
||||
EFX_BUG_ON_PARANOID(!len);
|
||||
buffer->len = len;
|
||||
*final_buffer = buffer;
|
||||
}
|
||||
|
||||
/*
|
||||
* Verify that our various assumptions about sk_buffs and the conditions
|
||||
* under which TSO will be attempted hold true. Return the protocol number.
|
||||
*/
|
||||
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
|
||||
{
|
||||
__be16 protocol = skb->protocol;
|
||||
|
||||
EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
|
||||
protocol);
|
||||
if (protocol == htons(ETH_P_8021Q)) {
|
||||
struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
|
||||
|
||||
protocol = veh->h_vlan_encapsulated_proto;
|
||||
}
|
||||
|
||||
if (protocol == htons(ETH_P_IP)) {
|
||||
EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
|
||||
} else {
|
||||
EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
|
||||
EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
|
||||
}
|
||||
EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
|
||||
+ (tcp_hdr(skb)->doff << 2u)) >
|
||||
skb_headlen(skb));
|
||||
|
||||
return protocol;
|
||||
}
|
||||
|
||||
static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tx_buffer *buffer, unsigned int len)
|
||||
{
|
||||
u8 *result;
|
||||
|
||||
EFX_BUG_ON_PARANOID(buffer->len);
|
||||
EFX_BUG_ON_PARANOID(buffer->flags);
|
||||
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
||||
|
||||
result = efx_tx_get_copy_buffer_limited(tx_queue, buffer, len);
|
||||
|
||||
if (result) {
|
||||
buffer->flags = EFX_TX_BUF_CONT;
|
||||
} else {
|
||||
buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
|
||||
if (unlikely(!buffer->heap_buf))
|
||||
return NULL;
|
||||
tx_queue->tso_long_headers++;
|
||||
result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
|
||||
buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
|
||||
}
|
||||
|
||||
buffer->len = len;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* Put a TSO header into the TX queue.
|
||||
*
|
||||
* This is special-cased because we know that it is small enough to fit in
|
||||
* a single fragment, and we know it doesn't cross a page boundary. It
|
||||
* also allows us to not worry about end-of-packet etc.
|
||||
*/
|
||||
static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tx_buffer *buffer, u8 *header)
|
||||
{
|
||||
if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
|
||||
buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
|
||||
header, buffer->len,
|
||||
DMA_TO_DEVICE);
|
||||
if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
|
||||
buffer->dma_addr))) {
|
||||
kfree(buffer->heap_buf);
|
||||
buffer->len = 0;
|
||||
buffer->flags = 0;
|
||||
return -ENOMEM;
|
||||
}
|
||||
buffer->unmap_len = buffer->len;
|
||||
buffer->dma_offset = 0;
|
||||
buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
|
||||
}
|
||||
|
||||
++tx_queue->insert_count;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* Parse the SKB header and initialise state. */
|
||||
static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
||||
struct efx_tx_queue *tx_queue,
|
||||
const struct sk_buff *skb)
|
||||
{
|
||||
struct device *dma_dev = &efx->pci_dev->dev;
|
||||
unsigned int header_len, in_len;
|
||||
bool use_opt_desc = false;
|
||||
dma_addr_t dma_addr;
|
||||
|
||||
if (tx_queue->tso_version == 1)
|
||||
use_opt_desc = true;
|
||||
|
||||
st->ip_off = skb_network_header(skb) - skb->data;
|
||||
st->tcp_off = skb_transport_header(skb) - skb->data;
|
||||
header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
|
||||
in_len = skb_headlen(skb) - header_len;
|
||||
st->header_len = header_len;
|
||||
st->in_len = in_len;
|
||||
if (st->protocol == htons(ETH_P_IP)) {
|
||||
st->ip_base_len = st->header_len - st->ip_off;
|
||||
st->ipv4_id = ntohs(ip_hdr(skb)->id);
|
||||
} else {
|
||||
st->ip_base_len = st->header_len - st->tcp_off;
|
||||
st->ipv4_id = 0;
|
||||
}
|
||||
st->seqnum = ntohl(tcp_hdr(skb)->seq);
|
||||
|
||||
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
|
||||
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
|
||||
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
|
||||
|
||||
st->out_len = skb->len - header_len;
|
||||
|
||||
if (!use_opt_desc) {
|
||||
st->header_unmap_len = 0;
|
||||
|
||||
if (likely(in_len == 0)) {
|
||||
st->dma_flags = 0;
|
||||
st->unmap_len = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
dma_addr = dma_map_single(dma_dev, skb->data + header_len,
|
||||
in_len, DMA_TO_DEVICE);
|
||||
st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
||||
st->dma_addr = dma_addr;
|
||||
st->unmap_addr = dma_addr;
|
||||
st->unmap_len = in_len;
|
||||
} else {
|
||||
dma_addr = dma_map_single(dma_dev, skb->data,
|
||||
skb_headlen(skb), DMA_TO_DEVICE);
|
||||
st->header_dma_addr = dma_addr;
|
||||
st->header_unmap_len = skb_headlen(skb);
|
||||
st->dma_flags = 0;
|
||||
st->dma_addr = dma_addr + header_len;
|
||||
st->unmap_len = 0;
|
||||
}
|
||||
|
||||
return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
|
||||
}
|
||||
|
||||
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
|
||||
skb_frag_t *frag)
|
||||
{
|
||||
st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
|
||||
skb_frag_size(frag), DMA_TO_DEVICE);
|
||||
if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
|
||||
st->dma_flags = 0;
|
||||
st->unmap_len = skb_frag_size(frag);
|
||||
st->in_len = skb_frag_size(frag);
|
||||
st->dma_addr = st->unmap_addr;
|
||||
return 0;
|
||||
}
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* tso_fill_packet_with_fragment - form descriptors for the current fragment
|
||||
* @tx_queue: Efx TX queue
|
||||
* @skb: Socket buffer
|
||||
* @st: TSO state
|
||||
*
|
||||
* Form descriptors for the current fragment, until we reach the end
|
||||
* of fragment or end-of-packet.
|
||||
*/
|
||||
static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
|
||||
const struct sk_buff *skb,
|
||||
struct tso_state *st)
|
||||
{
|
||||
struct efx_tx_buffer *buffer;
|
||||
int n;
|
||||
|
||||
if (st->in_len == 0)
|
||||
return;
|
||||
if (st->packet_space == 0)
|
||||
return;
|
||||
|
||||
EFX_BUG_ON_PARANOID(st->in_len <= 0);
|
||||
EFX_BUG_ON_PARANOID(st->packet_space <= 0);
|
||||
|
||||
n = min(st->in_len, st->packet_space);
|
||||
|
||||
st->packet_space -= n;
|
||||
st->out_len -= n;
|
||||
st->in_len -= n;
|
||||
|
||||
efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
|
||||
|
||||
if (st->out_len == 0) {
|
||||
/* Transfer ownership of the skb */
|
||||
buffer->skb = skb;
|
||||
buffer->flags = EFX_TX_BUF_SKB;
|
||||
} else if (st->packet_space != 0) {
|
||||
buffer->flags = EFX_TX_BUF_CONT;
|
||||
}
|
||||
|
||||
if (st->in_len == 0) {
|
||||
/* Transfer ownership of the DMA mapping */
|
||||
buffer->unmap_len = st->unmap_len;
|
||||
buffer->dma_offset = buffer->unmap_len - buffer->len;
|
||||
buffer->flags |= st->dma_flags;
|
||||
st->unmap_len = 0;
|
||||
}
|
||||
|
||||
st->dma_addr += n;
|
||||
}
|
||||
|
||||
|
||||
#define TCP_FLAGS_OFFSET 13
|
||||
|
||||
/**
|
||||
* tso_start_new_packet - generate a new header and prepare for the new packet
|
||||
* @tx_queue: Efx TX queue
|
||||
* @skb: Socket buffer
|
||||
* @st: TSO state
|
||||
*
|
||||
* Generate a new header and prepare for the new packet. Return 0 on
|
||||
* success, or -%ENOMEM if failed to alloc header.
|
||||
*/
|
||||
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
||||
const struct sk_buff *skb,
|
||||
struct tso_state *st)
|
||||
{
|
||||
struct efx_tx_buffer *buffer =
|
||||
efx_tx_queue_get_insert_buffer(tx_queue);
|
||||
bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
|
||||
u8 tcp_flags_mask;
|
||||
|
||||
if (!is_last) {
|
||||
st->packet_space = skb_shinfo(skb)->gso_size;
|
||||
tcp_flags_mask = 0x09; /* mask out FIN and PSH */
|
||||
} else {
|
||||
st->packet_space = st->out_len;
|
||||
tcp_flags_mask = 0x00;
|
||||
}
|
||||
|
||||
if (!st->header_unmap_len) {
|
||||
/* Allocate and insert a DMA-mapped header buffer. */
|
||||
struct tcphdr *tsoh_th;
|
||||
unsigned int ip_length;
|
||||
u8 *header;
|
||||
int rc;
|
||||
|
||||
header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
|
||||
if (!header)
|
||||
return -ENOMEM;
|
||||
|
||||
tsoh_th = (struct tcphdr *)(header + st->tcp_off);
|
||||
|
||||
/* Copy and update the headers. */
|
||||
memcpy(header, skb->data, st->header_len);
|
||||
|
||||
tsoh_th->seq = htonl(st->seqnum);
|
||||
((u8 *)tsoh_th)[TCP_FLAGS_OFFSET] &= ~tcp_flags_mask;
|
||||
|
||||
ip_length = st->ip_base_len + st->packet_space;
|
||||
|
||||
if (st->protocol == htons(ETH_P_IP)) {
|
||||
struct iphdr *tsoh_iph =
|
||||
(struct iphdr *)(header + st->ip_off);
|
||||
|
||||
tsoh_iph->tot_len = htons(ip_length);
|
||||
tsoh_iph->id = htons(st->ipv4_id);
|
||||
} else {
|
||||
struct ipv6hdr *tsoh_iph =
|
||||
(struct ipv6hdr *)(header + st->ip_off);
|
||||
|
||||
tsoh_iph->payload_len = htons(ip_length);
|
||||
}
|
||||
|
||||
rc = efx_tso_put_header(tx_queue, buffer, header);
|
||||
if (unlikely(rc))
|
||||
return rc;
|
||||
} else {
|
||||
/* Send the original headers with a TSO option descriptor
|
||||
* in front
|
||||
*/
|
||||
u8 tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] &
|
||||
~tcp_flags_mask;
|
||||
|
||||
buffer->flags = EFX_TX_BUF_OPTION;
|
||||
buffer->len = 0;
|
||||
buffer->unmap_len = 0;
|
||||
EFX_POPULATE_QWORD_5(buffer->option,
|
||||
ESF_DZ_TX_DESC_IS_OPT, 1,
|
||||
ESF_DZ_TX_OPTION_TYPE,
|
||||
ESE_DZ_TX_OPTION_DESC_TSO,
|
||||
ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
|
||||
ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
|
||||
ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
|
||||
++tx_queue->insert_count;
|
||||
|
||||
/* We mapped the headers in tso_start(). Unmap them
|
||||
* when the last segment is completed.
|
||||
*/
|
||||
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
||||
buffer->dma_addr = st->header_dma_addr;
|
||||
buffer->len = st->header_len;
|
||||
if (is_last) {
|
||||
buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
|
||||
buffer->unmap_len = st->header_unmap_len;
|
||||
buffer->dma_offset = 0;
|
||||
/* Ensure we only unmap them once in case of a
|
||||
* later DMA mapping error and rollback
|
||||
*/
|
||||
st->header_unmap_len = 0;
|
||||
} else {
|
||||
buffer->flags = EFX_TX_BUF_CONT;
|
||||
buffer->unmap_len = 0;
|
||||
}
|
||||
++tx_queue->insert_count;
|
||||
}
|
||||
|
||||
st->seqnum += skb_shinfo(skb)->gso_size;
|
||||
|
||||
/* Linux leaves suitable gaps in the IP ID space for us to fill. */
|
||||
++st->ipv4_id;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
|
||||
* @tx_queue: Efx TX queue
|
||||
* @skb: Socket buffer
|
||||
* @data_mapped: Did we map the data? Always set to true
|
||||
* by this on success.
|
||||
*
|
||||
* Context: You must hold netif_tx_lock() to call this function.
|
||||
*
|
||||
* Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
|
||||
* @skb was not enqueued. In all cases @skb is consumed. Return
|
||||
* %NETDEV_TX_OK.
|
||||
*/
|
||||
int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
||||
struct sk_buff *skb,
|
||||
bool *data_mapped)
|
||||
{
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
int frag_i, rc;
|
||||
struct tso_state state;
|
||||
|
||||
prefetch(skb->data);
|
||||
|
||||
/* Find the packet protocol and sanity-check it */
|
||||
state.protocol = efx_tso_check_protocol(skb);
|
||||
|
||||
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
|
||||
|
||||
rc = tso_start(&state, efx, tx_queue, skb);
|
||||
if (rc)
|
||||
goto mem_err;
|
||||
|
||||
if (likely(state.in_len == 0)) {
|
||||
/* Grab the first payload fragment. */
|
||||
EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
|
||||
frag_i = 0;
|
||||
rc = tso_get_fragment(&state, efx,
|
||||
skb_shinfo(skb)->frags + frag_i);
|
||||
if (rc)
|
||||
goto mem_err;
|
||||
} else {
|
||||
/* Payload starts in the header area. */
|
||||
frag_i = -1;
|
||||
}
|
||||
|
||||
if (tso_start_new_packet(tx_queue, skb, &state) < 0)
|
||||
goto mem_err;
|
||||
|
||||
prefetch_ptr(tx_queue);
|
||||
|
||||
while (1) {
|
||||
tso_fill_packet_with_fragment(tx_queue, skb, &state);
|
||||
|
||||
/* Move onto the next fragment? */
|
||||
if (state.in_len == 0) {
|
||||
if (++frag_i >= skb_shinfo(skb)->nr_frags)
|
||||
/* End of payload reached. */
|
||||
break;
|
||||
rc = tso_get_fragment(&state, efx,
|
||||
skb_shinfo(skb)->frags + frag_i);
|
||||
if (rc)
|
||||
goto mem_err;
|
||||
}
|
||||
|
||||
/* Start at new packet? */
|
||||
if (state.packet_space == 0 &&
|
||||
tso_start_new_packet(tx_queue, skb, &state) < 0)
|
||||
goto mem_err;
|
||||
}
|
||||
|
||||
*data_mapped = true;
|
||||
|
||||
return 0;
|
||||
|
||||
mem_err:
|
||||
netif_err(efx, tx_err, efx->net_dev,
|
||||
"Out of memory for TSO headers, or DMA mapping error\n");
|
||||
|
||||
/* Free the DMA mapping we were in the process of writing out */
|
||||
if (state.unmap_len) {
|
||||
if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
|
||||
dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
|
||||
state.unmap_len, DMA_TO_DEVICE);
|
||||
else
|
||||
dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
|
||||
state.unmap_len, DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
/* Free the header DMA mapping, if using option descriptors */
|
||||
if (state.header_unmap_len)
|
||||
dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
|
||||
state.header_unmap_len, DMA_TO_DEVICE);
|
||||
|
||||
return -ENOMEM;
|
||||
}
|
Loading…
Reference in New Issue
Block a user